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AbstratThis thesis presents proof planning with multiple strategies. Strategies are indepen-dent proof plan operations, and di�erent strategies realize di�erent plan re�nementsas well as plan modi�ations. Compared with the previous proof planning, multi-ple strategy proof planning introdues another hierarhial level and its heuristiontrol. Both, the strategies and the strategi ontrol an enode (mathematial)domain knowledge.We implemented proof planning with multiple strategies in the Multi system.The evaluation of proof planning with multiple strategies and its implementation inMulti is onduted with two large and two smaller ase studies that are disussedin this thesis. The ase studies illustrate the importane of domain knowledge atthe strategy-level for proof planning.



KurzzusammenfassungDiese Arbeit stellt Beweisplanen mit mehreren Strategien vor. Strategien sind un-abh�angige Komponenten f�ur das Beweisplanen, wobei vershiedene Strategien ver-shiedene Verfeinerungen oder Modi�kationen eines Beweisplans realisieren k�onnen.Im Vergleih mit dem bisherigen Beweisplanen f�uhrt Beweisplanen mit mehrerenStrategien eine neue Hierarhieebene und deren heuristishe Kontrolle ein. Sowohldie Strategien selbst als auh ihre Kontrolle k�onnen (mathematishes) Wissen �ubereine Dom�ane kodieren.Beweisplanen mit mehreren Strategien ist implementiert imMulti System. ZurEvaluierung von Beweisplanen mit mehreren Strategien wurden mit Multi zweigro�e und zwei kleinere Fallstudien durhgef�uhrt, die in dieser Arbeit diskutiertwerden. Die Fallstudien veranshaulihen das Dom�anenwissen, das auf der Ebenevon Strategien vorliegt, und wie es im Beweisplanen benutzt werden kann.



Extended AbstratMathematiians prove omplex theorems of a ertain mathematial domain by exi-bly ombining several global and loal problem solving strategies. In ontrast, mostof today's automated theorem proving systems use one or few strategies and typ-ially their ontrol is hard-oded into the systems algorithms. This was also truefor 
mega's previous proof planner, whih ombined the appliation of planningoperators, the instantiation of variables, and baktraking in a pre-de�ned way.Moreover, the funtionalities of these subomponents were very restrited. Thehard-oded ombination of operations with restrited funtionalities prohibited theuse of mathematial knowledge of ertain proof onstrutions and their ombina-tion. As a result, the planner failed on problems for whih more exibility andknowledge is needed in the proof planning proess.These observations led us to develop proof planning with multiple strategies,whih we introdue in this thesis. The main idea is to deompose the previousmonolithi proof planning proess and to replae it by separate but ollaboratingoperations, so-alled strategies, whih an realize di�erent plan re�nements andmodi�ations. Moreover, the deision on when to apply a strategy should not beenoded one and forever into a �xed ontrol proedure but rather be determinedby meta-level reasoning using heuristi ontrol knowledge of strategies and theirombination. As ompared with the previous proof planning, strategies and theirheuristi ontrol introdue another hierarhial level and an enode further (math-ematial) domain knowledge.The deomposition of the previous monolithi proof planner allows to extendand generalize the funtionalities of its subomponents. This results in indepen-dent parameterized algorithms for operator appliation, variable instantiation andbaktraking. Tehnially, a strategy is an instantiation of suh a parameterizedalgorithm and determines a ertain behavior of the algorithm. The knowledge en-oded into strategies an be diverse. Strategies an desribe, for instane, di�erenttehniques to prove a lass of problems. Strategies an also desribe di�erent waysof baktraking or di�erent ways of onstruting mathematial objets to instantiatevariables.Although the initial motivation for proof planning with multiple strategies wasthe deomposition of the previous monolithi proof planning proess the new frame-work is open for the integration of all kinds of algorithms and their strategies thatan ontribute to a theorem proving proess. Further algorithms integrated so farare an algorithm for the expansion of omplex steps, an algorithm for ased-basedreasoning, and an algorithm for the appliation of automated theorem provers.To enable the exible ombination of individual strategies, multiple-strategyproof planning allows for meta-reasoning about the appliable strategies with delar-atively stated heuristi ontrol knowledge. Heuristi ontrol knowledge is enodedinto so-alled strategi ontrol rules, whih an reason about the proof plan on-struted so far, the plan proess history, and the mathematial domain of the proof



iv Extended Abstratplanning problem. When evaluated with respet to a set of appliable strategies,strategi ontrol rules an prefer promising strategies or an rejet strategies whoseappliation will likely result in a failed proof attempt. For instane, strategi ontrolrules an guide the hange of strategies during the proof planning proess to takledi�erent subproblems with di�erent strategies. Strategi ontrol rules an delay orpromote instantiations of variables, if this is heuristially preferable with respetto the urrent proof planning proess. Strategi ontrol rules an also handle fail-ures during the proof planning proess, for instane, when none of the availableplanning operators is appliable or when variables annot be instantiated. In multi-strategy proof planning suh a failure does not neessarily ause baktraking asin the previous proof planner of 
mega. Rather, sine failures often hold the keyfor the disovery of a solution proof plan, a strategi ontrol rule an analyze thefailure and an use it produtively by suggesting partiular plan re�nements ormodi�ations.We implemented proof planning with multiple strategies in the Multi system.Multi has a blakboard arhiteture. We deided for a blakboard arhiteturesine blakboard systems do not rely on a pre-de�ned ontrol of the appliationof their omponents but provide the exibility to employ the omponents in anevent-driven way.The evaluation of multiple-strategy proof planning and its implementation inMulti is onduted with two large ase studies and two smaller ase studies fromdi�erent mathematial domains that are disussed in this thesis. The ase studiesillustrate the importane of domain knowledge at the strategy-level for proof plan-ning. In partiular, we disuss example problems that annot be solved with theprevious monolithi proof planner of 
mega sine their solution requires the exibleombination of di�erent proof plan re�nements. Multi an solve these problemsand also all problems provable with the previous proof planner.



Ausf�uhrliheZusammenfassungMathematiker beweisen S�atze in einem konkreten mathematishen Gebiet, indem sieeine Vielzahl von lokalen und globalen L�osungsstrategien exibel kombinieren. ImGegensatz dazu verf�ugen die meisten heutigen automatishen Beweiser nur �uber einesehr eingeshr�ankte Menge von Strategien, welhe zudem meist niht exibel kom-binierbar sind. Typisherweise ist ein bestimmter Kontrollu� in das System ein-programmiert. Dies galt auh f�ur den bisherigen Beweisplaner des 
mega Systems,dessen Kombination von Operationen wie etwa Anwendung eines Planungsopera-tors, Instantiierung einer Variablen und Baktraking fest einprogrammiert waren.Au�erdem konnte viel vorhandenes mathematishes Wissen �uber Beweisplanverfei-nerungen und -modi�kationen niht in den alten Beweisplaner eingebraht werden.Dies f�uhrte dazu, dass der Planer solhe Beweisprobleme niht l�osen konnte, f�ur dieein exiblerer Planungsprozess n�otig ist.Diese Beobahtungen motivierten die Entwiklung von Beweisplanen mit mehre-ren Strategien, das wir in dieser Arbeit vorstellen. Die grundlegende Idee ist, den bis-herigen Beweisplanungsprozess, in dem alle Teilkomponenten fest integriert sind, zuzerlegen und durh unabh�angige Komponenten, sogenannte Strategien, zu ersetzen,die vershiedene Planverfeinerungen und -modi�kationen realisieren k�onnen. Des-weiteren sollte die Entsheidung, wann eine Strategie angewandt wird, niht mehrin einem festen Kontrollzyklus vorgegeben werden, sondern sollte exibel getro�enwerden durh die Benutzung von heuristishem Kontrollwissen �uber Strategien undihre Kombination. Verglihen mit dem bisherigen Beweisplanen f�uhren Strategienund ihre heuristishe Kontrolle eine neue Hierarhieebene ein und erlauben weiteres(mathematishes) Dom�anenwissens zu kodieren.Die Zerlegung des bisherigen Planungsprozesses und die dadurh auh erm�oglih-te Erweiterung der Funktionalit�aten seiner Teilkomponenten liefern unabh�angigeparametrisierte Algorithmen f�ur Operator Anwendung, Variablen Instantiierungund Baktraking. Eine Strategie ist dann eine Instantiierung eines solhen para-metrisierten Algorithmus und legt ein bestimmtes Verhalten des Algorithmus fest.Das in Strategien kodierte Wissen kann sehr vielf�altig sein. So k�onnen Strategienzum Beispiel beshreiben, wie eine Klasse von Problemen auf vershiedene Art undWeise gel�ost werden kann, Strategien k�onnen vershiedene Arten von Baktrakingrealisieren oder sie k�onnen vershiedene M�oglihkeiten zur Konstruktion mathema-tisher Objekte zum Instantiieren von Variablen beshreiben.Die urspr�unglihe Motivation f�ur Beweisplanen mit mehreren Strategien war,die Operationen des bisherigen Beweisplaners zu zerlegen. Der neu entwikelte An-satz ist aber prinzipiell o�en f�ur die Integration beliebiger Algorithmen und derenStrategien, die zum Beweisprozess beitragen k�onnen. Beispielsweise wurden bisherein Algorithmus zur Expansion komplexer Shritte, ein Algorithmus zum Beweisen



vi Ausf�uhrlihe Zusammenfassungmittels Analogie sowie ein Algorithmus f�ur die Anwendung automatisher Beweiserintegriert.Um zwishen anwendbaren Strategien abw�agen zu k�onnen und die exible Kom-bination einzelner Strategien zu erm�oglihen benutzt Beweisplanen mit mehrerenStrategien deklaratives heuristishes Kontrollwissen. Heuristishes Kontrollwissenwird in sogenannten strategishen Kontrollregeln kodiert, die vorhandene Infor-mation �uber den momentanen Beweisplan, den bisherigen Beweisplanprozess unddie mathematishe Dom�ane des Problems auswerten. Die strategishen Kontrollre-geln bevorzugen dann die Anwendung vielversprehender Strategien und verhinderndie Anwendung von Strategien, die wahrsheinlih niht zu einer L�osung f�uhrenw�urden. Zum Beispiel k�onnen strategishe Kontrollregeln den Wehsel von Strate-gien w�ahrend eines Planungsprozesses steuern, um vershiedene Teilprobleme mitvershiedenen Strategien anzugehen, die f�ur das jeweilige Teilproblem geeignet shei-nen. Strategishe Kontrollregeln k�onnen auh die Instantiierung von Variablen vor-ziehen oder verz�ogern, je nahdem, ob die Instantiierung im momentanen Planungs-zustand heuristish sinnvoll ersheint oder niht. Andere strategishe Kontrollregelnbehandeln Fehler, die w�ahrend des Beweisplanprozesses auftreten, z.B. wenn kei-ne verf�ugbaren Planungsoperatoren anwendbar sind oder wenn Variablen niht in-stantiiert werden k�onnen. Im Gegensatz zum vorherigen Beweisplaner von 
megaziehen Fehler beim Beweisplanen mit mehreren Strategien niht notwendigerweiseBaktraking nah sih. Vielmehr k�onnen strategishe Kontrollregeln Fehler ana-lysieren und darauf aufbauend bestimmte Planverfeinerungen oder -modi�kationensteuern. Denn manhmal enthalten auftretende Fehler den Shl�ussel zum Findeneiner L�osung.Wir haben Beweisplanen mit mehreren Strategien in dem neuen System Multiimplementiert. Multi hat eine Blakboardarhitektur, die es erlaubt, Strategienbedarfsorientiert und durh die Auswertung von strategishen Kontrollregeln auf-zurufen.Zur Evaluierung von Beweisplanen mit mehreren Strategien und seiner Imple-mentierung in Multi wurden zwei gro�e und zwei kleinere Fallstudien aus ver-shiedenen mathematishen Dom�anen durhgef�uhrt, die in dieser Arbeit diskutiertwerden. Die Fallstudien veranshaulihen das Dom�anenwissen, das auf der Ebenevon Strategien vorliegt, und wie es im Beweisplanen benutzt werden kann. Insbe-sondere werden in der Arbeit Probleme diskutiert, die vom bisherigen Planer von
mega niht gel�ost werden konnten, da ihre L�osung die exible Kombination ver-shiedener Planverfeinerungen ben�otigt. Multi kann diese Probleme l�osen sowieauh alle Probleme, die bereits der alte Planer l�osen konnte.
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Chapter 1Introdution
1.1 Motivation and ProblemTypially, human experts have di�erent problem solving tehniques at their disposalthat they an exibly employ when solving a omplex problem, for instane, whendisovering a omplex proof for a mathematial theorem. In partiular, the hoieof appropriate problem solving approahes are ruial human skills and are typiallyguided by some meta-reasoning.For automated theorem proving the situation is quite di�erent urrently. Tra-ditional logi-oriented automated theorem provers suh as Otter or Spass searhfor proofs in the huge searh spaes that result from the use of low-level logi rules.To traverse the searh spae they use searh heuristis determined by parametersettings. These searh heuristis are general-purpose heuristis suh as the set-of-support tehnique or ordering tehniques that hardly over mathematial proofdisovery heuristis. Moreover, it is not possible to hange the searh strategy dur-ing a proof attempt in order to adapt to the needs of subproblems. Thus, thesesystems annot ombine di�erent searh strategies.An alternative tehnique for automated theorem proving is proof planning in-trodued by Bundy in 1988. Proof planning onsiders a theorem to be proved asan Arti�ial Intelligene (AI) planning problem. Bundy's key idea was to augmenttatis that originate from tatial theorem proving with pre- and postonditionsthat speify the appliability of the tati as well as its e�ets with respet to aproof state. This results in planning operators, so-alled methods, whih are moreabstrat than logi alulus rules. A proof planner searhes for a sequene of methodappliations that derives a theorem from given assumptions, so that the automatedproof searh is performed at the abstrat level of methods.Another important advantage of proof planning is the possibility to inorpo-rate domain-spei� mathematial knowledge into the planning proess. This wasrealized in the knowledge-based proof planning of the 
mega system, whih isdeveloped by Siekmann and his group sine the mid 1990s.The previous proof planner of 
mega provides two ways to enode knowledge,methods and ontrol rules. 
mega's methods an enode general proof steps aswell as steps partiular to a mathematial domain. Heuristi onditions about thedesirability of the appliation of methods are enoded in ontrol rules. Control rulesallow, in partiular, to enode global searh ontrol that an over mathematialontrol knowledge. The ontrol rules guide the searh for a solution plan by pre-ferring promising searh paths or pruning searh paths that are likely to lead to no



2 Chapter 1. Introdutionsolution. The previous proof planner performs a �xed yle of method seletion andappliation that is guided by ontrol rules. This yle is ombined in a �xed waywith restrited failities for baktraking and for the instantiation of variables.The appliation of this previous proof planner of 
mega to problems fromdi�erent mathematial domains revealed the following drawbaks. First, its sub-omponents for method appliation, baktraking, and variable instantiation haveonly restrited funtionalities that do not enable, for instane, di�erent kinds ofbaktraking or the realization of di�erent ways to instantiate variables. Seond,the integration of these subomponents is hard-oded into the algorithm, so thatthey annot be exibly ombined. As a onsequene, this planner realizes only onepartiular hard-oded problem solving approah, whih is suitable for many prob-lems but insuÆient for other ones. In partiular, there is no possibility to adaptit to the needs of di�erent lasses of problems sine large parts of its ontrol arehard-oded.Another problem with the previous proof planner originates from the fat thatmathematis is knowledge-intensive. Hene, the exploration of di�erent mathemat-ial domains results in large sets of methods and ontrol rules. This large amount ofavailable knowledge an be used only, if it is appropriately strutured into ompu-tationally manageable and oneptually sensible units. The previous proof plannerof 
mega, however, provides no means to struture sets of methods and ontrolrules.During our experiments with the previous proof planner of 
mega we foundknowledge about several proof plan re�nements and modi�ations that are usefulin ertain situations. We also learnt how to ombine these re�nements and modi�-ations. For instane, we disovered sets of methods and ontrol rules that belongtogether sine they enode together the knowledge of how to takle a ertain lassof problems (i.e., they enode together a ertain proof tehnique to prove problemsfrom the lass). We found that the instantiation of variables should be exibly om-bined with the introdution of methods sine in some situations it is useful to delaythe instantiation of variables whereas in other situations it is useful to promote theinstantiation. By analyzing failed proof attempts we learnt about di�erent usefulkinds of baktraking. In other situations the failures themselves hold the key todisover a solution. Hene, the analysis of suh a failure gives rise to the sugges-tion of partiular proof plan re�nements or modi�ations rather than to baktrak.All this knowledge of proof plan re�nements and modi�ations and their ontrolledombination annot be represented in methods and ontrol rules. Hene, there isno means to inorporate and use it in the previous proof planner of 
mega.1.2 SolutionsTo overome the problems of knowledge-based proof planning that originate fromthe rigidity of the hard-oded problem solving approah of the previous monolithiproof planner (as disussed in the previous setion) this thesis presents proof plan-ning with multiple strategies. This novel approah is implemented in a new proofplanner alled Multi.The main idea of proof planning with multiple strategies is to deompose theprevious monolithi proof planning proess and to replae it by separate but ollab-orating operations, so-alled strategies, whih an realize di�erent plan re�nementsand modi�ations. Moreover, the deision on when to all a strategy should not beenoded one and forever into the system but rather be determined by meta-levelreasoning using heuristi ontrol knowledge of strategies and their ombination. As



1.2. Solutions 3ompared with the previous proof planning, strategies and their heuristi ontrolintrodue another hierarhial level and an enode further (mathematial) domainknowledge.Algorithms and StrategiesThe deomposition of the previous monolithi proof planner of 
mega allows toextend and generalize the funtionalities of its subomponents. This results in in-dependent parameterized algorithms for method appliation, variable instantiationand baktraking. A strategy is an instantiation of suh a parameterized algorithmand determines a ertain behavior of the algorithm. When a strategy is invoked,then its algorithm is applied to the urrent proof planning state with respet to theparameter instantiation spei�ed by the strategy.The multiple-strategy proof planning framework is not restrited to the algo-rithms resulting from the deomposition of the previous proof planner. Rather, itis open for the integration of all kinds of algorithms and their strategies that anontribute to a theorem proving proess. Currently, Multi employs the following6 independent and parameterized algorithms:
PPLANNER re�nes a proof plan by introduing new method steps.
INSTMETA re�nes a proof plan by instantiating variables.
BACKTRACK modi�es a proof plan by removing re�nements of other algorithms.
EXP re�nes a proof plan by expanding omplex steps.
ATP re�nes a proof plan by solving subproblems with traditional automated theo-rem provers.
CPLANNER re�nes a proof plan by transferring steps from a soure proof plan orfragment.
PPLANNER, INSTMETA, and BACKTRACK result from the deomposition and generaliza-tion of the subomponents of the previous proof planner of 
mega. EXP, ATP, and
CPLANNER integrate new re�nements of the proof plan.1The knowledge enoded into strategies an be diverse. For instane, the al-gorithm PPLANNER has parameters for a set of methods and a set of ontrol rules.Thus, a PPLANNER strategy spei�es a set of methods and ontrol rules, for instane,methods and ontrol rules that enode together a proof tehnique to prove a er-tain lass of problems. Several PPLANNER strategies provide a means to struturethe available method and ontrol rule knowledge into units of methods and on-trol rules that belong together. Strategies of INSTMETA determine di�erent ways toonstrut mathematial objets to instantiate variables, for instane, by employingdi�erent kinds of external systems to provide instantiations for variables. Strate-gies of BACKTRACK determine di�erent ways to baktrak by deleting di�erent setsof steps.Strategi ControlKnowledge of the appliability of strategies is subdivided into knowledge of the legalfeasibility of a strategy and knowledge of the heuristi desirability of strategies. The1CPLANNER adapts and extends funtionalities of the Topal system, a omponent of 
mega forased-based reasoning.



4 Chapter 1. Introdutionlegal onditions that have to be satis�ed in order for a strategy to be appliable arepart of the spei�ation of the strategy. Heuristi knowledge about the desirabilityof ertain strategies in partiular situations is enoded into strategi ontrol rules,whih guide the searh at the strategy-level similar to ontrol rules at the method-level. Strategi ontrol rules an reason about the proof plan onstruted so far, theplan proess history, and the mathematial domain of the proof planning problem.When evaluated with respet to a set of appliable strategies, strategi ontrol rulesan prefer promising strategies or an rejet strategies whose appliation will likelyresult in a failed proof attempt.The advantage of this delarative and knowledge-based ontrol approah is thatthe heuristi ontrol of proof planning with multiple strategies an be easily ex-tended and hanged by modifying the strategi ontrol rules. In ontrast, whenthe ombination of integrated omponents of a system is hard-oded into a ontrolproedure, then eah extension or hange requires re-implementation of parts of themain ontrol proedure. Moreover, delaratively stated ontrol knowledge an beommuniated more easily to a user in order to larify and explain taken deisions.However, the aquisition and implementation of suitable ontrol knowledge an bediÆult, but it is typially neessary for the suessful appliation of proof planning.Similar to the knowledge in strategies also the knowledge enoded in strategiontrol rules an be diverse. For instane, strategi ontrol rules an guide theswith of PPLANNER strategies during the proof planning proess to takle di�erentsubproblems with di�erent sets of methods and ontrol rules that seem to be ap-propriate for the respetive subproblem. Strategi ontrol rules an also guide theombination between PPLANNER strategies and the strategies of other algorithms.For instane, strategi ontrol rules an delay or promote instantiations of variablesperformed by strategies of INSTMETA, if this is heuristially preferable with respetto the urrent proof planning proess. Strategi ontrol rules an also handle fail-ures during the proof planning proess, for instane, when none of the availableplanning operators is appliable or when variables annot be instantiated. In multi-strategy proof planning suh a failure does not neessarily ause baktraking asin the previous proof planner of 
mega. Rather, sine failures often hold the keyfor the disovery of a solution proof plan, a strategi ontrol rule an analyze thefailure and an use it produtively by suggesting partiular plan re�nements ormodi�ations.Implementation in MultiFor the implementation of the multiple-strategy proof planning approah in Multiwe deided for a blakboard arhiteture sine blakboard arhitetures have provenuseful to organize the ooperation of several independent omponents, so-alledknowledge soures, for solving a omplex problem. This is beause blakboardsystems do not rely on a pre-de�ned ontrol of the appliation of the involved om-ponents but employ their knowledge soures event-driven, i.e., whenever possibleand suitable. Multi's arhiteture onsists of two blakboards, the so-alled proofblakboard and the ontrol blakboard. The two-blakboard arhiteture empha-sizes the importane of both, the solution of the proof planning problem whosestatus is stored on the proof blakboard and the solution of the ontrol problem,that is, whih possible strategy should the system apply next. Corresponding tothe two blakboards, there are two sets of knowledge soures that work on theseblakboards: the strategies work on the proof blakboard whereas the knowledgesoure that works on the ontrol blakboard is alled the MetaReasoner. It evaluatesthe strategi ontrol rules in order to guide the seletion of the next strategy.



1.3. Case Studies 5
Execution Guidance

Recording 

InvocationFigure 1.1: Control yle of Multi.In a nutshell,Multi operates aording to the ontrol yle in Figure 1.1, whihpasses the following steps:Reording Strategies whose ondition is true reord their appliability on theontrol blakboard.Guidane The MetaReasoner evaluates the strategi ontrol rules to order theappliability reords on the ontrol blakboard.Invoation A sheduler invokes the strategy who posed the highest ranked appli-ability reord.Exeution The algorithm of the invoked strategy is exeuted with respet to theparameter instantiation spei�ed by the strategy.Exept for this yle, no ontrol is hard-oded into Multi. In partiular, nopreferene or exlusion of strategies is pre-de�ned. There are several strategi on-trol rules that de�ne a `reasonable' default ontrol forMulti. For instane, there isa strategi ontrol rule that rejets strategies that failed already. Another rule sug-gests baktraking, if a failure ours. Although these ontrol rules are the bakboneof Multi's ontrol, they an be exluded by the user of Multi or an be overrid-den by other strategi ontrol rules. For instane, in the ase studies ondutedwith Multi, we developed more spei� ontrol rules that allow for the repeatedappliation of the same strategy although it failed already. Moreover, we developedmore spei� strategi ontrol rules that analyze and produtively use failures tosuggest partiular plan re�nements or modi�ations rather than to baktraking.1.3 Case StudiesFor an evaluation of multiple-strategy proof planning and its implementation inMulti we present two large ase studies and two smaller ase studies that weonduted with Multi. They show that multiple-strategy proof planning naturallyextends simple proof planning and extends the problem solving horizon of proofplanning.1. The �rst ase study investigates proof planning for theorems taken from theanalysis textbook [12℄ about the limit of sequenes, the limit of funtions, theontinuity of funtions, and the derivative of funtions. This domain was �rsttakled with 
mega's previous proof planner. The analysis of the failed at-tempts of the previous proof planner strongly inuened the design ofMulti.



6 Chapter 1. IntrodutionThe ase study demonstrates how proof planning with multiple strategies en-ables the exible integration of a onstraint solver to provide instantiations forvariables and reasoning about failures to guide baktraking and the subse-quent proof planning proess. For instane, failures an be exploited to guidethe eureka steps of lemma speulation and ase-split introdution.In this ase study we disuss, in partiular, example problems that annot besolved with the previous proof planner of 
mega sine their solution requiresthe exible instantiation of variables and the exible handling of failures.Multi an solve these problems (as well as all other problems provable withthe previous proof planner) sine it an make use of the additional domainknowledge enoded into strategies and strategi ontrol rules.2. The seond ase study is onerned with the automati lassi�ation of residuelass strutures with respet to their algebrai properties and with respetto isomorphi strutures. To solve problems from this domain we realizedseveral proof tehniques in several proof planning strategies. The availabilityof several proof tehniques for one problem makes proof planning more robust:if one proof tehnique fails on a problem, another proof tehnique may solveit. The ase study also bene�ts from di�erent kinds of baktraking in Multiand their guidane by reasoning about failures. Moreover, the ase studydemonstrates howMulti supports the exible integration of omputer algebrasystems, model generators, theory formation systems, and automated theoremprovers with proof planning.3. In the third ase study, we apply Multi to solve problems on permutationgroups. Essential for the suess of Multi in this domain are the inorpora-tion of a omputer algebra system and the hierarhial onstrution of proofplans. That is, proof planning in this domain exploits, among others,Multi'salgorithm for the expansion of omplex steps and ombines it with the otherproof plan re�nements and modi�ations.4. The fourth ase study applies Multi to homomorphism problems. AlthoughMulti an solve the homomorphism problems automatially the main fousof the ase study is to takle these problems interatively with Multi. Thease study demonstrates how also interative proof planning bene�ts from thenew approah.1.4 OverviewThis thesis onsists of three parts. Part I introdues the preliminaries of the thesis,part II desribesMulti, and part III ontains desriptions of the ase studies. Thesingle parts are organized as follows:Part I: Preliminaries After brief overviews of theorem proving with omputers,blakboard systems, and Arti�ial Intelligene planning in hapter 2, we introduethe 
mega system in hapter 3 and formally desribe its underlying logi andits proof objets. In hapter 4, we shall introdue the basis of knowledge-basedproof planning. In addition to tehnial desriptions of methods and ontrol ruleswe shall give a formal de�nition of proof plans and a detailed desription of theprevious proof planner of 
mega. We onlude part I in hapter 5 with a briefdisussion of the theorems that are part of the limit domain and the residue lassdomain, sine these problems are used throughout the rest of the thesis as examples.



1.4. Overview 7Part II: Multi This part onsists of two hapters. Chapter 6 introdues proofplanning with multiple strategies and Multi. It starts with a motivation of thedevelopment of proof planning with multiple strategies. Then, it introdues thebasi elements of proof planning with multiple strategies as well as Multi's blak-board arhiteture. It onludes with a disussion of the realized approah and aomparison with related work. Chapter 7 gives a tehnial desription of Multiand the algorithms it employs so far.Part III: Case Studies The ase studies are desribed in three hapters. Chap-ters 8 and 9 desribe the appliation of Multi to the limit domain and the residuelass domain, respetively. The subjet of hapter 10 is then the appliation ofMulti to problems of permutation groups and homomorphism theorems.Finally, hapter 11 onludes the thesis with a summary and an outlook to possibleextensions.
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Chapter 2BakgroundIn this hapter we give a brief overview of the bakground of this thesis, namelytheorem proving with omputers, blakboard systems, and Arti�ial Intelligeneplanning.2.1 Theorem Proving with ComputersTheorem proving systems were among the earliest Arti�ial Intelligene (AI) sys-tems in the 1950s. For instane, at the Dartmouth Conferene in 1956 Davisdeision proedure based on Presburger's Arithmeti [66℄ and Newell and Si-mon's Logi Theorist [178℄ were among the presented systems. Sine this time alarge variety of systems and approahes to automate and mehanize mathematialreasoning has been developed. We ategorize these approahes into three lasses:mahine-oriented automated theorem proving, logi-oriented interative theoremproving, and mathematis-oriented theorem proving.2.1.1 Mahine-Oriented Theorem ProvingIt seems as though logiians had worked with the �tion of man as apersistent and unimaginative beast who an only follow rules blindly,and then the �tion found its inarnation in the mahine.Wang, 1960, quoted from [216℄, p. 260Mahine-oriented theorem provers are automated theorem provers (ATPs) basedupon omputational logial inferene system suh as resolution [205℄, tableaux [221℄,or onnetion aluli [142℄. These systems searh for a sequene of low-level logirule appliations that proves a theorem from a given set of axioms. The searh isguided by general-purpose heuristis suh as the set-of-support tehnique or orderingtehniques [146℄ that hardly over mathematial proof disovery heuristis. Thestrength of the systems stems from their ability to traverse and maintain very largesearh spaes (up to millions of nodes).The breakthrough for mahine-oriented theorem provers ame with the workof Wang [238℄ and the development of the resolution priniple by Robinsonin 1965 [205℄. Today many suh theorem provers exist for di�erent logis. Forpropositional logi there are, for instane, SAT-based systems suh as Sato [251℄and Anl-DP [149℄, whih rely on the Davis-Putnam Proedure [67℄. For �rst-orderlogi a myriad of systems has been developed. Representatives of systems that are



12 Chapter 2. Bakgroundbased on the resolution priniple are MKRP [197℄, Otter [150℄, Bliksem [68℄,and Spass [240℄. SETHEO [212℄ is a prover based on the tableaux alulus andleanCoP [187℄ uses a onnetion alulus. For higher-order logi there are systemsbased on the (suitably extended) resolution priniple suh as the Leo system [19℄and systems based on the (suitably extended) onnetion method suh as tps [8℄.For spei� lasses of problems there are also speialized systems. For instane,an important sub�eld of automated theorem proving are so-alled term rewritingsystems . Term rewriting systems have been developed to prove whether an equalityan be derived from a given set of input equations. A well known approah from thissub�eld is the Knuth-Bendix ompletion [138℄. Representatives for term rewritingsystems are WaldMeister [114℄ and eqp [152℄.Like other appliations of omputers, mahine-oriented theorem provers didpro�t from the development of faster omputers with more memory. Due to thistehnologial progress and due to the development of very eÆient implementa-tion tehniques (e.g., sophistiated indexing tehniques [108, 199℄) mahine-orientedprovers have been suessfully applied in logi and mathematis (e.g., see [250℄) andsueeded to prove non-trivial open mathematial problems suh as the Robbins Al-gebra Conjeture [152℄.Nevertheless, mahine-oriented theorem provers su�er from the explosion of thesearh spae that results from their low-level inferene systems. Consequently, manyproblems of well-understood mathematial domains are beyond the apabilities oftoday's systems. The mathematial knowledge and experiene that humans em-ploy to aomplish proofs in these domains annot be used by the mahine-orientedprovers in their low-level searh with logi inferene rules. An example of suh adomain are theorems about the limit of funtions. In 1990 Bledsoe proposed sev-eral versions of the theorem that the limit of the sum of two funtions over the realsequals the sum of their limits as a hallenge problem for automated theorem prov-ing [28℄. Only the simplest versions of this problem (problem 1 and 2 in [28℄) an besolved by today's mahine-oriented automated theorem provers. The more diÆultversions as well as theorems suh as that the limit of the produt of two funtionsover the reals equals the produt of their limits are beyond their apabilities.2.1.2 Logi-Oriented Interative Theorem ProvingSome workers in automati theorem proving, inluding the authors, be-lieve it will be many years (if ever) before mahines alone an prove dif-�ult theorems in mathematis. Thus some, who hope to see mahinesused as pratial assistants to pure mathematiians, have redireted theirattention to man-mahine theorem provers and theorem proof heking.Bledsoe and Bruell, 1973,[26℄Despite the early enthusiasm for mahine-oriented automated theorem provers itturned out that their appliations in the daily work of a mathematiian were limited.First, these provers fail often on main-stream mathematial problems; seond, theiroutput format is inomprehensible for humans; and third, essentially they workas a blakbox and give either a perfet answer (i.e., a proof) or no answer at all.This motivated the development of interative systems to assist mathematiians byonstruting and heking their proofs.Although there were approahes to use variations of resolution as priniple meansto interatively onstrut proofs (e.g., see [2, 119℄) most interative systems arebased on natural dedution [96℄ or sequent aluli [198℄, whih are onsidered to bemore human-oriented than resolution, tableaux, or onnetion aluli.



2.1. Theorem Proving with Computers 13One of the earliest interative provers of this paradigm is the Automath systemdeveloped by De Bruijn in the early 1970s [232℄. Automath and other earlysystems su�ered from the problem that proofs in their underlying natural dedutionor sequent aluli have to be derived at a very �ne-grained level, whih requires manyuser interations and results in very long proof objets (when ompared to proofsin mathematial texts).More reent interative systems suh as Nuprl [3℄, Isabelle [189℄, Hol [107℄,and Pvs [188℄ use tatis for proof onstrution. The idea in tatial theoremproving is that repeatedly ourring sequenes of inferene steps are enapsulatedinto maro steps, so-alled tatis. Most tati-based theorem proving systems(e.g., Nuprl, Isabelle, Hol) are desendants of LCF [106℄ and follow a bottom-up approah for tati onstrution. That is, more and more omplex tatis areonstruted by the deomposition of inferene rules of the basi alulus and alreadyde�ned tatis. Sine suh a tati eventually results in the appliation of aluluslevel rules, a tati may fail to be appliable, but if it is appliable, then it does notprodue faulty steps.The invention of tatis failitated the use of interative systems for proof on-strution and proof heking, and a large set of proofs has been onstruted withthese systems for mathematial appliations (e.g., see [62℄) as well as for programand hardware veri�ations (e.g., see [55, 143℄). However, these approahes havenot reahed a broad aeptane as a working instrument for mathematiians. Theymay result in new standards of rigor in mathematial proofs but they fous on thelogial orretness of steps and proofs, rather than to fous on the integration ofmathematial knowledge and pratie into the proof development proess.2.1.3 Mathematis-Oriented Theorem ProvingAutomated theorem proving [: : :℄ is not the beautiful proess we know asmathematis. This is `over your eyes with blinders and hunt througha orn�eld for a diamond-shaped grain of orn'. Mathematiians havegiven us a great deal of diretion over the last two or three millennia.Let us pay attention to it. Bledsoe, 1986,[27℄Although the �eld of automated and interative theorem proving with omputershas been dominated by logi-oriented systems there have always been approahesthat try to base theorem proving on mathematial knowledge and pratie. Exam-ples for suh systems are Gelernter's Geometry-Theorem Proving Mahine [94℄for Eulidean geometry theorems, Bundy's Sums prover [37℄ for part of arithmeti,and Bledsoe's Imply [29℄ prover1 for limit theorems.The Geometry-Theorem Proving Mahine was motivated by the fat that hu-mans typially �rst draw a diagram to have a model of the problem at hand whenproving a theorem of Eulidean geometry. This is beause, \the reative sientistgenerally �nds his most valuable insights into a problem by onsidering a model ofthe formal system in whih the problem is ouhed" (quoted from [95℄, p. 103).Tehnially, the Geometry-Theorem Proving Mahine uses two representations ofthe problem during the theorem proving proess: a `syntax-mahine' onstruts aproof of the given problem with rules and axioms on Eulidean geometry and a`diagram-mahine' maintains and updates a diagram, i.e., a model, of the problem1To be more preise, the atual program was alled Prover and Imply was its prinipal sub-routine for aomplishing limit theorems, see [29℄ for details.



14 Chapter 2. Bakground(the initial diagram is given by the user).2 The `syntax-mahine' bakwardly ap-plies rules and axioms to redue the initial theorem to new subgoals. The `diagram-mahine' guides this proof searh by rejeting those appliations that result in sub-goals that are false in the diagram and by instantiating variables in new subgoals,suh that the subgoals are true in the diagram.Sums proves arithmeti theorems by representing them in the form of a diagram.The nodes of the diagram are property lists of arithmeti terms and its links desriberelationships suh as <;�;=. Knowledge about arithmeti is built into the systemin form of proedures that draw the diagram, so that when links are added to it,elementary dedutions are made (and more links are added) automatially withoutthe expliit use of axioms of arithmeti or expliit inferene rules. This resultsin a kind of proof protool rather than a formal logi proof. However, the mainintention of Sums was not to produe formal proofs but to simulate the behavior ofmathematiians as Bundy points out: \Does Sums prove theorems or does it hektheir validity? It ertainly does not produe proofs in a formal logial system [: : :℄Nor, of ourse, does the pratiing mathematiian on�ne himself to either of thesetehniques. Rather he is prepared to use a variety of methods to ahieve his ends.To onvine himself, and others, he produes a protool. Formal logial systems wereintrodued to analyze and justify this proedure and not to replae it as a methodof disovery. Sums is designed to simulate the behavior of mathematiians. Duringthe ourse of a proof it `proves' many fats (i.e., onvines itself of their truth) andreords these as true; it also produes a protool whih is intended to onvine othersof their truth (i.e., a proof)." (quoted from [37℄)Limit theorems turned out to be a diÆult domain for mahine-oriented auto-mated theorem provers sine they require the axioms of an ordered �eld that auselong and diÆult searhes. Motivated by the fat that \a human mathematiian isoften able to easily perform the neessary operations of analysis without being awareof the expliit use of the �eld axioms" (quoted from [29℄, p. 586) Imply employsknowledge on the limit domain in form of routines for algebrai simpli�ation andsolving linear inequalities as performed by mathematiians without the expliit useof the axioms of an ordered �eld.A reent approah for mathematis-oriented theorem proving is proof planning .Proof planning was �rst introdued by Bundy in 1988. Bundy's key idea was toaugment individual tatis with pre- and postonditions that speify the applia-bility of the tati as well as its e�ets with respet to a proof state. This resultsin AI-planning operators, so-alled methods . A proof planner searhes for a plan,i.e., a sequene of methods, that derives the theorem from the given assumptions.The representation of a proof, at least while it is developed, onsists of a sequeneof abstrat steps. The omplete abstrat proof (or parts of it) an be expanded toa logi-level proof. This enables automated proof searh at an abstrat level and aseparated heking proess.Bundy and his group developed the �rst proof planner, CLaM [44℄, in the early1990s and applied it to prove theorems by mathematial indution. To guide thesearh of indutive proofs the rippling searh heuristi for di�erene redution [121,46℄ is enoded into CLaM methods. Later on Bundy and his group re-implementedCLaM in their new system �CLaM [45, 204℄.Another proof planner is part of the 
mega system [213℄. 
mega is a proofdevelopment system for knowledge-based interative and automated proof onstru-tion developed by Siekmann and his group sine the mid 1990s (e.g., see [118, 18℄).2For the diagram a Cartesian representation was used, with eah point mentioned in the theorembeing assigned a pair of x; y oordinates hosen in suh a way as to make the assumptions of thetheorem true.



2.2. Blakboard Systems 15The development of 
mega was motivated by the onvition that the solution ofmain-stream mathematial problems requires the ombination of theorem provingbased on mathematial knowledge with powerful reasoning experts suh as mahine-oriented theorem provers, omputer algebra systems, or onstraint solvers. 
megaemploys proof planning as the main tool for automated proof onstrution sineproof planning enables the inorporation of mathematial knowledge into the theo-rem proving proess as well as the inorporation of external expert systems. Sinethe fous of 
mega's proof planning is on the integration of mathematial knowl-edge it is alled knowledge-based proof planning .One di�erene between proof planning in 
mega and CLaM is the handling ofheuristi ontrol knowledge. Preonditions of CLaM methods may inlude legal on-ditions about the feasibility of the appliation of the method as well as heuristionditions about the desirability of the appliation of the method. In ontrast,preonditions of 
mega methods inlude only legal onditions. Heuristi ontrolknowledge is enoded in so-alled ontrol rules. Tehnially, the ontrol rules guidethe searh by reasoning on alternatives at hoie points. That is, they an preferpromising alternatives and rejet or delay alternatives that are not likely to leadto a solution. Thereby ontrol rules an enode mathematial ontrol knowledge.This is possible sine, as opposed to the loal and syntati proof heuristis usedin mahine-oriented provers, 
mega's ontrol rules an reason about the urrentproof planning state as well as about the entire history of the proof planning pro-ess. Moreover, they an over semantial information on partiular mathematialfuntions or onstants that guides human proof searh. We shall give a detaileddesription of the 
mega system in hapter 3. An introdution of knowledge-basedproof planning is given in hapter 4.A major di�erene between systems suh as the Geometry-Theorem ProvingMahine, Sums, or Imply and proof planning is how knowledge is used and in-orporated. Whereas the former systems are speial-purpose systems in whihdomain-spei� knowledge is hard-wired into the system, in proof planning onlymethods and ontrol rules are domain-spei�. The representational tehniquesand reasoning proedures are general-purpose.The 
mega system has been used in several ase studies, whih illustrate theinterplay of the various omponents suh as proof planning and external reasoningsystems. The �rst large ase study was the appliation of 
mega's proof planningto limit problems [172℄. Another lass of problems we takled with proof planningare residue lass problems [165℄. We also employed proof planning to solve problemsof permutation groups [57℄ and homomorphism problems. Sine they are part ofthis thesis we shall disuss these ase studies and the knowledge we aquired andformalized to takle them in the hapters 8 | 10. Another ase study not disussedin this thesis is proof planning for diagonalization proofs [49℄ of theorems suh asCantor's theorem and the undeidability of the halting problem. A ase studyon interative proof development with 
mega is the proof of the Irrationality ofp2 [215, 214℄. Here, the user interatively proposes the main oneptual steps.Simple but painful logial subproofs are then passed to onneted mahine-orientedprovers and omputations are done by onneted omputer algebra systems.2.2 Blakboard SystemsIn this setion, we briey introdue blakboard arhitetures. In partiular, weshall desribe the Hearsay-III and the BB1 systems sine they are relevant forthe understanding of Multi's blakboard arhiteture. An extensive introdution



16 Chapter 2. Bakgroundto blakboard systems an be found in [76℄.2.2.1 Introdution to Blakboard SystemsThe entral issue of any kind of knowledge-based problem solving deals with thequestion: What piee of knowledge should be applied when and how? The \stan-dard" omputation approah is a entral sequening program that onsists of a setof proedures and some ontrol mehanisms for ordering their appliation. Theproblem-solving knowledge is embedded in the proedures and the ontrol stru-ture. This approah is suitable to apply proedures in a deterministi or quasi-deterministi way. However, it is not exible enough, if many and diverse proe-dures have to be ombined in a non-deterministi way. Blakboard arhitetureshave been developed in the eighties to enable a exible ombination of di�erentproblem solving proedures in a single problem solving proess and to realize anon-deterministi solution-strategy.The fundamental ideas of the blakboard model are (1) the segmentation of theknowledge base into modules that are kept separate and independent and (2) theseparation of the inferene engines that work on that knowledge. Eah knowledgemodule an employ its own inferene engine. The ommuniation between the mod-ules is limited to reading and writing in a ommon working memory, the blakboard .The blakboard an be further strutured into regions that, for instane, ontaindi�erent data strutures. A basi blakboard arhiteture onsists of a struturedblakboard and the modular inferene engine/knowledge base pairs whih are alledthe knowledge soures. Figure 2.1 depits suh a basi blakboard arhiteture.
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Figure 2.1: A rudimentary blakboard arhiteture.The objetive of eah knowledge soure is to ontribute to the solution of theproblem whose problem-solving state data are kept on the global blakboard. Con-trol of knowledge soure ativation in blakboard systems is data-direted and event-driven. That is, the ativation of the next knowledge soure is determined by thehanges of the data on the blakboard aused by other knowledge soures, ratherthan by expliit alls from other knowledge soures or some entral sequeningmehanism. Knowledge soures hek whether they are appliable with respet tothe urrent solution state on the blakboard and indiate their appliability. Con-trol modules hoose the next knowledge soure based on the solution state and on



2.2. Blakboard Systems 17the existene of knowledge soures apable of improving the urrent state of the so-lution. As a result, the sequene of knowledge soure invoation is dynami ratherthan �xed and preprogrammed. The ability of a system to exibly exploit its bestdata and most promising methods is also alled opportunisti problem solving [112℄.Piees of problem solving steps our in the following iterative sequene:1. A knowledge soure hanges blakboard objets.2. Eah knowledge soure indiates the ontribution it an make with respet tothe hanged solution state.3. Using the information produed in step 1 and 2, a ontrol module selets thenext knowledge soure to beome ative.With respet to step 1 and 2 knowledge soures an be seen also as ondition-ation pairs . A knowledge soure ontains the knowledge when it is appliable (theondition part of a knowledge soure, whih is employed in step 2) and how it isappliable (the ation part of a knowledge soure, whih is employed in step 1).The �rst blakboard arhitetures were the Hearsay-II[77℄ and the Hasp[181℄arhitetures. Hearsay-II was used for speeh reognition and Hasp for oeansurveillane. Both onsisted of a single blakboard and a set of hierarhially stru-tured knowledge soures. The ontrol in Hearsay-II is subsymboli. Eah knowl-edge soure as well as eah objet on the blakboard has a rank of belief (a numerivalue). From these values a sheduler omputes and selets the most promising ap-pliation of a knowledge soure to an objet of the blakboard. In Hasp the ontrolknowledge was organized in hierarhially strutured modules that onsist of sets ofrules. On the lowest level is a set of knowledge soures that manipulate objets onthe blakboard. At the next level there are knowledge soure ativators that know,when to use the various knowledge soures. On the highest level a strategy moduleanalyzes the urrent solution state and selets the next knowledge soure ativator.In later blakboard systems the ontrol beame are more and more importantissue. Therefore, later arhitetures tried to make ontrol of the system a knowledge-based proedure in its own right. In the Hearsay-III [78℄ and the BB1 [111℄frameworks ontrol is established as a �rst-lass knowledge-based ativity. Bothframeworks employ arhitetures with two separate blakboards: one blakboardto reason on the domain problem, that is, the given problem to solve, and oneblakboard to reason on the ontrol problem, that is, the problem whih appliableknowledge soure to apply next. Corresponding to the two separated blakboards,these systems employ also two separated sets of knowledge soures that reason aboutthe domain problem and about the ontrol of problem-solving ations, respetively.Sine the blakboard arhiteture of Multi resembles the Hearsay-III andBB1 arhiteture, we shall now introdue these two frameworks in more detail.Multi's blakboard arhiteture is desribed in detail in setion 6.2.2. A disussionof similarities and di�erenes between Multi and Hearsay-III and BB1 followsin setion 6.3.1.2.2.2 The Hearsay-III FrameworkHearsay-III is a domain-independent arhiteture. The motivation for the de-velopment of Hearsay-III was the observation that the ontrol problem exhibitsharateristis similar to the domain problem. Hene, the same blakboard-orientedknowledge-based approah should be used for its solution as well.



18 Chapter 2. BakgroundHearsay-III employs two blakboards: the domain blakboard for the solutionof the domain problem and the sheduling blakboard for the solution of the on-trol problem. Eah blakboard an be subdivided. Correspondingly, Hearsay-IIIdivides the knowledge soures into domain knowledge soures and sheduling knowl-edge soures . All knowledge soures are ondition-ation pairs. The ondition partstates whih events trigger the knowledge soure. The ation part desribes howthe ontent of the blakboards is hanged, when the knowledge soure is exeuted.The ondition part of sheduling knowledge soures may reason about both, theontent of the domain blakboard and the ontent of the sheduling blakboardwhereas the ondition part of domain knowledge soures reasons only about thedomain blakboard. The ation parts of sheduling knowledge soures e�et onlythe sheduling blakboard, and the ation parts of domain knowledge soures e�etonly the domain blakboard.The system works as follows: when a knowledge soure exeution terminates, allknowledge soures hek whether their ondition part is satis�ed by the ontents ofthe blakboards. If this is the ase, the knowledge soure reates a so-alled ati-vation reord that is stored on the sheduling blakboard. How the next ativationreord is hosen an be spei�ed by the user who has to speify a so-alled basesheduler proedure. The base sheduler is intended to be very simple sine mostof the knowledge about sheduling should be embodied in the sheduling knowledgesoures. Moreover, the user an speify how the ativation reords are maintainedon the sheduling blakboard by the sheduling knowledge soures. For instane,the ativation reords might be stored in a queue and ations of sheduling knowl-edge soures hange this queue. The base sheduler then might onsist simply of aloop that removes the �rst element from the queue and alls for its exeution. If thequeue is empty, the base sheduler terminates marking the end of system exeution.When several sheduling knowledge soures are appliable, the problem is how toshedule the sheduling knowledge soures? To deal with this problem, Hearsay-III allows for dividing the sheduling blakboard into a set of mutually exlusive,prioritized sheduling levels. Eah sheduling knowledge soure is assigned to asingle level. The base sheduler always returns an ativation reord from the highestlevel on whih ativation reords reside.2.2.3 The BB1 FrameworkAs Hearsay-III BB1 is a domain-independent framework that an be �lled by theuser. Furthermore, BB1 is similar to Hearsay-III in that it distinguishes domainand ontrol problems, blakboards, and knowledge soures. The ontrol problemwhose solution motivated the development of BB1 is formulated more generallythan the ontrol problem of Hearsay-III: whih of its potential ations should anAI-system perform at eah point in the problem solving proess? Tehnially, theBB1 approah for ontrol extends the Hearsay-III approah sine it deals notonly with the question whih knowledge soure to exeute next but it allows alsofor adapting the ontrol of the system itself, for instane, by adopting, retaining,and disarding ontrol heuristis.In [111℄ Hayes-Roth operationalizes intelligent ontrol problem solving as theahievement of (at least) the following behavioral requirements:� Make expliit ontrol deisions that solve the ontrol problem.� Deide whih ations to perform by reoniling independent deisions aboutwhat ations are desirable and whih ations are feasible.



2.2. Blakboard Systems 19� Adopt, retain, and disard individual ontrol heuristis in response to dynamiproblem solving situations.� Deide how to integrate multiple ontrol heuristis of varying importane.� Dynamially plan strategi sequenes of ations.The BB1 arhiteture is designed to ahieve these goals. As opposed to thesheduling knowledge soures of Hearsay-III, whih reason only about the exeu-tion of other knowledge soures, the ontrol knowledge soures of BB1 inrementallyonstrut dynami ontrol plans for the systems behavior on the ontrol blakboard.A ontrol plan is a set of related ontrol deisions that inuene eah other and thatan be dynamially reated and hanged by ontrol knowledge soures. Deisionsan desribe desirable ations (i.e., desirable exeutions of knowledge soures) anddetermine whih of the system's ontrol heuristis operate during partiular prob-lem solving time intervals. Di�erent kinds of deisions are plaed on di�erent levelsof the ontrol blakboard (e.g., strategy, poliy, fous deisions). In eah yle,the sheduler uses the heuristis determined by the urrent deisions on the ontrolblakboard to selet one of the appliable knowledge soures for exeution. Thisan be either a domain knowledge soure that works on the domain blakboard or aontrol knowledge soure that an modify the deisions on the ontrol blakboard.In partiular, BB1 allows to integrate the data-direted ontrol of blakboardsystems with goal-direted ontrol (e.g., see [64, 126℄). Even if the ontrol of thesheduling in a blakboard system is very elaborate, the problem solving proess isopportunisti. Goal-direted reasoning , in ontrast, entails identifying and perform-ing ations in order to perform and enable other ations, whih may be desirableper se or beause of their e�ets. Usually, blakboard systems miss goal-diretedapabilities: There is no inferene proess to predit the e�ets of exeuting a knowl-edge soure. Moreover, there is no proess that reords whih preonditions of a(desirable) knowledge soure are missing suh that the knowledge soure is not exe-utable. Thus, it is not possible to ompute sequenes of related knowledge souresthat ahieve an important long-time goal (e.g., to solve a partiular subproblemor to reate the blakboard ontent that triggers partiularly desirable knowledgesoure).BB1 an initiate goal-direted reasoning in two situations: (a) the system no-ties that it has an important fous deision on the ontrol blakboard, but there isno exeutable knowledge soure that satis�es it; or (b) the system noties that it hasa highly desirable knowledge soure with unsatis�ed preonditions. In the applia-tion senario desribed in [126℄, a ontrol knowledge soure is triggered wheneverno exeutable knowledge soures rate highly against an important fous deision onthe ontrol blakboard. When exeuted, this knowledge soure determines whihpotential other knowledge soures ould rate highly against the fous and whih oftheir preonditions are not satis�ed. Then, it posts a goal-direted fous deisionfor eah suh preondition. Another ontrol knowledge soure is triggered whenevera highly desirable knowledge soure has unsatis�ed preonditions. When exeuted,this knowledge soure also posts a goal-direted fous deision for eah unsatis�edpreondition of this knowledge soure. Then, other ontrol knowledge soures preferexeutable knowledge soures that rate highly against suh a fous. Note that thisreasoning proess is only possible when the �rst two desribed ontrol knowledgesoures an reason on the preonditions of other knowledge soures and when thethird desribed ontrol knowledge soure an reason on the e�ets of other knowl-edge soures. If preonditions and e�ets of knowledge soures an be desribed,then it is possible to perform planning at the level of the knowledge soures. Suhan approah is desribed, for instane, in [75℄.



20 Chapter 2. Bakground2.3 AI-PlanningIn order to build intelligent agents that at in the world algorithms are needed forgenerating appropriate sequenes of ations. One approah to solve this problem isAI-planning .A planning problem onsists of1. a desription of the initial state of the world in some formal language,2. a desription of the agent's goals in some formal language, and3. a desription of the possible operations that the agent an performs in someformal language.A planner is an algorithm that is applied to a planning problem and returns asequene of ations , i.e., instantiated operations, whih will ahieve the goal, whenexeuted in any world satisfying the initial state desription. Suh a sequene ofations is also alled a solution plan.This formulation of the planning problem is very abstrat. In fat, it spei�esa lass of planning problems parameterized by the languages used to represent theworld, goals, and operations. In general, there is a spetrum of more and moreexpressive languages (e.g., see [241, 206℄). A planning algorithm beomes moreomplex for more expressive representation languages, and the speed of the resultingalgorithm may derease as well.A very simple, yet very inuential language is the propositional Strips repre-sentation.3 Strips desribes the initial state of the world with a omplete set ofground literals. It restrits the type of goals that may be spei�ed to onjuntionsof positive literals. Operations are represented in the Strips language as operators(also alled operator shemata) with preonditions and e�ets . The preonditions ofeah operator have the same restrition as the problem's goals: they are a onjun-tion of positive literals. An operator's e�ets are a onjuntion that may inludesboth, positive and negative literals. All the positive literals in the operator's ef-fets are alled the add-list of the operator, while all the negative literals are alledthe delete-list of the operator. A more expressive language is PDDL [155℄ (Plan-ning Domain De�nition Language), whih is used to speify the problem sets forthe planner ompetitions held at reent AIPS onferenes [156℄. PDDL allows |among others | for the spei�ation of universal and onditional e�ets.The lassial approah to solve planning problems is preondition ahievementplanning [74℄. Preondition ahievement planning goes bak to the General Prob-lem Solver, GPS [179℄. Strips foused and distilled the tehnique to the form usedin planning: During the planning proess, �rst an unsatis�ed preondition is hosen(this ondition is not true and but it should be). Then, the available operators areheked whether their add list ontains an e�et to ahieve this preondition. Oneoperator is hosen, appropriately instantiated (bind the variables of the operator toelements of the plan), and the resulting ation is inserted into the plan under devel-opment. Then, the preonditions of the introdued ation beome new unsatis�edpreonditions of the plan whereas the initially unsatis�ed preondition is satis�edby an e�et of the introdued ation.3The aronym \STRIPS" stands for \STanford Researh Institute Problem Solver', a veryfamous and inuential planner build in the 1970s to ontrol an unstable mobile robot known as\Shakey" [86, 85℄.



2.3. AI-Planning 21Almost all traditional approahes in AI-planning follow the preondition ahieve-ment paradigm. State-spae planners4 suh as Strips and Prodigy [234℄ as wellas plan-spae planners5 suh as Noah [207℄ and Upop [191℄. Other planningapproahes, e.g., Modal Truth Criterion (MTC) [48℄ and Systemati NonLinearPlanning (SNLP) [148℄ di�er in minor ways but also ahieve a single preondi-tion at a time and build a �nal solution plan by eventually ahieving all operatorpreonditions.The omplexity of traditional preondition ahievement AI-planning mainlystems from planning for onjuntive goals , that is, goals that onsist of severalfats that all have to be ahieved at the same time (e.g., see [48℄). Given a onjun-tive goal, it seems natural to try divide and onquer, but the subplans ahievingthe single subgoals may interfere and do not ahieve the desired goals together. Afamous example for this problem is the so-alled \Sussman anomaly" problem inthe bloks world.6This problem pushed the development of preondition ahievement planners thatfollow a least ommitment approah (e.g., see [241℄). The idea of least ommitmentapproahes is to delay deisions as long as possible. For instane, deisions on theorder of ations an often be delayed until �nally a solution plan, i.e., a sequeneof ations, has to be omputed. Noah was the �rst system that introdued partial-order planning in whih plans an be assembled as partial orders rather than totalorders of ations. Often set of onstraints (e.g., ordering onstraints) are used torepresent sets of possible solutions plans. The onstraint that a preondition p of aertain ationA is ahieved by an e�et of another ation A0 and should be preservedbetween the exeution of A and A0 is expressed by so-alled ausal links [191, 241℄or interval preservation onstraints [129, 128℄. The validity of suh onstraints ispotentially threaten by an ation A00 that has a negative e�et p. A00 annot beexeuted between A or A0 sine it would remove the e�et p of A that is needed forA0. A solution is to exeute A00 before A or after A0. These tehniques to resolvethreats are alled promotion and demotion, respetively.In the last years, several new planning tehniques have been developed:Graphplan The two-phase Graphplan algorithm [32℄ �rst stores all possible a-tions and potentially satis�ed preonditions up to a ertain depth in a plan-ning graph. Afterwards, the Graphplan algorithm alternates between twophases: solution extration and graph expansion. The solution extrationphase searhes in the urrent planning graph for a plan. If no solution isfound, then the graph expansion phase extends the planning graph by addingfurther levels of ations and potentially satis�ed preonditions. Systems thatuse a Graphplan algorithm are GraphPlan, IPP [139℄, and STAN [88℄.SAT Methods Another more reent approah [132℄ ompiles planning problemsinto a propositional formula, whih, if satis�able, implies the existene of asolution plan. In order to obtain a satisfying assignment, systems suh asSATPLAN [132℄ use speedy systemati or stohasti satis�ability methods.Combination of Graphplan with other methods The Graphplan representa-tions form the basis of several enodings of planning problems into other4State-spae planners searh the spae of possible world states. That is, eah node in the searhspae denotes a state of the world, and links onnet world states that an be reahed by exeutinga single ation.5Plan-spae planners searh the spae of possible (partial) plans. That is, eah node in thesearh spae denotes a partial plan, and links onnet partial plans that an be reahed by intro-duing a single ation.6A detailed disussion of planning in the bloks world an be found in standard AI-textbooks,e.g., in [206℄.



22 Chapter 2. Bakgroundformalizations. These approahes replae the solution extration phase ofthe Graphplan algorithm by a transformation into a di�erent formalism andthe appliation of algorithms speialized for this formalism. For instane,the BlakBox [133℄ system ombines Graphplan and SAT methods. It en-odes the planning graph into a propositional formula to whih it appliesSAT methods. Another example is the GP-CSP system [72℄, whih ombinesGraphplan and onstraints satisfation problems (CSP). Here, the planninggraph is onverted into a CSP enoding to whih standard CSP solvers areapplied.Heuristi Planning A di�erent approah interprets planning as heuristi searh[154, 24℄. Heuristi planning is based on the ideas of heuristi searh [182, 190℄and is similar to the searh in problems as the 8-Puzzle. The di�erene is inthe heuristi: while in problems as the 8-Puzzle the heuristi is typiallygiven (e.g., as the sum of Manhattan distanes), in planning it is extratedautomatially from the delarative representation of the problem. Heuristiplanners perform a state-spae regression or progression searh7 and use well-known searh algorithms that are guided by the heuristi. For instane, theHsp system [24℄ searhes the progression spae with a hill-limbing algorithm.FF [116℄ searhes also the progression spae using a di�erent hill-limbing al-gorithm. Hspr* [110℄ searhes the regression spae using the IDA* algorithm.These approahes yield extremely speedy planners, whih are in many asesorders of magnitude faster than systems following the preondition ahievement ap-proah. However, it is an open question how well these approahes are able to dealwith omplex real world problems. Indeed, the appliation suesses of planningsystems suh as Sipe [243℄ and O-Plan [186℄ are due to | among others | hierar-hial abstration in planning and domain knowledge. First, a plan is onstrutedat an abstrat level. Then, this abstrat plan is suessively re�ned by expandingations and re-planning. An expansion an replae a single ation with an entireplan fragment. Tehnially, hierarhial task network (HTN) planning [229℄ distin-guishes primitive ations and non-primitive ations (e.g., see [79℄). Non-primitiveations are replaed by redution shemas, i.e., plan fragments onsisting of otherabstrat or primitive ations, until a sequene of primitive ations is onstruted.Ation sequenes ontaining primitive ations only are exeutable. Drummond [74℄and Wilkins [244℄ argue that the superiority of these systems in real world ap-pliations8 stems from the possibility to enode more domain knowledge into theplanning proess, in partiular, to formulate the domain knowledge more naturallyin terms of pre-pakaged plan fragments.7State-spae progression planning searhes forwardly in the spae of states. It starts with theinitial state. Given a urrent state, the next state in the searh spae is omputed by simulatingthe exeution of an ation whose preonditions are satis�ed in the urrent world state. The proessstops as soon as a state is reahed, whih satis�es all goals. State-spae regression planning searhesbakwardly in the spae of states. It starts with a goal-onjuntion onsisting of all given goals.Suh a goal-onjuntion represents the set of all states that satisfy at least all the elements ofthe onjuntion. Given a urrent goal-onjuntion, the next goal-onjuntion (representing thenext set of states) results from the introdution of an ation by adding all preonditions of theation and removing all e�ets of the ation. The proess stops if the initial state satis�es allelements if the goal-onjuntion, that is, if the initial state is in the set of states representedby the goal-onjuntion. For further details on state-spae progression and regression planningsee [241, 182, 237℄.8Examples for real-world appliations of these systems are: the appliation of Sipe for ontrol-ling beer prodution [242℄, and the appliation of O-Plan to the problem of spaeraft missionplanning [65℄.



Chapter 3An Introdution to 
megaThe 
mega proof development system [213℄ is at the ore of several related andintegrated researh projets of the 
mega researh group, whose aim is to developsystem support for the working mathematiian. By providing tatis for intera-tive proof development 
mega has many harateristis in ommon with systemssuh as Nuprl [3℄, Isabelle [189℄, Hol [107℄, and Pvs [188℄. However, it di�erssigni�antly from these systems with respet to its fous on proof planning (intro-dued in hapter 4) for automated and mathematis-oriented proof developmentand in that respet it is more similar to the systems CLaM and �CLaM developed atEdinburgh [45, 204℄The 
mega system ombines interative and automated proof onstrution fordomains with rih and well-strutured mathematial knowledge. The inferenemehanism at the lowest level of abstration is an interative theorem prover basedon a higher-order natural dedution (ND) variant of a soft-sorted version of Churh'ssimply typed �-alulus [54℄. While this represents the \mahine ode" of the sys-tem the user will seldom have to see, the searh for a proof is usually onduted ata higher level of abstration de�ned by tatis and methods. Proof onstrution isalso supported by already proved assertions and lemmas and by alls to externalsystems to simplify or solve subproblems.At the ore of 
mega is the proof plan data struture (PDS) [50℄ in whihproofs and proof plans are represented at various levels of granularity and abstra-tion. The proofs and proof plans are developed with respet to a taxonomy ofmathematial theories, whih is urrently being replaed by the mathematial database MBase [89, 141℄. The user of 
mega, the proof plannersMulti and PLAN,or the suggestion mehanism 
-Ants modify the PDS during proof development.They an also invoke external reasoning systems whose results are inluded into thePDS after appropriate transformation. One a omplete proof at the most appro-priate level of abstration has been found, this proof an be expanded to lower levelsof abstration until �nally, a proof at the level of the logial alulus is established.After expansion of these high level proofs to the underlying ND-alulus, the PDSan be heked by 
mega's proof heker.Hene, there are two main tasks supported by this system:1. to �nd a proof at an abstrat level,2. to expand this proof into a alulus-level proof.And both jobs an be equally diÆult and time onsuming.
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Figure 3.1: The arhiteture of the 
mega proof assistant. Thin lines denoteinternal interfaes and thik lines denote internet ommuniation via MathWeb-SB.User interation is supported by the graphial user interfae L
UI [109℄ andthe interative proof explanation system P.Rex [84℄.Figure 3.1 illustrates the basi arhiteture of 
mega. 
mega onsists of severalindependent modules. These modules are onneted via the mathematial softwarebus MathWeb-SB [256℄. An important bene�t is that MathWeb-SB modulesan be distributed over the Internet and are aessible by other distant researhsystems as well.This thesis desribes proof planning with multiple strategies, whih is realizedin the Multi system. Multi is implemented as a omponent of the 
mega oresystem as depited in Figure 3.1. Currently, a user of 
mega an apply bothsystems, Multi and PLAN, the previous proof planner of 
mega. However, sineMulti is a onsiderable progress over PLAN and PLAN is not longer maintained,Multi will be the only proof planning devie in new distributions of 
mega.In this hapter, we desribe the parts of 
mega relevant for this thesis. We startwith a setion that briey introdues 
mega's logi, i.e., its syntax, its semantis,and its natural dedution alulus.1 Then, we explain proof onstrution in 
mega,inluding 
mega's tatial theorem proving and a brief desription of the PDS andthe 
antsmehanism. The next hapter ontains a detailed desription of 
mega'sknowledge-based proof planning inluding an introdution of PLAN.3.1 
mega's Logi
mega's basi logi is a higher-order logi based on a simply typed lambda alu-lus. Proofs are onstruted in a natural dedution alulus of Gentzen [96℄ andPrawitz [198℄ . In the following, we �rst introdue the syntax and semantis ofthe logi and then we give the inferene rules of the natural dedution alulus.Soundness and (Henkin) ompleteness of a variant of 
mega's higher-order naturaldedution alulus are addressed in [17℄.1
mega's logi was �rst formally desribed in the PhD thesis of Volker Sorge [223℄. The ontentof this setion is a slightly revised version of setion 2:1 in [223℄.



3.1. 
mega's Logi 253.1.1 SyntaxDefinition 3.1 (Types): Let TB be a nonempty, �nite set of symbols. The setT of types is de�ned indutively as the smallest set ontaining TB and all types ofthe form �! � where �; � 2 T .We all the elements of TB base-types and types of the form �! � funtional types .In the sequel, we assume a �xed set of base-types TB and types T with fo; �g � TBwhere o denotes the type of truth-values and � denotes the type of individuals .However, TB an be extended by other speial types, for instane, in 
mega thereexists a speial type � denoting the type of numbers. We shall use small Greekletters for the syntatial variables denoting elements of T .Notation 3.2: ! assoiates to the right. Thus, �1 ! �2 ! : : : ! �n ! �orresponds to �1 ! (�2 ! : : : ! (�n ! �) : : :). We may omit brakets andarrows altogether and write �1�2 : : : �n�, when no ambiguity is introdued.Definition 3.3 (Typed sets): A family of sets of symbols � = (��)�2T is alleda typed olletion of sets over T . We all � disjoint if �� \ �� = ; holds for � 6= �and �; � 2 T .The mapping � : �! T is alled a type funtion if for eah � 2 T and eah f 2 ��holds: �(f) = �. Conversely, a type funtion � :M! T indues a disjoint typedolletionMT = (M�)�2� forM� = ff j�(f) = �g.Given two typed olletions of sets D; E over the same set of types T , we all aolletion of funtions I := (I� : E� ! D�)�2T a typed funtion I : E ! D.We shall write an element  2 D� of a typed set D� as � in order to indiate that itis of type �. We will, however, onvey the type information of a typed element onlyone or even omit it if its type is obvious from the ontext or has been expliitlystated earlier, for instane, in de�nitions of de�ned symbols.Definition 3.4 (Signature): Let � be a disjoint typed olletion of sets over T ,then � is alled a signature over T and the elements of the �� are alled onstants .� ontains in partiular the logial onstants f:oo;_oo;��oo; {o�o�g � �.The symbols :, _, and � are alled negation, disjuntion and universal quanti�er,respetively. They are just like the �rst-order standard versions but appear in thesimply typed higher-order fashion. {ois Bertrand Russell's iota-operator in higher-order fashion as used in [5℄. Its purpose is to pik the unique element out of asingleton set. We shall axiomatize and explain this more detailed in setion 3.1.3.Note that the universal quanti�er ��oo and the desription operator {o�o� inde�nition 3.4 depend on the type of their argument. Therefore, there exists forevery type � 2 T exatly one quanti�er �� and one desription operator {o�. Weall suh a de�nition where � is not �xed a polymorphi de�nition.With the preeding de�nitions we an regard the signature as a union of typedsets of onstant symbols. Sine they are disjoint we an uniquely determine theexat type of eah onstant with the type funtion � . Moreover, with polymorphide�nitions in most ases we an state the elements of � in a �nite way even it is aolletion of in�nite sets.Definition 3.5 (Well-formed formulas): Let � be a signature over T and V aolletion of typed sets over T with in�nitely many elements. We all V the set of



26 Chapter 3. An Introdution to 
megatyped variables . For eah type � 2 T we indutively de�ne the family (w��(�))�2Tof well-formed formulas by(i) �� � w��(�),(ii) V� � w��(�),(iii) if A�!� 2 w��!�(�) and B� 2 w��(�) then (AB) 2 w��(�),(iv) if A� 2 w��(�) and X 2 V� then �X A 2 w��!�(�).The set of all well-formed formulas over the signature � an be de�ned as w�(�) =S�2T w��(�).We all formulas of the form AB appliations and formulas of the form �X A �-abstrations or simply abstrations . The elements of w�o(�) will be alled propo-sitions .Notation 3.6: In the tradition of [5℄ the square dot ` ' in �X A separates the�-bound variable X from its sope A. It orresponds to a left braket whose mateis as far to the right as possible until a right braket is reahed whose mate is leftof the �-binder.Notation 3.7: Until the end of this thesis we will use in�x notation instead ofpre�x notation when it does not lead to ambiguities. For instane, we write (A_B)instead of _AB. Likewise, to ease readability we will omit brakets wheneverpossible and write funtion appliation in the more mathematial style of f()instead of f.Definition 3.8 (Free variables): Let A;B 2 w�(�) and let Z 2 VT . Theourrene of a variable Z is alled bound in A if and only if it is in a subformulaof the form �Z B in A. In ase an ourrene of Z in A is not bound we all itfree in A. We de�ne the set of all variables with free ourrenes in A as the set offree variables of von A, FV(A).Definition 3.9 (�-onversions): Let A 2 w��(�), B 2 w��(�) and let X;Y 2V� . For the formula A we de�ne three rules of �-onversion:(i) �X A!� �Y [Y=X ℄A, provided Y does not our in A (�-onversion)(ii) (�X A)B!� [B=X ℄A, provided no �Z ours in Asuh that Z ours in B (�-redution)(iii) (�X AX)!� A, if X 62 FV(A) (�-redution)Here the notation [B=X ℄A means that all free ourrenes of the variable X in Aare substituted with the term B. Thus, the rule of �-onversion orresponds to arenaming of the �-bound variable Y in A.One notion that is used frequently within 
mega is that of a term position. Termpositions help to identify and single out subterms in given terms.Definition 3.10 (Term position): Let IN� be the set of words over the set ofnon-negative integers IN and let � be the empty word in IN�. For a term t 2 w�(�)the set pos(t) of term positions in t is indutively de�ned as follows:



3.1. 
mega's Logi 27� If t =  then pos(t) = f�g,� if t = (t0 t1 : : : tn) then pos(t) = f�g [Sni=0fi:pjp 2 pos(ti)g,� if t = �x t0 then pos(t) = f�g [ f0:pjp 2 pos(t)g,where `.' denotes the onatenation of words in IN�.The subterm s of t at position pt(s) 2 pos(t) is denoted as s = t=pt(s) and isindutively de�ned as follows:� if pt(s) = � then s = t,� if pt(s) = i:p and t = (t0 t1 : : : tn) then s = ti=p,� if pt(s) = 0:p and t = �x t0 then s = t0=p.We write term positions in brakets as h�:�i, where �; � 2 IN�.3.1.2 SemantisThe semantis for 
mega's logi is based on the type system T that ontains asbase-types the type of truth values o and the type of individuals �.Definition 3.11 (Frame): A frame D is a olletion of nonempty sets D�, onefor eah type symbol � suh that Do = f>;?g and D�!� � F(D� ! D�), whereF(D� ! D�) is the set of all total funtions from D� to D� .We all the members of Do truth values, where > orresponds to truth and ?orresponds to falsehood . The elements of D� are alled individuals.Definition 3.12 (Interpretation of onstants): Given a frame D and a signa-ture � with respet to T , we all the typed funtion I : � ! D an interpretationof onstants (or simply interpretation) with support D.With the help of the interpretation funtion I it is now possible to give meaning tothe logial onstants we have introdued in de�nition 3.4.Definition 3.13 (Interpretation of logial onstants): Given the logial on-stants f:;_;��; {o�g � � from de�nition 3.4, we restrit the interpretation I in thefollowing way:(i) I(:)(d) = > if and only if d = ?, d 2 Do(ii) I(_)(d; e) = > if and only if d = > or e = >, d; e 2 Do(iii) I(��)(d) = > if and only if d(a) = > for all a 2 D� and d 2 D�!o(iv) I({o�)(d) =  if d = fg for some  2 D� and d 2 D�In point (iii) of the preeding de�nition the notation d(a) stands for the appliationof the funtion d 2 D�!o to the objet a 2 D� as mentioned in 3.7.Although the logial onstants from de�nition 3.13 are suÆient to de�ne aproper logi, for notational onveniene we enrih our signature by addition of thefollowing abbreviations2:2In fat, we ould de�ne a logi with an even smaller number of logial onstants. For instane,Andrews de�nes a higher order logi in [7℄ using equality and desription, only.



28 Chapter 3. An Introdution to 
mega� the universal quanti�er 8�oo suh that 8X� Ao := ��(�X� A)� the existential quanti�er 9�oo suh that 9X� Ao := :(8X :A)� the onjuntion ^ooo suh that Ao ^Bo := :(:A _ :B)� the impliation )ooo suh that Ao)Bo := :A _B� the equivalene ,ooo suh that Ao , Bo := (A)B) ^ (B)A)� the equality :=��o suh that M� :=N� := 8P�o P (M))P (N)The given de�nition of equality orresponds to the de�nition of Leibniz equality.In order to avoid onfusion we shall write equality in formulas as := throughout thishapter. However, in the remaining hapters of this thesis equality is again writtenwith the more onventional = symbol. Observe that similar to the de�nition of ��in de�nition 3.4 the de�nition of :=� is polymorphi.So far we are only able to interpret single onstants. Now we will de�ne exten-sions that ater also for variables and omplex formulas.Definition 3.14 (Variable assignment): Given a frame D� and a set of typedvariables V over T we all a typed funtion ' : V ! D a variable assignment (orsimply assignment) with support D.Definition 3.15 (Denotation): Let �, V be a signature and a set of variablesover T . Let w�(�) be the set of well-formed formulas of � and let I : �! D and' : V ! D be the orresponding interpretation and assignment, respetively, thenwe de�ne the denotation I' : w�(�)! D indutively as:(i) I'(X) = '(X), if X 2 V(ii) I'() = I(), if  2 �(iii) I'(AB) = I'(A)(I'(B))(iv) I'(�X� A�) as the funtion in D�� suh that for all z 2 D� holds:(I'(�X� A))z := I';[z=X℄(A).Given our de�nition of a frame so far, we annot be sure that the funtion requiredin de�nition 3.15 (iv) exists in D�� . The domain D�� might be too sparse [4℄.Beause of the indutive nature of the de�nition this problem also a�ets 3.15 (iii).However, in the semantial domains of interest | the Henkin models [113℄ | thispossibility is expliitly exluded; that is, every formula in w�(�) an be denoted.Definition 3.16 (Henkin models): Let I' : w�(�)! D be a denotation suhthat I' is de�ned for eah formula A 2 w�(�), then we all the pair M = hD; Iia Henkin model for w�(�).Being ertain that every formula in w�(�) an atually be denoted, it is nowpossible to evaluate propositions.Definition 3.17: Let M = hD; Ii be a Henkin model and P 2 w�o(�) be aproposition, then we have:(i) P is valid in the model M when for eah assignment ' holds that I'(P) = >.



3.1. 
mega's Logi 29(ii) P is alled Henkin-valid or a Henkin-tautology if P is true in eah Henkinmodel hD; Ii.(iii) Given a set of propositions � we say that � is satis�able in M, provided thereis some assignment ' suh that I'(P) = > for all P 2 �.(iv) A proposition P Henkin-follows semantially from a set of propositions � ifP is valid in eah Henkin model hD; Ii in whih the elements � are valid.Notation 3.18: To simplify the notation given in de�nition 3.17 we shall write� j= P to indiate that P Henkin-follows semantially from the set of propositions� and j= P if P is a Henkin-tautology.The Henkin models given in de�nition 3.16 are also alled generalized modelssine they still allow for inomplete domains (even with the restrition we disussedwith respet to de�nition 3.15):D�!� � F(D� ! D�): (3.1)This means that the set of all Henkin-valid formulas is only a subset of the set ofall (standard-) valid formulas. Based on the notion of Henkin models we an de�nethe standard models by requiringD�!� = F(D� ! D�): (3.2)Thus, the standard models form a sublass of the Henkin models, and the set ofvalid formulas in an arbitrary Henkin model is generally smaller than the set of validformulas in the standard models. However, G�odel showed in his inompletenesstheorem that there exists no alulus that is both sound and omplete for standardvalidity, whereas it was proved by Henkin in 1950 that omplete and sound alulian be onstruted for Henkin validity.In this thesis we will be onerned neither with the theoretial onsequenes ofthis fat nor with ompleteness onsiderations of aluli. Instead, we refer to [7, 15℄for a more detailed introdution and examination of this subjet.3.1.3 CalulusThe original natural dedution (ND) alulus was introdued by Gentzen [96℄in 1935. The idea is to model mathematial problem solving behavior in smalllogial steps for a �rst order logi. Thereby a theorem is derived from a given setof hypotheses by suessively applying inferene rules . In this setion we introdue
mega's higher-order variant of Gentzen's lassial ND-alulus.For the de�nition of 
mega's ND-alulus we assume the higher order languagede�ned in the previous setions. In partiular, we presuppose the semantis of ourlogial onstants to be as given in de�nition 3.13 and to have the subsequentlyde�ned abbreviations available. Although on�ning ourselves to the original logialonstants from de�nition 3.4 would result in a leaner alulus, we prefer a moreexpressive and intuitive basi alulus by also allowing for inferene rules for theabbreviations available. However, the larger the basi alulus is, the less eÆientit is to hek proofs automatially. Therefore, we will not allow for equality andequivalene as primitive onepts and rather de�ne them as derived onepts (seesetion 3.2.1).Before de�ning the single alulus rules we introdue a tree notation to denotethe rules of inferene.



30 Chapter 3. An Introdution to 
megaDefinition 3.19 (Proof trees): Let A1; : : : ; An; A;B2w�o(�) be propositions,we all a proof tree one of the following:(i) [A℄ where A is a hypothesis(ii) B R for the inferene rule R. We all B onlusion and R an initial rule(iii) A1 : : : AnB R if B follows from A1; : : : ; An by appliation of the inferene ruleR. We all A1; : : : ; An premises .(iv) [A℄....B if B an be derived from A in a �nite number of inferene steps (i.e.,appliations of inferene rules).We now de�ne the inferene rules of 
mega's ND-alulus. Basially we haveone introdution and elimination rule for eah logial onnetive and eah quanti�er.For the elimination of onjuntions and for the introdution of disjuntions we havetwo symmetrial rules, respetively. Additionally, there is one rule for eliminatingof falsehood (ex falso quodlibet). While all these rules are basially �rst order wehave also one proper higher order rule that performs � onversions.Definition 3.20 (Inferene rules): Given propositions P;Q;R2w�o(�) we ande�ne the inferene rules of the natural dedution alulus as given in Figure 3.2.In the rules for the quanti�ers [t=x℄P means that the term t is substituted for allourrenes of the variable x in P . [=x℄ means that the term has to be a onstant.The substituted term t is given in parentheses behind the rule name and is alleda parameter of the rule. The 8I and 9E rules have Eigenvariable onditions thatrequire that the onstant  does not already our in the proposition P in ase ofthe 8I rule. In the 9E rule the onstant  must not our anywhere else in theproof.The �$ rule is the higher order rule that allows to lose a goal with a proof as-sumption that is equal with respet of the �-onversions given in de�nition 3.9; thatis, A denotes the same term as B up to ��-redution and renaming. Additionally,we introdue the rule Weaken, whih is a speial ase of the �$ rule sine it allowsto justify a goal with an assumption ontaining the same formula meaning they aretrivially equal. Although Weaken does not inrease the expressivity of the basialulus, it is a useful rule for proof onstrution.AA WeakenIn addition to the inferene rules, 
mega's ND-alulus has some axioms inorder to be omplete. We have one axiom to ensure that there exist at most twotruth values (i.e., that we have a lassial logi, Tertium non datur), two axiomsfor extensionality and one axiom for the desription operator.Definition 3.21 (Axioms): We de�ne the following four axioms for our alulus:� 8Ao A _ :A (Tertium non datur)� 8M�� 8N�� [8X� MX :=NX ℄)[M :=N ℄ (Funtional extensionality)
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mega's Logi 31?P ?EP :P? :E [P ℄....?:P :IP ^QP ^El P ^QQ ^Er P QP ^Q ^IP _Q [P ℄....R [Q℄....RR _E PP _Q _Ir QP _Q _IlP P)QQ )E [P ℄....QP)Q )I8x P[t=x℄P 8E(t) [=x℄P8x P 8I() with  new9x P [=x℄P....QQ 9E() with  new [t=x℄P9x P 9I(t)AB �$Figure 3.2: The inferene rules of the natural dedution alulus.� 8Ao 8Bo (A, B))(A :=B) (Boolean extensionality)� 8P�o 9X� [PX ^ [8Y� PY)[X = Y ℄℄℄)P ({oP ) (Desription)The axiom of desription in the preeding de�nition gives us a more preise un-derstanding of the desription operator as a funtion with a �xed interpretation onsingleton sets (on other sets also other interpretations are possible). It expressesthat for every set P�o that ontains exatly one element, the desription operatorapplied to the set P returns an element of P , whih is, of ourse, its only element.It an be shown that a desription operator needs to be de�ned and axiomatizedonly for the base type � and subsequent desription operators for higher types anthen be derived. However, in 
mega we adopted a uniform view on all desriptionoperators by axiomatizing them for all types � 2 T . For a introdution to thedesription operator and its properties see [5℄.



32 Chapter 3. An Introdution to 
megaThe two axioms of extensionality ould also be formulated as equivalenes. How-ever, even for the Leibniz equality (whih is in general weaker than primitive equalityin the model and whih de�nes equality in 
mega) the respetive reverse diretionsan be inferred within the alulus and were thus omitted. Naturally, the given ax-ioms ould have been integrated into the alulus by de�ning appropriate rules.However, in order to keep the alulus lean we have rather hosen the axiomati ap-proah in 
mega. Moreover, it did not seem desirable to have basi alulus rulesontaining onepts suh as equality or equivalene, whih in turn an be replaedby their respetive de�nitions (see also the disussion in setion 3.2.1).Definition 3.22 (Natural dedution proof): Given a set of propositions H �w�o(�) and a proposition F 2 w�o(�), a natural dedution proof for F underthe assumption of H is a �nite sequene of inferene rule appliations that derivesF from H. We write H `ND F or simply H ` F . We all H the hypotheses orassumptions of the proof and F the theorem or onlusion.At this point we observe that our alulus de�ned so far does not ontain anymeans to introdue uts into a derivation. Although it has been shown by Taka-hashi [227, 228℄ that ut-elimination holds for higher order aluli with exten-sionality, it is still an open problem whether appropriate ut-elimination algorithmsterminate. (See also [192℄ for a disussion on ut-elimination in type theory.) Apossible ut rule for our natural dedution alulus is of the formA)B B)CA)C ;whih is essentially modus barbara. Indeed 
mega o�ers a way to introdue utsby having modus barbara as a tati available (see setion 3.2.2 for an introdutionof tatis), whih an be modeled by a double appliation of the )E rule and oneappliation of )I on the basi alulus-level.Although the tree notation for the ND-alulus inferene rules is a onvenienttehnique to display the inferene rules it is not very pratial to denote large proofs.Thus, in the remainder of this thesis we will present natural dedution proofs in alinearized style as introdued by Andrews in [6℄.Definition 3.23 (Linearized ND-proofs): A linearized ND-proof is a �nite setof proof lines, where eah proof line is of the form L: � ` F (R), where L is a uniquelabel , �`F is a sequent denoting that the formula F an be derived from the setof hypotheses �, and (R) is a justi�ation expressing how the line was derived in aproof.In ase there exist lines in the set of proof lines that have not yet been derived fromthe hypotheses we indiate them with an open justi�ation. We all lines with anopen justi�ation open lines or open goals and a set of proof lines ontaining stillopen lines a partial proof . We all a line that is not open a losed line.We onlude the introdution of 
mega's logi by giving an example of a simpleND-proof both in tree and in linearized presentation.Example 3.24:The linearized natural dedution proof for the assertion:8X� (P�o(X)) Q�o(X))) (8X� P (X)) 8X� Q(X))
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mega's Logi 33L3. L3 `8X� P�o(X) (Hyp)L6. L3 `P (A�) (8E L3)L1. L1 `8X� [P (X)) Q�o(X)℄ (Hyp)L7. L1 ` [P (A)) Q(A)℄ (8E L1)L5. L1,L3 `Q(A) () E L6,L7)L4. L1,L3 `8X� Q(X) (8I L5)L2. L1 `8X� P (X)) 8X� Q(X) () I L4)Thm. `8X� (P�o(X) ) Q�o(X)) ) (8X� P (X)) 8X� Q(X)) () I L2)The same proof in tree representation:[8X� P (X)℄2P (A) 8E [8X� (P (X) ) Q(X))℄1P (A)) Q(A) 8EQ(A) ) E8X� Q(X) 8I8X� P (X)) 8X� Q(X) ) I28X� (P�o(X) ) Q�o(X)) ) (8X� P (X) ) 8X� Q(X)) ) I1Note that the supersript numbers indiate whih hypotheses were introdued dur-ing whih rule appliation.3.1.4 Soft SortsThe syntax of 
mega's logi is extended by a sort onept. This, however, isnot a full-grown sort onept as given in the literature (for instane, by Shmidt-Shau� in [208℄ in the ontext of �rst order logi and by Kohlhase for higherorder logi in [140℄). Instead it is a onservative extension of the logi given in thepreeding setion by simply introduing sorted quanti�ations.Instead of having a full-edged sort system, 
mega only permits the use ofso-alled soft sorts ; that is, quanti�ed variables are relativized to a set, whih isthe range of the possible instantiations of the variable. This set is the sort ofthe variable. One the variable is instantiated ,the sort information is expliitlyintrodued into the proof and, if neessary, has to be expliitly justi�ed.Thus, the atual sorts are introdued as attahments of the two quanti�ers 8and 9, whih we shall write in this thesis as 8x�:M�o and 9y�:M�o, indiating thatx and y are in the set M . Eah sorted quanti�er is, of ourse, only an abbreviationfor a more omplex expression:(i) 8x�:M�o P�o(x) abbreviates 8x� [x 2M�o℄)P�o(x)(ii) 9y�:M�o Q�o(y) abbreviates 9y� [y 2M�o℄ ^Q�o(y)Using soft sorts in 
mega has two advantages: On the one hand the termonstrution is kept deidable; note that this is no longer guaranteed in a logi withboth polymorphi types and subsorts. On the other hand, soft sorts add to thereadability of the logi sine they allow to state formulas of theorems and problemsmore onisely. As an example onsider the following statement for integers8x:ZZ 9y:ZZ (x+ y) := 0;whih is relatively onise using sorted quanti�ers. It beomes muh less readableif we do not use abbreviations:8x [x 2 ZZ℄) [9y [y 2 ZZ℄ ^ [(x+ y) := 0℄℄:



34 Chapter 3. An Introdution to 
mega3.2 Proof Constrution in 
megaFor a given theorem and its assumptions a proof an be onstruted by suessivelyapplying the ND-rules introdued in the previous setion. The rules an be appliedeither bakward or forward. In the former ase, ND-rules are applied to the the-orem, resulting in the introdution of the premises of the rule as new open nodes.If an applied rule has more than one premises, the problem is split into severalsubproblems, whih have to be shown. In the latter ase, rules are applied to theproof assumptions, and the onlusions of the rule are introdued as new nodes intothe proof. For many appliations it is interesting to mix forward and bakwardreasoning.Although 
mega relies on the natural dedution alulus introdued in the pre-eding setion and although it enables proof onstrution with ND-rules, it's maingoal is to support proof development at a more user-friendly level of abstration.Therefore, 
mega employs tatis for interative proof development and methodsfor automated proof planning. Moreover, proofs in 
mega are always onstrutedwith respet to a taxonomy of mathematial theories . These theories provide de-�ned onepts, their axiomatization, and already proved theorems, that an beinorporated into proofs.To enable the use of abstrat tatis and methods and their ombination withalulus rules, proofs in 
mega are atually onstruted in a generalized naturaldedution proof where justi�ations an be ND-rules (see preeding setion) and alsotatis, methods, as well as appliations of external systems. However, for a proof tobe valid in 
mega it needs to be re�ned to a alulus-level natural dedution proof.Therefore, abstrat justi�ations have to be expandable to alulus-level subproofs.This expansion an be reursive, meaning that the expanded subproof may againontain abstrat justi�ations that have to be expanded. All abstrat levels of aproof as well as its alulus-level are stored in a single proof data struture, theso-alled proof plan data struture PDS .In the sequel, we �rst desribe how fats from the knowledge base an be inor-porated into a proof objet. Then, we introdue 
mega's tatial theorem proving.Finally, we give brief desriptions of the proof plan data struture PDS and thesuggestion mehanism 
ants.3.2.1 Employing Fats from the Knowledge BaseProofs in 
mega are always onstruted within the ontext of a mathematialtheory. 
mega's theories are hierarhially strutured and onneted by a simpleinheritane mehanism. A theory ontains de�ned onepts as well as axioms andtheorems.De�nitions De�nitions in 
mega are used as de�nitions in a mathematial text-book: The introdution of abbreviations for omplex onepts allows to shortenformulas and proofs. However, if neessary the abbreviation an be expanded byits atual meaning.A de�nition is a pair onsisting of the symbol that is de�ned (also alled thede�niendum of the de�nition) and a �-term that desribes the omplex onept thatis abbreviated (also alled the de�niens of the de�nition). We write a de�nition(definiendum; definiens) as definiendum � definiens where � is alled thede�nition symbol .For instane, equality and equivalene are de�ned onepts in 
mega's theories.



3.2. Proof Constrution in 
mega 35Their respetive de�nitions in the knowledge base are of the form:=��o � �x� �y� 8P�o P (x))P (y) and,ooo � �ao �bo (a)b) ^ (b)a):Other de�ned onepts in 
mega's knowledge base are, for instane, basi no-tions of set theory, suh as the element property, the union of two sets, or the subsetproperty, whih are de�ned as2��o � �x� �P�o P (x) and[(�o)(�o)o � �U�o �V�o �x� U(x) _ V (x) and�(�o)(�o)o � �U�o �V�o 8x� U(x)) V (x):If a theorem is proved with respet to a ertain theory then the de�ned oneptsof this theory and inherited onepts an be used to formalize the problem. Forinstane, in a theory that omprises the onepts :=, ,, and �, we an state thetheorem that two sets are equal i� they are subsets of eah other by the formula:8X�o 8Y�o (X :=Y , (X � Y ^ Y � X)) (I)During a proof attempt it is sometimes neessary to expand de�ned onepts bytheir atual de�nition or to ontrat ourrenes of de�nitions to ourrenes of theorresponding de�ned onepts. To establish this interfae to the theory knowledgebase 
mega employs two extra alulus rules:A[t0=t℄B �E(t � t0; �) [t0=t℄AB �I(t � t0; �)�E and �I deal with the elimination and introdution of de�nitions from the knowl-edge base. The notation [t0=t℄B means that the ourrene of the de�ned onept tat subterm position � in B is replaed by its de�nition t0. Both the atual de�nitionand the term position are given as parameters of the rules. However, we usuallygive only the de�niendum as a parameter in the justi�ation.To illustrate the onept of de�nition expansion onsider the theorem in (I). Theappliation of the rule �I with respet to the �rst ourrene of the de�ned onept� results in the formula8X�o 8Y�o (X :=Y , ([�U�o �V�o 8x� U(x)) V (x)℄(XY ) ^ Y � X))Applying �-redution to this term yields8X�o 8Y�o (X :=Y , ((8x� X(x)) Y (x)) ^ Y � X))Axioms and Theorems Axioms in theories are fats that are stated withouta proof. They allow to \axiomatize" theories or onepts. As opposed thereto,theorems are fats for whih a valid proof has already been derived in 
mega.They enable the reuse of already proved results during the proof onstrution for
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meganew problems. Tehnially, both axioms and theorems are pairs onsisting of aname and a formula.Axioms and theorems an be diretly imported into a proof as so-alled theoryassertions or simply assertions and an be used like any assumptions of the proof.To establish this interfae to the theory knowledge base 
mega employs the extraalulus rule Assertion Ass Assertion(Ass)whih introdues an assertion Ass into the proof objet under onstrution.The following proof involves the appliation of the Tertium non datur (TND)axiom. The proposition to prove is (P)Q))(:P)Q) given in line Thm. Theaxiom is imported into the proof in line L1.L1. `8Ao A _ :A (Assertion (TND))L2. `P _ :P (8E L1 P )L3. L3 `P)Q (Hyp)L4. L4 `P (Hyp)L5. L3; L4 `Q ()E L4 L3)L6. L3; L4 `:P _Q (_Ir L5)L7. L7 `:P (Hyp)L8. L7 `:P _Q (_Il L4)L9. L3 `:P _Q (_E L2 L6 L8)Thm. ` (P)Q))(:P)Q) ()I L9)3.2.2 Employing Tatis for Proof ConstrutionSo far, we applied alulus rules to onstrut proofs (see example 3.24). However,the style of alulus-level proofs produed in the previous setions is unnaturaland too \low level" for many appliations. Thus, many interative systems usetatial theorem proving for omplex and more abstrat proofs (.f., Nuprl [62℄,Isabelle [189℄, Hol [107℄, oq [63℄, QuodLibet [144℄). The idea in tatialtheorem proving is that repeatedly ourring sequenes of inferene steps are en-apsulated into maro steps, so-alled tatis. The tatis enable interative proofonstrution at a higher level of abstration.The notion of a tati was invented by Milner in the early 1970s for goaloriented, that is, in natural dedution bakward theorem proving (e.g., see [175℄).Essentially, a tati is a funtion that does two things:1. Splits a goal into subgoals.2. Keeps trak of the reasons why solving the subgoals will solve the originalgoal.Most tati-based theorem proving systems (e.g., Nuprl, Isabelle, Hol) are de-sendants of LCF [106℄ and follow a bottom-up approah for tati onstrution.That is, more and more omplex tatis are built by ombining sequenes of alulusrules or other tatis with so-alled tatials suh as THEN, ORELSE, REPEAT.For instane, the tati REPEAT(ta) applies the tati ta repeatedly to a goaland its subgoals. The appliation of suh a tati onstruted in a bottom-up man-ner results in a sequene of alulus rules; that is, the tati immediately expands(via several levels of tatis) to the alulus rule level during its appliation. Inthis ase, the appliation of a tati (if it sueeds) is a priori orret, given theorretness of the underlying base alulus.



3.2. Proof Constrution in 
mega 37In 
mega, we follow a top-down approah for onstruting tatis. A tatiis a pair of two proedures: the derivation proedure that performs derivations ina proof and the expansion proedure that expands appliations of the tati. Inthe remainder of this thesis, we shall use the expression appliation of a tati torefer to the appliation of the derivation proedure to a ertain proof situation andthe expression expansion of a tati appliation to refer to the appliation of theexpansion proedure to a step in a proof justi�ed by an appliation of the tati.Appliations of tatis an be seen as a generalized form of alulus rules appliationand we state them in the same format in proof trees. A di�erene between tatisand the alulus rules is that tatis an have multiple onlusions.Similar to ND-rules tatis an be applied bakward and forward. In the formerase, the derivation proedure is applied to an open line and omputes the premisesof the tati appliation, whih are introdued as new open lines. The initial openline, whih is the onlusion of the step, is losed by the appliation of the tatito the premises. In the latter ase, the derivation proedure is applied to somepremises and omputes the onlusions of the step, whih are introdued as newlosed lines. The new lines are justi�ed by the appliation of the tati to thepremises. It is possible to speify even more appliation diretions for a tati (seesetion 3.2.4). Tehnially, the derivation proedure onsists of subproedures forthe desired appliation diretions. The appliation diretion of a tati does notmatter anymore in the �nished proof and for the expansion, that is, there is onlyone expansion proedure.
mega's top-down de�nition of tatis enables the spei�ation of quite pow-erful and abstrat proof steps. However, in ontrast to LCF-style tatis, 
mega'statis are not neessarily always orret, sine the high level of abstration in math-ematially motivated tatis of suÆient generality does not allow for the spei�-ations of all details that are ultimately required for the use of suh tatis in aonrete ase. For instane, 
mega's tatis an employ omputer algebra systemsto perform omputations. However, a priori there is no guarantee that these om-putations are orret sine the appliation of a tati in 
mega is not immediatelydeomposed into a sequene of single alulus rule steps. Hene, the orretnessof a tati appliation has to be ensured a posteriori. This is done by expandingtati appliations. The appliation of the expansion proedure to a proof step thatis justi�ed by a tati appliation results in a more �ne-grained subproof of thetati's onlusions from its premises. The expansion an be reursive in the sensethat the introdued proof attempt an again employ abstrat tatis, whih haveto be expanded in turn. The expansion is suessful, when this proess terminateswith a proof at the alulus-level, whih an be mahine-heked. However, it ispossible to employ unertain steps within tatis (e.g., omputations by a omputeralgebra system) whose expansion might fail.Example 3.25: A rather simple example of a tati in 
mega and its expansion isthe 8I� tati. The purpose of this tati is similar to that of the 8I rule but where8I removes exatly one universal quanti�er 8I� removes arbitrary many universalquanti�ers.When 8I� is applied bakward to the open line L1L1. H `8x� 8y� 8z� Po���(x; y; z) (Open)with the three terms t1; t2; t3 as parameters then its derivation proedure omputesthe formula P (t1; t2; t3) in whih the universally quanti�ed variables are replaedby the terms t1; t2; t3. Moreover, it introdues this formula as new open line L2 andjusti�es L1 by the appliation of 8I� to L2.
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Figure 3.3: The Proof plan data struture (PDS).L2. H `P (t1; t2; t3) (Open)L1. H `8x 8y 8z P (x; y; z) (8I� L2 (t1; t2; t3))When this appliation of 8I� is expanded, then the expansion proedure of 8I�omputes a proof segment that derives L1, the onlusion of the appliation of 8I�,from L2, the premise of the appliation of 8I�, with a sequene of appliations ofthe ND-rule 8I .L2. H `P (t1; t2; t3) (Open)L3. H `8z P (t1; t2; z) (8I L2 (t3))L4. H `8y 8z P (t1; y; z) (8I L3 (t2))L1. H `8x 8y 8z P (x; y; z) (8I L4 (t1))3.2.3 The Proof Plan Data Struture (PDS)The entral data struture for the overall proof onstrution in 
mega is the proofplan data struture PDS [50℄ . All omponents of the 
mega system that on-strut proofs work on the PDS, for instane, the 
ants suggestion mehanism (seesetion 3.2.4) and the proof planners PLAN and Multi.The PDS is a hierarhial data struture that represents a (partial) proof at-tempt at di�erent levels of abstration. This is neessary sine the inferenes usedfor proof onstrution in 
mega an be at di�erent levels of abstration. In par-tiular, for a proof attempt to be valid in 
mega it needs to be expanded into aalulus-level natural dedution proof. Hene, as opposed to other proof objetsthat are just planar graphs, the PDS has a three-dimensional struture that al-lows to represent diret orrespondenes between abstrat proof steps and onretealulus-level proofs.Figure 3.3 depits shematially the omposition of the PDS . Tehnially, thePDS is an ayli graph whose nodes are proof nodes and whose edges link proofnodes that are onneted by justi�ations using ND-rule, tati, or method ap-pliations. One proof node an have di�erent justi�ations at di�erent levels ofabstration. Coneptually, eah abstrat justi�ation (i.e., a justi�ation that uses



3.2. Proof Constrution in 
mega 39a tati or a method) represents a subproof (the expansion of the justi�ation) ata lower level of abstration that is omputed, when the tati is exeuted.For instane, after the expansion, the node L1 in example 3.25 has two justi�a-tions. At the upper layer it has the justi�ation (8I� L2 (t1; t2; t3)); the expansionof this upper layer justi�ation results in a lower layer proof for L1 in whih it hasthe justi�ation (8I L4 (t1)). Note that the formulas of the nodes stay the same onall levels of abstration. Thus, the PDS allows for derivational abstration but notfor abstration of the objets of the logi.3.2.4 The Suggestion Mehanism 
antsThe 
ants system was originally oneived to support interative theorem provingin 
mega [21, 22℄. It provides the user with suggestions about whih inferenesteps are appliable in the atual proof situation suh that the user does not haveto searh painstakingly for appliable steps. Reent researh aims to employ the
ants mehanism also for automated proof onstrution. Instead of providingsuggestions to the user a seletor hooses and applies then a suggestion.In the 
ants ontext, all inferene rules suh as alulus rules, tatis, ormethods are uniformly regarded as sets of premises, onlusions, and additionalparameters PremsCons Inferene(Params):The elements of these three sets generally depend on eah other. To apply aninferene rule at least some of its arguments have to be instantiated by elements ofthe given proof ontext, where the arguments that are atually instantiated deter-mine the diretion in whih the inferene rule is applied. The task of the 
antssystem is now to determine the possible appliations of inferene rules by omputinginstantiations for their arguments and to provide the suggestions to the user.As example onsider the alulus rule )E P P)QQ . There are �ve diretionsin whih this rule an be applied: (i) Forward, where P and P)Q are given and Qis introdued as a new losed line. Three sideways diretions (ii) only P)Q is given,then Q is introdued as a new losed line and P as a new open line, (iii) P)Q andQ are given and P is introdued as new open line, and (iv) P and Q are given andthe impliation is introdued as new open line. Finally, losing the subproof, if (v)all three lines are given, then the open goal Q is losed. When applied to a ertainproof ontext, 
ants tries to �nd atual instantiations for the elements of thesediretions. Thereby 
ants �rst searhes for partial instantiations of elements ofthe �ve diretions that it omposes then to omplete instantiations. For instane,if 
ants �nds in the urrent proof situation a losed line even(2) ) odd(2 + 1)then this is a possible instantiation for P)Q. This single instantiation pair isalready a omplete instantiation for diretion (ii) and an be part of a ompleteinstantiation for the diretions (i), (iii), and (v). If 
ants �nds also an openline odd(2 + 1) then it has a omplete instantiation for diretion (iii). Finally, ifit �nds a losed line even(2), there is a omplete instantiation for diretion (v).All omplete instantiations are provided as suggestions for the next step to theuser. The suggested possibilities are heuristially ordered, for instane, more spei�possibilities are preferred before less spei� ones. Thus in the disussed example
ants would suggest the instantiations for diretion (v), (iii), and (ii) in this order.Tehnially, 
ants employs a blakboard arhiteture, that onsists of two lay-ers of blakboards: The lower layer of the arhiteture onsists of a set of rule
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megablakboards, one for eah inferene rule. We view the knowledge soures of theseblakboards as soiety of agents (i.e., we have one soiety for eah inferene rule)sine they are realized in independent, onurrent proesses. Their task is to searhthe urrent PDS for partial argument instantiations for the inferene rule. Theyommuniate via their rule blakboard and an ooperate by adding further spe-i�ation to a partial argument instantiation other agents have already plaed onthe blakboard. Eah rule blakboard is monitored by one agent that reports theheuristially preferred argument instantiations to the suggestion blakboard, whihomprises the upper layer of the arhiteture. This blakboard aumulates a setof inferene rules that are appliable in the urrent proof state and that are subse-quently passed to the user.
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ants arhiteture is given in Figure 3.4. Agents aredisplayed by irles, agent soieties are grouped in ellipti frames, and blakboardsare displayed by boxes. In the �gure the arhiteture is rotated by �2 ; that is, thelower layer with rule blakboards and their respetive agent soieties are on theright hand side whereas the upper layer with the suggestion blakboard is on theleft hand side.



Chapter 4Knowledge-Based ProofPlanningProof planning was originally oneived as an extension of tatial theorem provingto enable automated theorem proving at the abstrat level of tatis. Bundy's keyidea in [38℄ is to augment individual tatis with pre- and postonditions. Thisresults in planning operators, so-alled methods . Thus, proof planning integratesboth, elements from tatial theorem proving and elements from AI-planning.In the 
mega system the traditional proof planning approah is enrihed by in-orporating mathematial knowledge into the planning proess (see [172℄). Hene,
mega's proof planning approah is alled knowledge-based proof planning . The in-orporation of mathematial knowledge is motivated by the observation that mathe-matiians typially rely on and make use of domain-spei� knowledge when provingtheorems. In 
mega there are di�erent possibilities to inorporate domain-spei�knowledge: in methods, in ontrol rules , and in external systems suh as omputeralgebra systems or onstraint solvers. Methods an enode not only general prov-ing steps but also steps partiular to a mathematial domain. Control rules enablemeta-level reasoning about the urrent proof planning state as well as about theentire history of the proof planning proess in order to guide the searh. Moreover,this thesis introdues strategies as further means to inorporate domain knowledge(see hapter 6).In the remainder of this hapter, we �rst desribe the basis of knowledge-basedproof planning, in partiular, the languages for methods and ontrol rules andthe inorporation of external systems. In the seond setion, we give a detaileddesription of 
mega's previous proof planner PLAN to ompare it with the newMulti system later in the thesis. Throughout this hapter we shall relate proofplanning to AI-planning. However, we shall give here only a general lassi�ationof proof planning with respet to notions from AI-planning. A wider disussion ofsimilarities and di�erenes between proof planning and typial AI-planning an befound in [41, 170, 161℄.4.1 Basis of Proof Planning in 
megaProof planning in 
mega onsiders mathematial theorems as planning problems.The initial state of a proof planning problem onsists of the proof assumptions andthe goal desription onsists of the theorem. Methods are the operators of proofplanning. A proof planner searhes for a solution plan, i.e., a sequene of (instan-



42 Chapter 4. Knowledge-Based Proof Planningtiated) methods that transforms the initial state into a state in whih the theoremholds. In order to �nd a solution plan, the proof planner searhes for appliablemethods and applies the instantiated methods. Similar to AI-planning we all theinstantiation of a method (i.e., the instantiation of a proof planning operator) anation. The e�ets and the preonditions of an ation in 
mega's proof planningare proof lines with formulas in the higher-order language desribed in setion 3.1.The e�ets of an ation should be logially inferable from the preonditions of theation.Central during the proof planning proess are so-alled tasks, whih express thelogial dependenies between goals and assumptions, and a PDS , whih representsthe partial proof plan onstruted so far. We shall now �rst explain the role of thesetwo fundamental strutures.In AI-planning, an unsatis�ed preondition in a plan under onstrution anbe satis�ed with a mathing e�et of any other ation in the plan. In proof plan-ning, however, this is not the ase beause of the logial ontext of open lines.Thus, 
mega's proof planning uses so-alled tasks to express whih lines (losedand open) an be used to onstrut a subplan for an open line. A task is a pair(Lopen;SUPPSLopen) where Lopen is an open line and SUPPSLopen is a set of lines.The �rst element of a task is alled the task line or the goal of the task and the se-ond element is alled the support lines or supports . The formula of the goal is alsoalled task formula. A task with goal Lopen and supports SUPPSLopen is writtenas Lopen J SUPPSLopen . During the planning proess a list of all urrent tasks isstored in a so-alled agenda. For a problem with theorem Thm and assumptionsAss1; : : : ; Assn the initial agenda onsists of the task LThm J fLAss1 ; : : : ; LAssngwhere LThm is an open line with formula Thm and the line LAssi has formula Assiand is justi�ed with Hyp.As example for the neessity to maintain a separate set of supports for eahgoal onsider the introdution of a ase-split. Let a goal F [x℄ have the supportline x > 0 _ x � 0.1 The introdution of a ase-split results in two branheswith: subtask F [x℄ J fx > 0; : : :g and F [x℄ J fx � 0; : : :g. It would be inorret,if the seond subtask used the �rst assumption or vie versa. Moreover, ationsan remove support lines of a task suh that afterwards the planner annot usethese lines anymore. This is sensible, for instane, when an ation simpli�es a givensupport line with formula x+0 > 0 to the new support with formula x > 0. Likely,the old support will not be needed anymore.The proof plan under onstrution is represented in a PDS . The initial PDSonsists of the lines LThm and LAss1 ; : : : ; LAssn . When a new ation is added, thenthe new lines derived by this ation are added into the PDS. Moreover, all e�etlines of the ation are justi�ed by an appliation of the method of the ation to thepremises of the ation. These appliations are tati appliations (sine methods aretatis) and are stated in the format desribed in setion 3.2.2. The justi�ationsof the proof lines in the onstruted PDS omprise the same information as ausallinks known from partial-order planning (see setion 2.3): whih preonditions ofan ation are satis�ed by whih e�ets of other ations and | vie versa | whihe�ets of an ation are used to satisfy whih preonditions of other ations. Thus,the PDS stores information suh as whih lines are used by ations and whih linesdepend on whih other lines. Moreover, it keeps trak of all proof lines reated sofar. Thereby, open lines in the PDS represent unsatis�ed preonditions of ations(initially, the theorem) whereas losed lines are e�ets of ations (initially, the proofassumptions).1To simplify this example, we just write the formulas of the goal and the support line insteadof the whole proof lines.



4.1. Basis of Proof Planning in 
mega 43During a proof planning proess, tasks in the agenda do always orrespond toopen lines in the PDS , that is, for an open line in the urrent PDS there exists atask in the urrent agenda with this line as goal and vie versa. Thus, with respetto the agenda and the onstruted PDS , we an state the aim of the proof planningproess as follows: Compute a sequene of ations, whih derives, starting from theinitial agenda and the initial PDS, an empty agenda and a losed PDS , that is,a PDS without open lines. The solution proof plan is a reord of this sequeneof ations. The simultaneous ahievement of an empty agenda and a losed PDSmirrors the two roots of proof planning: From the AI-planning point of view theaim is to ompute a sequene of ations that satisfy all goals, that is, to reah anempty agenda. From the tatial theorem proving point of view the aim is to applya sequene of tatis, whih result in a losed PDS.The proof planners PLAN and Multi essentially work on an agenda and itstasks. First, they ompute appliable ations for the urrent tasks. Then, theyselet one ation and apply it. This results in new tasks. Tehnially, the simul-taneous maintenane of a PDS during the proof planning proess is not neessaryfor the two planners. In partiular, if needed, a losed PDS ould be onstrutedfrom the omputed set of ations later on. However, historially proof planning in
mega did onstrut a PDS and an agenda was only introdued as a bookkeepingmehanism for the open proof lines. Pratially, the PDS is important beauseof two reasons: First, 
mega's tools for user interation (e.g., L
UI) are basedon the PDS as the entral data struture. During the proof planning proess theonstruted PDS is presented to the user as the urrent state of progress. Whendesribing the onduted ase studies in the hapters 8 | 10 we shall also use PDSsas a means to display and disuss the onstruted proof plans. Seond, the PDS isa representation of the urrent proof plan, i.e., the urrent sequene of ations, andexpliitly stores information that is important for the ontrol rules (e.g., whih linesdepend on whih other lines et.). Although this information ould be omputedfrom the urrent sequene of ations eah time it is needed, it is more onvenientto use the PDS as a bookkeeper.A formal de�nition of proof plans and the proof planning proess realized in
mega's previous proof planner PLAN is given in the next setion. In the re-mainder of this setion, we introdue 
mega's method and ontrol rule languages,desribe ations in 
mega, and briey disuss the inorporation of external systemsinto proof planning.Notation 4.1: Funtions that are part of the desriptions of methods, ontrolrules, and algorithms are denoted with a special font (e.g., term-at-position). Sinethe ore of 
mega is implemented in LISP these funtions are LISP funtions inthe implementation. For larity, we write the appliation of the funtion func tothe arguments arg1; : : : ; arg2 not in LISP syntax, i.e., (func arg1 : : : argn), but inpre�x notation, i.e., func (arg1; : : : ; argn).Notation 4.2: We denote a set of items it1; : : : ; itn with fit1; : : : ; itng. A list orsequene of items (i.e., ordered set of items) it1; : : : ; itn we write as [it1; : : : ; itn℄. [℄denotes the empty list. On sets the operations [;\;� are de�ned as usual. On lists[ denotes the onatenation of lists. The result of list1 � list2 is list1 without allelements that are in list2. The operations first , last , rest , and reverse are de�ned onlists. The funtion first returns the �rst element of a list whereas the funtion lastreturns the last element of a list. The funtion rest returns the list that results fromthe deletion of the �rst element from the initial list. The funtion reverse returnsa list whose elements are in the reverse order of the elements of the input list.The set of all items it that satisfy a ertain property P (it) is written as fitjP (it)g.



44 Chapter 4. Knowledge-Based Proof PlanningThe analogous list is written as [itjP (it)℄. The elements of suh a list are orderedarbitrarily, if no order is expliitly spei�ed.Sets are denoted with symbols in alligraphi style (e.g., M for a set of methodsand C for a set of ontrol rules). Lists are denoted with symbols that are markedwith an arrow as supersript (e.g., ~A for a sequene of ations).4.1.1 Methodsmethods enode the knowledge of the relevant proof steps of mathematial domains.Tehnially, a method in 
mega is a frame data struture with the slots delarations,parameters, appliation onditions, premises, onlusions, outline omputations, expansionomputations, and proof shema.The premises and onlusions of a method speify the preonditions and thee�ets of the method.2 The onlusions should be logially inferable from thepremises. The union of onlusions and premises is alled the outline of a method.Delarative desriptions of the formulas of the outline an be given in the proofshema, whih also provides the shemati or proedural expansion information(see below).Premises and onlusions may be annotated with � and 	. The annotationsare needed to indiate whether a method is used for forward or bakward searh.As opposed to AI-planning, where operators typially an be applied for both for-ward searh and bakward searh, a method in 
mega is either used in forwardsearh or in bakward searh. This is beause methods typially omprise omplexomputations that are reasonable either in one diretion or in the other diretion.As example, onsider methods that employ a omputer algebra system to sim-plify numerial expressions. A bakward method an employ the omputer algebrasystem in order to redue a goal to a simpli�ed goal. A orresponding forwardmethod an employ the omputer algebra system in order to derive a simpli�edsupport line. But what should the bakward method perform when applied for-wards? Does it obtain a \simpli�ed" support line and tries to \ompliate" it inorder to obtain a more \diÆult" support? Vie versa, what should the forwardmethod perform when applied bakwards? Does it obtain a \simpli�ed" goal, whihit tries to \ompliate"?Bakward and forward methods are spei�ed as follows: A bakward methodhas 	 onlusions and � premises as well as 	 premises and blank premises . Toompute an ation of the method, one of the 	 onlusions is mathed with thegoal of a given task and both, the 	 premises and the blank premises, are mathedwith supports of the task. When the resulting ation is introdued into the proofplan, then the goal is losed in the PDS and the � premises are added to thePDS and beome goals of new tasks. These new tasks inherit the supports of theinitial task exept that the 	 premises are removed. The blank premises are nota�eted. A forward method has � onlusions as well as 	 premises and blankpremises. To ompute an ation of the method, the 	 premises and the blankpremises are mathed with the support lines of a given task. When the resultingation is introdued into the proof plan, then the � onlusions are added to thePDS and beome new support lines of the task. Moreover, the 	 premises areremoved from the supports of the task. Again, the blank premises are not a�eted.2That preonditions and e�ets of a method are alled the premises and onlusions of themethod, respetively, is an example for the ombination of AI-planning and tatial theoremproving in proof planning. If we see the method as tati, then the e�ets of a method are theonlusions of a tati and the preonditions are the premises.



4.1. Basis of Proof Planning in 
mega 45Method: =Subst-Bdelarations type-variables: �variables: fo, f 0o, t�, t0�, pospositiontf�, tf 0�, �f�oparameters posappl. onds. (1) valid-position-p(f ,pos)(2) [term-at-position(f ,pos) = t _
term-at-position(f ,pos) = t0℄premises �L2, L1onlusions 	L3outline omputations f 0  replace-at-position(f ,t,t0,pos)expansion omputations tf  term-at-position(f ,pos)tf 0  term-at-position(f 0,pos)�f  lambda-abstraction(f ,pos)proof shema L1. � ` t :=t0 ()L2. � ` f 0 (Open)L4. � `8P�o P (tf 0)) P (tf) (�E :=)L5. � ` (�f)(tf 0)) (�f)(tf) (8E L4 �f)L6. � ` f [tf 0℄) f [tf ℄ (�$ L5)L3. � ` f ()E L2 L6)Figure 4.1: The =Subst-B method.Consider the method =Subst-B, given in Figure 4.1, whih an be used in alldomains that employ the equality :=. Essentially, the method performs an equalitysubstitution. It has two preonditions L1 and L2, where the proof shema deter-mines L1 to be an equation. The only onlusion is L3. =Subst-B is a bakwardmethod. The introdution of an ation of =Subst-B loses a task line whose for-mula mathes with the formula of L3 and introdues a new task whose goal is theinstantiation of L2. That is, the formula of the new goal results from the formula ofthe initial goal by substitution with the equation, whih is the formula of a supportof the initial task that mathed with L1. For instane, =Subst-B applied to thetask even(a+ 1) J fa = 1; : : :g3 introdues the new goal even(1 + 1).In the delarations of a method the variables of the method and their types areintrodued.The parameters of a method are spei� variables that inuene the resultingation, when the method is instantiated. The =Subst-B method has the parameterpos whih is of type position. The method an be applied to di�erent positions,e.g., for the task even(a+ a) J fa = 1; : : :g at the �rst or the seond ourrene ofa in the goal. The hoie of pos determines whih a should be replaed.The appliation onditions of a method are meta-level desriptions that restritthe appliability of a method. The appliation onditions an onsist of arbitraryLISP funtions. The method =Subst-B has two appliation onditions: (1) theposition pos has to be a valid position in the formula f and (2) the subterm in fat the position pos is t or t0. Note that appliation onditions reason only aboutwhether the appliation of a method is valid in a ertain situation; they do notreason about whether the appliation is useful.The outline omputations of a method allow to apply arbitrary LISP funtionsto ompute the new terms and formulas of new outline lines generated by an ap-pliation of the method. The outline omputation of =Subst-B spei�es that the3To simplify this example, we just write the formulas of the goal and the support line insteadof the whole proof lines.



46 Chapter 4. Knowledge-Based Proof PlanningMethod: 9IReslass-Bdelarations variables: �o, NSet�o, RSet(�o)o, Po, n�meta-variables: mv�parametersappl. onds. resclass-set (RSet; n;NSet)premises �L3;�L1onlusions 	L5outline omputationsexpansion omputationsproof shema L1. � `mv 2 NSet (Open)L2. � `  2 RSet (ConReslSet L1)L3. � `P [ln(mv)℄ (Open)L4. � `P [℄ (ConResl L3)L5. � `9x:RSet P [x℄ (9ISort L2 L4)Figure 4.2: The 9IReslass-B method.new formula f 0 is omputed from f by replaing t by t0 or t0 by t at the positionpos depending on whether the subterm in f at position pos is t or t0.Similarly, the expansion omputations of a method allow to apply arbitrary LISPfuntions to ompute the new terms and formulas generated during the expansionof an ation of the method. The expansion omputation of =Subst-B spei�es thatthe terms tf and tf 0 are omputed as the subterms of f and f 0 at position pos,respetively. Moreover, the term �f is omputed as a �-abstration of f where theterm at position pos is replaed by the � -bound variable (that is, essentially �fhas the form �x� f [x℄, where f [x℄ is the term that results from f by replaing thesubterm at position pos by x).The proof shema of a method is a delarative desription of the outline of amethod and of the expansion of ations of the method. Expansions of ationsorresponds to both tati expansions and expansions of HTN-planning. Whenan ation of the method is expanded, then for eah onlusion a new subproof isintrodued into the PDS resulting in new justi�ations of the onlusion at a lowerlevel of abstration. For instane, the proof shema of =Subst-B spei�es that thede�ned onept := in the premise is replaed by its de�nition (see setion 3.2.1).Then, the alulus rules 8E , �$, and )E are applied to derive the onlusion ofthe method.Another example for a method is 9IReslass-B given in Figure 4.2, whihis a method used for residue lass problems (see setion 5.2). Its purpose is toinstantiate an existentially quanti�ed variable that ranges over a residue lass setwith a witness term for whih a ertain property P holds and to redue the initialstatement on residue lasses to a statement on integers. The witness term has to bea onrete element of the residue lass set. However, if the method is applied at anearly stage of the proof, the planner generally has no knowledge of the true natureof the witness term. Therefore, the method postpones the atual instantiation;that is, a meta-variable is used as temporary substitute for the atual witness term,whih will be determined at a later point in the planning proess and subsequentlyinstantiated.9IReslass-B is a bakward method. The introdution of an ation of thismethod redues a given task whose goal is mathed with L5 to two new tasks whosegoals result from L1 and L3, respetively. A residue lass set is a set of numbersand is annotated by �o (e.g., �o). The ondition resclass-set (RSet; n;NSet) is



4.1. Basis of Proof Planning in 
mega 47satis�ed if RSet, the sort of the quanti�ed variable x, quali�es as a residue lassset of the form given in setion 5.2. Its evaluation binds the method variablesn and NSet to the modulo fator of RSet and the set of integers orrespondingto the ongruene lasses of RSet, respetively. For instane, the evaluation of
resclass-set (ZZ2; n;NSet) yields n 2 and NSet f0; 1g. The neessary inferenesteps at a lower level of abstration are indiated by the justi�ations ConReslSetand ConResl for the lines L2 and L4 in the proof shema, whih denote tatis thatonvert statements ontaining residue lass expressions into statements ontainingthe orresponding integer expressions. mv in L1 and L3 is a meta-variable thatsubstitutes for the atual witness term.Notation 4.3: In this thesis, we write mv for meta-variables. If several meta-variables our, we attah subsripts to mv in order to distinguish the meta-variables. We either use the variable for whose instantiation the meta-variable is asubstitute as subsript (e.g., we write mvx if mv is a substitute for the instantiationof the variable x) or we use numbers. If the deomposition of a quanti�ed formularesults in the introdution of a onstant, then we write  for this onstant. Similarto the notation for meta-variables, we use either the initial variable or numbers assubsripts to distinguish several ourring onstants.Notation 4.4: Methods are written in small apital font (e.g., 9IReslass-B).The name of bakward methods ends with -B whereas the name of forward methodsends with -F.4.1.2 AtionsAn ation is an instantiation of a method. Tehnially, an ation in 
mega is aframe data struture that has the slots method, task, premises, onlusions, binding,and onstraints. The method of an ation is a pointer to the method of whih theation is an instantiation. The task of an ation is a pointer to the task with respetto whih the ation was omputed. The onlusions and premises of an ation aresets of proof lines, respetively, whih an be annotated with 	 and �. The bindingof an ation is a substitution that (1) maps outline lines of the method to prooflines and (2) maps variables spei�ed in the delarations of the method to terms,positions, et. The onstraints of an ation are onstraints that an be reated bythe evaluation of the appliation onditions of a method and that have to be passedto external onstraint solvers (see setion 4.1.4). Similar to methods, we all theunion of the premises and onlusions of an ation the outline of the ation. Theunion of � premises and � onlusions of an ation is also alled the new lines of anation (i.e., the proof lines whih are produed by an ation), whereas the union of	 premises, blank premises, and 	 onlusions is alled the given lines of an ation(i.e., the proof lines whih have to be given in order to ompute an ation). Ationsof forward methods are also alled forward ations whereas ations of bakwardmethods are also alled bakward ations .Example 4.5:Consider the ation in Figure 4.3. It is an instantiation of the method =Subst-Bomputed with respet to the task LThm J fLAss1 ; LAss2g. The proof line LThm isthe only onlusion of the ation (annotated with 	) whereas the proof lines LAss1and LThm0 are the premises of the ation (LThm0 annotated with �). The bindingmaps all outline lines of the =Subst-B method (i.e., L1; L2; L3) to the onlusionsand the premises of the ation and maps all variables delared in =Subst-B to termsand positions. The onstraints of this ation are empty.



48 Chapter 4. Knowledge-Based Proof PlanningAtionmethod =Subst-Btask LThm J fLAss1 ; LAss2gpremises � LThm0 : LAss1 ; LAss2 ` even(+ b) (Open)LAss1 : LAss1 ` a := (Hyp)onlusions 	 LThm: LAss1 ; LAss2 ` even(a+ b) (Open)binding fL3 ! LThm; L1 ! LAss1 ; L2 ! LThm0 ; f ! even(a+ b); �! �;t! a; t0 ! ; pos!< 1 1 >; f 0 7! even(+ b)gonstraints ; Figure 4.3: An ation with the =Subst-B method.The instantiation of a method in order to ompute an admissible ation omprisesthe following steps: First, the formulas of the onlusions and premises have tobe mathed with formulas of goals and their supports. If this sueeds, then theappliation onditions an be evaluated. If they evaluate to true, the method isappliable (wrt. to the omputed mathings). Then, the outline omputations haveto be performed and the new lines of the outline have to be omputed to ompletethe ation. A detailed desription on how ations are omputed, seleted, andintrodued into a proof plan is given in the next setion, when we desribe PLAN.For the ation in Figure 4.3 we give a summary of the omputation and introdutioninto a proof plan here.Suppose the urrent PDS orresponding to the task LThm J fLAss1 ; LAss2g is:LAss1 . LAss1 ` a� :=� (Hyp)LAss2 . LAss2 ` b� := (Hyp)LThm. LAss1 ; LAss2 ` even�o(a+ b) (Open)When the ation in Figure 4.3 is omputed, then �rst the lines L1 and L3 of themethod =Subst-B are mathed with the lines LAss1 and LThm of the PDS, re-spetively. Afterwards, the appliation onditions are evaluated and the outlineomputations of the method are performed. Next, the missing outline is omputed.In our example, the new � premise LThm0 is omputed and is justi�ed with Open.When the ation is introdued, then its e�et LThm is justi�ed in the PDS by anappliation of the method =Subst-B to the premises LThm0 and LAss1 of the ation.Moreover, the new proof line LThm0 is introdued into the PDS. The resulting PDSis:LAss1 . LAss1 ` a� :=� (Hyp)LAss2 . LAss2 ` b� := (Hyp)LThm0 . LAss1 ; LAss2 ` even(+ b) (Open)LThm. LAss1 ; LAss2 ` even�o(a+ b) (=Subst-B LThm0 LAss1 )Moreover, the task LThm J fLAss1 ; LAss2g in the agenda is replaed by the taskLThm0 J fLAss1 ; LAss2g.Proof planning in 
mega is a proess that omputes ations and introduesthem into the proof plan under onstrution. However, sine the introdued a-tions are represented in the PDS as appliations of their methods we also use thephrase ation appliation instead of ation introdution, if we want to emphasizethe hanges in the PDS . We also use the following voabulary from tatial theo-rem proving. We say that the appliation of a bakward ation loses an open lineor a task , if the open line or the goal of the task is an e�et of the ation and islosed by the introdution of the ation into the proof plan under onstrution. Wesay that a forward ation is applied to some lines or to some supports , if the linesor supports are the preonditions of the ation. Moreover, we say that we apply a



4.1. Basis of Proof Planning in 
mega 49(ontrol-rule tryanderror-standard-selet(kind methods)(IF (disjuntion-supports S))(THEN (selet (8IResalss-B ConCongCl-B_E**-B 9IReslass-B ))))Figure 4.4: The ontrol rule tryanderror-standard-selet.method to a task or to some lines as an abbreviation for the appliation of an ationof the method to the task or to some lines.4.1.3 Control RulesControl rules provide guidane of the proof planning proess by delaratively repre-senting heuristial knowledge that orresponds to mathematial intuition about howto prove a goal in a ertain situation. In partiular, these rules provide the basis formeta-level reasoning and a global guidane sine they an express onditions for adeision that depends on all available knowledge about the proof planning proessso far. Several experiments indiate the superiority of a separate representationof ontrol knowledge by ontrol rules [176℄. This representation is well-suited formodi�ations and for learning. The ontrol rules used in 
mega's proof planningwere adopted from the ontrol rule approah of the AI-planner Prodigy [234℄,In the planning proess ontrol rules guide deisions at hoie points, e.g., whihtask to takle next or whih method to apply next. They ahieve this by reasoningabout the heuristi utility of di�erent alternatives4 in order to promote the alterna-tives that seem to suit best in the urrent situation, where `situation' omprises allavailable information on the urrent status suh as the urrent tasks, their supports,the planning history, failed attempts et. To manipulate an alternative list ontrolrules an remove elements, prefer ertain elements, or add new elements. This way,the ranking of alternatives is dynamially hanged. This an help to prune thesearh spae or to promote ertain promising searh paths.Tehnially, ontrol rules onsist of an IF- and a THEN-part. The IF-part isa prediate on the urrent proof planning `situation', whereas in the THEN-partmodi�ations of alternative lists are stated. Moreover, eah ontrol rules spei�esits kind, i.e., the hoie point in the proof planning proess it guides.Figure 4.4 gives as example the ontrol rule tryanderror-standard-selet,whih is evaluated during the seletion of the next method to apply. It states thatif the urrent goal is supported by a disjuntive support line S, then the appliationof the methods 8IResalss-B, ConCongCl-B, _E**-B, and 9IReslass-B isattempted in this order.5 The selet in the then-part states that all other methodsexept those spei�ed in the ontrol rule are eliminated from the list of alterna-tive methods. Other possible modi�ations of alternative lists are rejet, prefer,defer, and order-in-front. The former removes all alternatives spei�ed in the on-trol rule from a given alternative list, the latter three reorder the alternative list.4As opposed to appliation onditions of methods, whih reason about the legal feasibility ofappliations of methods (see last setion).58IResalss-B and ConCongCl-B are domain-spei� methods to takle residue lass prob-lems where the latter onverts statements on residue lasses into orresponding statements onintegers. The former redues goals ontaining a universal quanti�ation over a residue lass setsimilar to 9IReslass-B. On the ontrary, _E**-B is not a domain-spei� method. It performsa ase-split with respet to a set of disjuntive supports.



50 Chapter 4. Knowledge-Based Proof Planningprefer orders all spei�ed alternatives in front of the alternative list, defer ordersall spei�ed alternatives at the end of the alternative list, and order-in-front ordersspei�ed alternatives in front of other spei�ed alternatives. Finally, there is theinsert modi�ation. It allows to introdue new elements in an alternative list. Atypial situation for using an insert ontrol rule is when a general ontrol rule {whih is applied �rst { removes some elements from the alternative list, whih areneeded in a partiular situation. Then a more spei� insert ontrol rule, whih isapplied later on, an introdue the needed elements again.Notation 4.6: Control rules are denoted in the typewriter font (e.g., tryand-error-standard-selet). Tehnially, ontrol rules are frame data strutures.Sine they are onsiderably simpler as, for instane, methods, we do not presentthem in the data struture fashion (as we do with methods) rather we give theirLISP enoding. That is, the ontent of Figure 4.4 is the spei�ation of the ontrolrule tryanderror-standard-selet as it is in 
mega's data base.4.1.4 Inorporating External Systems into Proof PlanningWe use a speial kind of domain knowledge in 
mega, namely the knowledge aboutand in external \expert" systems. Proof problems usually require many di�erentapabilities for their solution, for instane, omputation and objet onstrution.In order to solve problems, it is often neessary to aess several systems with om-plementary apabilities and to make use of their results. Various \expert" systemsexist for mathematial problem solving, whih have their spei� data struturesand very eÆient algorithms, e.g., omputer algebra systems, onstraint solvers,model generators, and mahine-oriented automated theorem provers. They ansupport the proof planning proess by performing omputations, deteting inon-sistenies, suggesting instantiations of variables, or solving subproblems. The use ofexternal systems is not just peuliar for proof planning. Rather there are also someAI-planning systems that make use of \experts" [244℄. For instane, RAX-PS [125℄uses experts in the development of plan fragments.In general, 
mega's proof planning an treat omputations from external sys-tems in two ways: as hints or as proof steps . The di�erene is that the soundnessof hints is heked by the subsequent proof planning proess, whih either fails orsueeds for the given hint. To guarantee the soundness of proof steps, speialproedures have to be provided, whih transform the output of an external systeminto a subproof that 
mega an hek, i.e., speial proedures that perform theexpansion of suh proof steps to ND. Tehnially, the interfae of proof planningto external systems is realized by the LISP funtions of methods and ontrol rules.Methods an all external systems in their appliation onditions and outline om-putations;6 similarly, ontrol rules an employ external systems in the prediates oftheir IF-part.Figure 4.5 and Figure 4.6 show the two methods ComplexEstimate-B andTellCS-B whose appliation onditions omprise alls to external systems, re-spetively. Both methods are entral for planning limit problems (see setion 5.1).ComplexEstimate-B is a method for estimating the magnitude of the absolutevalue of omplex terms.7 ComplexEstimate-B is appliable to tasks whose goalhas the formula jbj < � (orresponding to line L9 in Figure 4.5) and that have6Tehnially, alls of external systems in the expansion omputations of methods are also pos-sible. Currently, there is no method that performs suh alls.7ComplexEstimate-B essentially is a reonstrution (see [168℄) of Bledsoe's limit heuristithat was used in a speial-purpose program [29℄.



4.1. Basis of Proof Planning in 
mega 51Method: ComplexEstimate-Bdelarations variables: b� , �� , a� , �0� , l� , k� ,a�� , k�� , l�� , b�� , ��� , �0�� ,onjunto, �substitutionmeta-variables: mv�parametersappl. onds. linearextract(a; b; l; k; �)premises L1, �L2, �L4, �L5, �L6, �L7onlusions 	L9outline omputations a� := subst-apply (�; a)k� := subst-apply (�; k)l� := subst-apply(�; l)b� := subst-apply (�; b)�� := subst-apply (�; �)�0� := subst-apply(�; �0)onjunt := form-conjunction(�)expansion omputations
proof shema L1. � ` jaj < �0 ()L2. � ` �0� < ��2�mv (Open)L3. � ` ja�j < ��2�mv (< trans L1 L2)L4. � ` jk�j � mv (Open)L5. � ` jl�j < ��2 (Open)L6. � ` 0 < mv (Open)L7. � ` onjunt (Open)L8. � ` b� :=k� � a� + l� (CAS)L9. � ` jbj < � (fix L3 L4 L5 L6 L7 L8)Figure 4.5: The ComplexEstimate-B method.supports with formula jaj < �0 (orresponding to line L1 in Figure 4.5). In itsappliation onditions ComplexEstimate-B uses the funtion linearextract . Whenapplied to a and b linearextract employs the omputer algebra system Maple [200℄to ompute suitable terms k and l suh that b = k � a + l holds. linearextract alsoomputes a substitution � suh that b� = k� � a� + l� holds (where b�; k�; l�result from b; k; l by the appliation of the substitution �, respetively). Thereby,the substitution � maps meta-variables in a, b to terms. ComplexEstimate-B isappliable only, if Maple provides k and l suh that linearextract evaluates to true.If this is the ase, the appliation of a orresponding ation of the method reduesthe original task to �ve tasks whose goals orrespond to the lines L2; L4; L5; L6; L7in Figure 4.5. L7 has the formula onjunt, whih is omputed from the substitution� by the funtion form-conjunction . This formula is the onjuntion of the mappingsof the substitution �. That is, if � maps the meta-variables mv1; : : : ;mvn to theterms t1; : : : ; tn, respetively, then onjunt has the form mv1 :=t1 ^ : : : ^mvn :=tn.If � is empty, then onjunt is simply True, the primitive truth. The justi�ationfix for L9 in the proof shema is only an abbreviation that stands for a sequeneof about 20 tati steps that omprises, in partiular, an appliation of the triangleinequality. The appliation of Maple is reeted in line L8 of the proof shema,whih is justi�ed by the tati CAS. When this tati is expanded, it employs thesapper [222℄ system to obtain a formal proof of the statement b� = k� � a� + l�suggested by Maple.For instane, when applied to a task with formula j(f(x) � g(x)) � (l1 �l2)j < � and a support with formula jf(mvx) � l1j < �0 with a meta-variable



52 Chapter 4. Knowledge-Based Proof Planningmvx, then linearextract sueeds and provides k = 1, l = g(x) � l2, and a sub-stitution � that maps mvx to x. The appliation of a orresponding ation ofComplexEstimate-B redues the given task to new tasks whose goals are j1j �mv, �0 < �2�mv , jg(x)� L2j < �2 , 0 < mv, and mvx :=x.Method: TellCS-Bdelarations variables: a� , b� , rel��oparametersappl. onds. (1) metavar-in (a) _ metavar-in (b)(2) test-CS (CoSIE ,a rel b)premisesonlusions 	L1outline omputationsexpansion omputationsproof shema L1. � ` relo��(a� ; b�) (ProveCS)Figure 4.6: The TellCS-B method.The method TellCS-B realizes an interfae to CoSIE [174℄, a onstraint solverfor inequalities and equations over the �eld of real numbers. TellCS-B is appliableto tasks with formulas relo��(a� ; b�) where rel is a binary prediate on argumentsof the type �, whih stands for numerials. Examples of mathing prediates are,for instane, <;�. In its appliation onditions TellCS-B �rst tests whether aor b ontain some meta-variables. If this is the ase, rel(a; b) is interpreted as aonstraint on these meta-variables. TellCS-B applies then the funtion test-CSthat onnets to CoSIE to test (1) whether rel(a; b) is a syntatially valid on-straint for CoSIE (in partiular, rel has to be <;�; >;�; :=; or 6=) and (2) whetherrel(a; b) is onsistent with the urrent onstraint store of CoSIE . If this is the ase,TellCS-B is appliable and the orresponding ation of TellCS-B ontains inits onstraints slot the onstraint rel(a; b). The introdution of the ation loses thegoal without produing further subtasks and passes rel(a; b) as new onstraint toCoSIE .Figure 4.7 shows an ation of the method TellCS-B. This ation ontains theonstraint 0 < mvD , whih is annotated with CoSIE to indiate that the onstrainthas to be passed to CoSIE . The onstraint results from the evaluation of theappliation ondition test-cs of TellCS-B.Ationmethod TellCS-Btask L10 J fL4; L5gpremisesonlusions 	 L10: L4; L5 ` 0 < mvD (Open)binding fL1 ! L10; a! 0; b! mvD ; rel!<gonstraints fCoSIE :0 < mvDgFigure 4.7: An ation with the TellCS-B method.CoSIE an provide instantiations of the onstrained meta-variables that areonsistent with the olleted onstraints. For instane, suppose during the proofplanning proess there are three tasks whose goals have the formulas 0 < mvD,mvD < Æ1, mvD < Æ2, whih all ontain the meta-variable mvD. All three goalsare losed by ations of TellCS-B. Moreover, suppose there are also two sup-



4.2. Proof Planning with PLAN 53ports with formulas 0 < Æ1 and 0 < Æ2, whih are passed to CoSIE by ations ofthe method TellCS-F, whih is the analogous of TellCS-B to pass onstraintsin supports to CoSIE . From the resulting onstraint store, CoSIE an omputemin(Æ1; Æ2) as suitable instantiation for mvD. Moreover, CoSIE provides traes ofits omputations, whih an be used to expand the appliations of the ations ofTellCS-B.Another method that establishes a onnetion to CoSIE is AskCS-B. Similarto TellCS-B, this method is appliable to tasks whose goal formulas are of theform rel(a; b). But whereas TellCS-B demands that a or b ontain some meta-variables, AskCS-B overs the ase that a and b ontain no meta-variables. Anappliation ondition of AskCS-B passes the formula to CoSIE and asks CoSIEwhether the formula holds with respet to the onstraints olleted so far. If this isthe ase, then AskCS-B loses the goal. Sine CoSIE an also handle formulas ononrete real numbers, for instane, 1 < 2 or 0 � 0, AskCS-B an also lose goalswhose formulas are expressions on onrete real numbers.Note that besides TellCS-B and TellCS-F also the methods 8I-B and 9E-Fpass onstraints to CoSIE . Ations of 8I-B perform bakward appliations of theND-rule 8I by reduing a task with task formula 8x P [x℄ to a new task with taskformula P [℄, where the variable x is replaed by a onstant . For eah meta-variablemv in P [℄ an ation of 8I-B also passes the Eigenvariable onstraint !62mvto CoSIE that states that the instantiation for mv is not allowed to ontain . Thisonstraint guarantees the adherene with the Eigenvariable onditions of the 8I ruleof the ND-alulus. Ations of the 9E-F method perform a forward step with the9E rule. Similar to ation of 8I-B they pass Eigenvariable onstraints to CoSIEthat demand the adherene of the Eigenvariable onditions of the 9E rule.4.2 Proof Planning with PLANPLAN is 
mega's previous proof planner. It proeeds by suessively omputingand introduing ations into a proof plan under onstrution. Preeding the formaldesription of PLAN (see setion 4.2.2), Table 4.1 shows the skeleton of PLAN'salgorithm. Essentially, PLAN follows the preondition ahievement paradigm (seesetion 2.3). First, it selets a task to work on. Then, it omputes ations forthis task and selets one ation, whih it introdues into the proof plan underonstrution. This results in new tasks on whih PLAN ontinues. If PLAN failsto ompute an ation for a seleted task, then it performs baktraking. Althoughations an perform both, forward reasoning and bakward reasoning, an ation isalways hosen with respet to a task in order to lose or to redue the gap betweenthe goal and the supports of the task.8 Some deisions in PLAN an be guidedby ontrol rules, for instane, the seletion of the next task and the seletion ofthe next ation. Other deisions, however, are hard-oded into the system. Forinstane, PLAN employs baktraking if and only if it takles a task, for whihit fails to ompute an ation. Moreover, it employ external onstraint solvers toobtain instantiations for meta-variables if and only if the agenda is empty and thePDS is losed.With respet to the notions of AI-planning introdued in setion 2.3 we anlassify PLAN as follows: PLAN is a state-spae planner that ombines state-spae progression and regression planning. The urrent progression and regression8In the existing implementation PLAN an introdue a forward ation with respet to severaltasks simultaneously. This orresponds to the suessive appliation of several ations to a singletask, respetively. In order to simplify the formal disussion of PLAN we shall desribe the ationintrodution only with respet to one task.



54 Chapter 4. Knowledge-Based Proof Planning1. When the urrent agenda is empty and the urrent PDS is losed, then applyexternal onstraint solvers to ompute variable instantiations onsistent withthe olleted onstraints and terminate.2. Selet a task T from the agenda.3. Compute and selet an ation A with respet to T .4. If an ation A ould be omputed for T , then introdue A. Goto step 1.5. If no ation A ould be omputed for T , then baktrak the ation whoseintrodution reated the task T . Goto step 1.Table 4.1: Cyle of PLAN.state are stored in the tasks: the onjuntion of all goals is the goal-onjuntionof state-spae regression planning whereas the union of the supports of the tasks isthe urrent state reahed by progression state-spae planning. Hene, a node in thesearh spae of PLAN is given by a set of tasks, i.e., an agenda. PLAN starts withthe initial agenda. The next node in the searh spae is reahed by the introdutionof an ation, whih hanges the agenda et. A forward ation reates a new taskby hanging the supports of a given task whereas a bakward ation replaes a taskby some new tasks with new goals. The planning proess stops as soon as a nodein the searh spae is reahed whose set of tasks is empty.Proof planning does not su�er from the onjuntive goal problems of AI-plannersthat perform preondition ahievement planning. The derivation of a formula F inthe subplan for a subgoal is not threatened or removed by the derivation of thenegated formula :F in the subplan for another subgoal. Hene, PLAN does notperform any threat resolution like demotion or promotion of ations. Moreover,sine no re-ordering of introdued ations is performed, PLAN is a total-orderplanner that omputes a sequene of ations.PLAN's subproedure for ation deletion performs dependeny-direted bak-traking [224℄. Instead of baktraking to the last deision point (so-alled hrono-logial baktraking), the idea of dependeny-direted baktraking is to analyzewhih deisions along a searh branh aused a failure. Then, deisions are re-moved and alternatives are tried based on the found dependenies, rather than thehronologial order in whih deisions were made. Sine there is some ambiguity inthe previous use of the term dependeny-direted baktraking. We use the term asde�ned in [202℄ (p. 212): \Sometimes, though, we have additional information thattells us whih guess (along a searh branh) aused the problem. We'd like to retratonly that guess and the work that expliitly depended on it, leaving everything elsethat has happened in the meantime intat. This is exatly what dependeny-diretedbaktraking does." Note that in this approah dependeny-direted baktrakingdoes not return to an already visited searh state but an lead to a new state notvisited before. In [100℄ the same approah is alled dynami baktraking beause ofthe dynami way in whih the searh is strutured. In [127℄ the term dependeny-direted baktraking refers to the approah that analyzes whih deision auseda failure and to baktrak to this hoie point. That is, all steps done after thisdeision are removed and an already visited searh state is reahed again.Besides the information on the urrent planning state PLAN has also to main-tain information on the searh performed so far. In partiular, it is neessaryto store and make use of information on failing deisions in order to try alter-natives instead. Searh proedures that perform hronologial baktraking oftenuse searh trees, whih apture possible alternatives as well as made and failed



4.2. Proof Planning with PLAN 55deisions to store information on the traversed searh spae (e.g., see [1℄). SinePLAN performs dependeny-direted baktraking we deided for a di�erent ap-proah. PLAN maintains a so-alled history . A history is a sequene of manipu-lation reords . Figure 4.8 shows the skeletons of the two manipulation reords, theation-introdution reord and the ation-deletion reord , of PLAN.Ation-Introdution:agendaintrodued-ationalternativesnew-tasks Ation-Deletion:agendadeleted-ationFigure 4.8: Manipulation reords in PLAN.The slot agenda aptures the ontext in whih the manipulation was done (i.e.,the agenda before the manipulation), the slots introdued-ation and deleted-ationapture the performed manipulation (i.e., the introdued or deleted ation), theslot alternatives aptures alternative ations available as the introdued ation washosen, and the slot new-tasks aptures the new tasks reated by the appliationof the hosen ation. PLAN reords eah ation introdution or deletion with aorresponding entry in the history. It makes diret use of this information, whenseleting the next ation: it does not hoose again an ation that was already deleted(see setion 4.2.4). Sine PLAN does not return to a partiular searh state it doesnot make diret use of the stored alternative ations. However, the information ofthe history is available to the ontrol rules, whih an reason on baktraked stepsand possible alternative ations.9In the remainder of this setion, we give a detailed desription of PLAN. First,we give some formal de�nitions that ulminate in a de�nition of proof plans andsolution proof plans. Then, the subsequent setions give detailed desriptions ofPLAN's main algorithm and its subalgorithms for ation omputation and deletion.Notation 4.7: In the remainder of the thesis, the following symbols (maybe la-beled with some subsripts or supersripts) are assoiated with the following objets:~A denotes a sequene of ations,P denotes a PDS,Â denotes an agenda,~H denotes a history.4.2.1 Formal De�nition of Proof Plans in PLANThe aim of this setion is to give a formal desription of proof plans. We startwith de�nitions of a proof planning problem, an initial PDS of a proof planningproblem, and an initial agenda of a proof planning problem.Definition 4.8 (Proof Planning Problem): A proof planning problem is aquadruple (Thm; fAss1; : : : ; Assng;M; C) where Thm and Ass1; : : : ; Assn are for-mulas in 
mega's higher-order language,M is a set of methods, and C is a set ofontrol rules. Thm is also alled the theorem of the proof planning problem whereasAss1; : : : ; Assn are alled the assumptions of the proof planning problem.9We are urrently extending manipulation reords to apture also information on the reasonsthat support a ertain deision.



56 Chapter 4. Knowledge-Based Proof PlanningDefinition 4.9 (Initial PDS, Initial Agenda): Let (Thm; fAss1; : : : ; Assng;M; C) be a proof planning problem. The initial PDS of this proof planning problemis the PDS that onsists of an open line LThm with formula Thm and the linesLAssi with formula Assi and the hypothesis justi�ation Hyp, respetively. Theinitial agenda of the proof planning problem is the agenda that onsists of the taskLThm J fLAss1 ; : : : ; LAssng. The task LThm J fLAss1 ; : : : ; LAssng is also alled theinitial task of the proof planning problem.Next, we de�ne, when an ation is appliable with respet to a PDS . Informallyspeaking, this is the ase, when the given lines of the ation are in the PDS.Afterwards, we introdue the ation introdution funtion �, whih desribes theoperational semantis of an ation when it is applied to an agenda, a PDS, and asequene of ations (i.e., � de�nes a transition relation between triples of agendas,PDSs, and sequenes of ations).Definition 4.10 (Appliable Ations): Let P be a PDS and Aadd an ation.Moreover, let L be the set of proof lines of P and let 	Cons be the 	 onlusions,	Prems the 	 premises, and BPrems the blank premises of Aadd.Aadd is appliable with respet to P if� (	Cons [ 	Prems [ BPrems) is a subset of L.Definition 4.11 (Ation Introdution Funtion �): The ation introdutionfuntion � is a partial funtion that maps a sequene of ations, an agenda, a PDS,and an ation into a sequene of ations, an agenda, and a PDS , i.e.,� : ~A� Â�P �Aadd 7! ~A'� Â'�P '.Let Aadd be an ation that is appliable with respet to the PDS P . Let �Cons bethe � onlusions, 	Cons the 	 onlusions, �Prems the � premises, 	Premsthe 	 premises, and BPrems the blank premises of Aadd. Moreover, let T =Lopen J SUPPSLopen be the task of Aadd.Prems:=�Prems [ 	Prems [BPrems,Cons:=�Cons [ 	ConsNew-Lines:=�Cons[ �PremsNew-Supps:=(SUPPSLopen [�Cons) � 	Prems.New-Tasks:=[L J New-Supps j L 2 �Prems℄.If ~A is a sequene of ations and Â is an agenda that ontains the task T of Aadd,then the result ( ~A'; Â';P ') of �( ~A; Â;P; Aadd) is de�ned by:� ~A':= ~A [ [Aadd℄.� Â':= �New-Tasks [ (Â� [T℄) if Lopen 2 	Cons;[Lopen J New-Supps℄ [New-Tasks [ (Â� [T℄) else:� P' results from P by1. adding the proof lines New-Lines, respetively, and2. justifying the proof lines 	Cons and �Cons with the justi�ation(M Prems), respetively, where M is the method of Aadd.



4.2. Proof Planning with PLAN 57The reursive extension � is alled ~�. ~� introdues a whole sequene of ations(the arrow of ~� indiates that this funtion introdues a sequene of ations ~Aadd).Definition 4.12 (Reursive Ation Introdution Funtion ~�): The reur-sive ation introdution funtion ~� is a partial funtion that maps a sequene ofations, an agenda, a PDS , and a sequene of ations into a sequene of ations,an agenda, and a PDS , i.e.,~� : ~A� Â�P � ~Aadd 7! ~A'� Â'�P '.~� is reursively de�ned as follows:Let ~A be a sequene of ations, Â an agenda, P a PDS, and ~Aadd a sequene ofations.1. If ~Aadd is empty then ~�( ~A; Â;P; ~Aadd) = ( ~A; Â;P).2. Otherwise let Aadd := first ( ~Aadd) and ~A'add := rest ( ~Aadd). If Aadd is applia-ble with respet to P , and if Â ontains the task of Aadd, then~�( ~A; Â;P ; ~Aadd) = ~�(�( ~A; Â;P; Aadd); ~A'add).With the funtion ~� we an now de�ne proof plans and solution proof plans.Definition 4.13 (Proof Plans and Solution Proof Plans):Let (Thm; fAss1; : : : ; Assng;M; C) be a proof planning problem, P init the initialPDS of this problem, and Âinit its initial agenda.A proof plan for the proof planning problem is a triple PP = ( ~A; Â;P) with asequene of ations ~A, an agenda Â, and a PDS P suh that:1. the methods of eah ation of ~A are inM,2. ( ~A; Â;P) = ~�([℄; Âinit;Pinit; ~A),A solution proof plan for the proof planning problem is a sequene of ations ~A suhthat ~�([℄; Âinit;Pinit; ~A) has an empty agenda and a losed PDS .Beause of this de�nition, we an also say that � maps a proof plan and anation into a proof plan and that ~� maps a proof plan and a sequene of ationsinto a proof plan.4.2.2 The PLAN AlgorithmFigure 4.9 gives a pseudo-ode desription of the PLAN algorithm. PLAN obtainsas input a proof plan PP = ( ~A; Â;P), a history ~H , a list of methodsM, and a listof ontrol rules C.10 PLAN generates a sequene of pairs of proof plans PP andhistories ~H . The user of 
mega an start PLAN with the initial PDS , the initialagenda, and the set of methods and ontrol rules of a proof planning problem. Inorder to reah the next proof plan and the next history PLAN performs a yle oftermination hek, task seletion, ation seletion and ation introdution or ationdeletion. It terminates when either the agenda of the urrent proof plan is empty10Both methods M and ontrol rules C are lists and not sets sine the order in these lists arerelevant. The order in M gives a default order in whih the methods are tried, when no ontrolrules �re and determine a di�erent order (see setion 4.2.4). The order in C determines the orderin whih the ontrol rules are evaluated.



58 Chapter 4. Knowledge-Based Proof PlanningInput: (1) a proof plan PP = ( ~A; Â;P) with a sequene of ations ~A, an agenda Â, and a PDSP, (2) a history ~H, (3) a list of methods M, (4) a list of ontrol rules C.Output: Either a solution proof plan and a losed PDS or fail.Algorithm: PLAN(( ~A, Â, P), ~H ,M,C)1. TerminationIf Â is empty, then terminate and return employ-CS ( ~A,P).2. Task SeletionLet urrent task T := first (evalcrules-tasks (Â,C))where T is the pair Lopen J SUPPSLopen .3. Ation SeletionLet (Aadd,A):=CHOOSEACTION(T , ~H,M,C)where Aadd is an ation and A is a set of alternative ations.4. Ation IntrodutionIf Aadd is giventhen( ~A',Â',P '):=�( ~A; Â;P ; Aadd).~H ':=add-action-intro-record( ~H ,Â,Aadd,A).If extract-constraints (Aadd) 6= ;then
pass-constraints(extract-constraints (Aadd)).PLAN(( ~A',Â',P'), ~H ',M,C).5. Ation DeletionIf Aadd is not giventhenIf ~A is emptythenTerminate and return fail.elseLet Areason:=find-introducing-action(T, ~H).(( ~A',Â',P'), ~H '):=BACKTRACK(( ~A,Â,P), ~H ,[Areason℄).PLAN(( ~A',Â',P '), ~H ',M,C).Figure 4.9: The PLAN algorithm.(see step 1 in Figure 4.9) or when there are neither further ations to be introduednor ations to be removed (see step 5 in Figure 4.9). In the former ase PLANwas suessful and returns the proof plan and the onstruted losed PDS. In thelatter ase, PLAN did traverse the omplete searh spae without �nding a proofplan and returns fail.If the urrent agenda is not empty, then PLAN �rst selets the next task totakle (step 2 in Figure 4.9). To do so, PLAN employs the funtion evalcrules-tasks .

evalcrules-tasks evaluates the ontrol rules C of the kind `Tasks' on the tasks listof the urrent agenda and returns a (possibly) hanged alternative list.11 Then,11Although we do not expliitly provide the urrent proof plan and the urrent history as



4.2. Proof Planning with PLAN 59PLAN piks the �st element of the resulting list as urrent task.Next, PLAN employs the subalgorithm CHOOSEACTION to ompute an ation(step 3 in Figure 4.9). CHOOSEACTION is applied to the urrent task, the methodsM, and the ontrol rules C. It tries to ompute admissible ations and { if suessful{ it selets one ation and returns it. Sine CHOOSEACTION is a omplex algorithmwe shall disuss it in detail in setion 4.2.4.If CHOOSEACTION returns an ation, then PLAN introdues the ation (step 4in Figure 4.9). It reates a new proof plan by applying the ation introdutionfuntion � to the urrent proof plan and the hosen ation. Moreover, it reates anew history by adding a new ation-introdution reord entry to the history. PLANuses the funtion extract-constraints to aess the onstraints of an ation. Whenthe ation ontains onstraints for the onneted external onstraint solvers, thenPLAN employs the funtion pass-constraints , whih passes the onstraints to therespetive external system. PLAN does not hek whether the new onstraints areaepted by the respetive external system. Rather, it assumes that orrespondingonsisteny heks are performed by CHOOSEACTION as part of the evaluation of theappliation onditions of a method, when an ation is omputed.When CHOOSEACTION fails to provide an ation, then PLAN tries to delete a-tions in the urrent proof plan (step 5 in Figure 4.9). If the urrent sequene ofations is empty, then this is obviously not possible. When there are no more a-tions that an be introdued and the urrent sequene of ations is empty, thenPLAN did traverse the omplete searh spae (omplete wrt. to the methods Mand the ontrol rules C) without �nding a solution proof plan. In this ase, PLANterminates and returns fail. If there are ations that an be deleted, then PLANemploys the funtion find-introducing-action to determine the ation whose introdu-tion reated the task T for whih no ation an be omputed. The informationabout whih ation introdution did introdue whih task an be found in the his-tory in the ation-introdution entries. Then, PLAN employs the subalgorithm
BACKTRACK to perform the deletion of the seleted ation and all further ationsthat expliitly depend on it. BACKTRACK is applied to the urrent proof plan, theurrent history, and a list with the ation to be deleted as only element. It returns ahanged proof plan and a hanged history. Sine BACKTRACK is a omplex algorithmwe shall disuss it in detail in the next setion.When the agenda is empty, then the introdution of ations stops and PLANapplies the funtion employ-CS to the omputed ation sequene and the onstrutedPDS (step 1 in Figure 4.9). This funtion employs the external onstraint solvers toompute instantiations for the meta-variables. Then, it substitutes all ourrenes ofthe meta-variables in proof lines of the PDS and the ations by their instantiations,respetively. It returns the resulting ation sequene and the instantiated PDS,whih are then the output of PLAN.Although proof planning ations are omplex ations in the sense of HTN-planning, the expansion of ations is not performed within PLAN. Rather, thereare separate proedures in 
mega for the expansion of ations. When an expansionfails to produe a alulus-level proof and results in new open lines, then PLANan be re-invoked on the new tasks.
arguments for evalcrules-tasks , the prediates in the IF-part of the evaluated ontrol rules anmake use of this status information. This holds for all kinds of ontrol rules, not only for theontrol rules of kind `Tasks' evaluated here.



60 Chapter 4. Knowledge-Based Proof Planning4.2.3 Deletion of AtionsBefore we desribe the BACKTRACK algorithm, we shall introdue the notion of depen-deny among ations and when an ation is deletable. When an ation is introduedinto a proof plan, then it modi�es the elements of the proof plan. Other ationsintrodued later on may depend on these modi�ations. More onretely, when thenew lines introdued by an ation are used as given lines by other ations introduedlater on, then these ations depend on the preeding ation. Afterwards, we de�nethe funtion for the deletion of an ation from a proof plan. Sine ation deletion isoneptually the inverse operation of ation introdution we all this funtion ��1although tehnially ��1 is not the inverse funtion of �.Definition 4.14 (Dependent Ations): Let ~A be a sequene of ations with~A=[A1; : : : ; Ai�1; Ai; Ai+1; : : : ; An℄. Let Ai be an ation with the � onlusions�Cons, and the � premises �Prems. An ation Aj 2 fAi+1; : : : ; Ang depends onAi, if Aj is an ation whose sets of onlusions or premises ontains a proof line of�Cons or �Prems (whih are the new proof lines introdued by Ai).Definition 4.15 (Deletable Ations): Let ~A be a sequene of ations with~A=[A1; : : : ; Ai�1; Adel; Ai+1; : : : ; An℄. Adel is deletable with respet to ~A, if the setof ations in ~A that depend on Adel is empty.In the following de�nition of the funtion ��1 we desribe the modi�ationsof the sequene of ations, the agenda, and the PDS aused by the deletion ofan ation. Although the notion of deletability of an ation is de�ned only withrespet to a sequene of ations, we demand in the de�nition of ��1 that theagenda and the PDS are not arbitrary ones, but reated by this sequene of ations(in partiular, by the ation that should be deleted). The desribed modi�ationsannot be performed with respet to an arbitrary PDS or an arbitrary agenda.Definition 4.16 (Ation Deletion Funtion ��1): The ation deletion fun-tion ��1 is a partial funtion that maps a sequene of ations, an agenda, a PDS,and an ation into a sequene of ations, an agenda, and a PDS , i.e.,��1 : ~A� Â�P �Adel 7! ~A'� Â'�P'.Let Adel be a deletable ation in ~A. Let �Cons be the � onlusions, 	Cons the	 onlusions, �Prems the � premises, 	Prems the 	 premises, and BPremsthe blank premises of Adel. Moreover, let T = L J SUPPSL be the task of Adel.Lines-To-Remove:=�Cons[ �Prems.Tasks-To-Remove:=[LJ SUPPSL 2 Â j L 2 �Prems℄.New-Tasks:=[T ℄.If Â is an agenda and P is a PDS that results from the introdution of ~A (to someagenda and some PDS), then the result ( ~A'; Â';P ') of ��1( ~A; Â;P; Adel) is de�nedby: � ~A':= ~A� [Adel℄.� Â':= New-Tasks [ (Â � Tasks-To-Remove).� P' results from P by1. removing the lines Lines-To-Remove and2. justifying the proof lines 	Cons with Open, respetively.



4.2. Proof Planning with PLAN 61Input: (1) a proof plan PP = ( ~A; Â;P) with a sequene of ations ~A, an agenda Â, and a PDSP, (2) a history ~H, (3) a sequene of ations ~Adel.Output: A proof plan PP' = ( ~A'; Â';P') and a history ~H'.Algorithm: Baktrak(( ~A, Â, P), ~H , ~Adel)1. TerminationIf ~Adel is empty, then terminate and return (( ~A; Â;P); ~H).2. Pik AtionLet Adel:=first ( ~Adel).3. Ation DeletionIf Adel is deletable wrt. ~Athen( ~A',Â',P'):=��1( ~A; Â;P ; Adel).~H':=add-action-del-record( ~H ,Â,Adel).If extract-constraints (Adel) 6= ;then
delete-constraints(extract-constraints(Adel)).

BACKTRACK(( ~A',Â',P '), ~H ',rest ( ~Adel)).4. Deletion ExpansionIf Adel is not deletable wrt. ~Athen~Anewdel :=dependend-actions(Adel; ~A).
BACKTRACK(( ~A,Â,P), ~H , ~Anewdel [ ~Adel).Figure 4.10: The BACKTRACK algorithm.A pseudo-ode desription of the algorithm BACKTRACK is given in Figure 4.10.

BACKTRACK is applied to a proof plan PP = ( ~A; Â;P), a history ~H , and a list ofations ~Adel that have to be deleted. BACKTRACK generates a sequene of pairs ofproof plans PP and histories ~H by deleting suessively the ations in ~Adel. Ifan ation in ~Adel is not deletable, then it is neessary to delete further ations.
BACKTRACK returns the proof plan and the history that result from the deletion ofall neessary ations.The �rst step in BACKTRACK is a hek whether the list of ations that should bedeleted is empty. If this is the ase, BACKTRACK terminates and returns the urrentproof plan and the urrent history. Otherwise, it selets the �rst ation Adel fromthe list (step 2 in Figure 4.10). If Adel is deletable, BACKTRACK deletes it from theurrent proof plan by employing ��1 and adds a new ation-deletion entry to thehistory (step 3 in Figure 4.10). When Adel ontains onstraints, then BACKTRACKemploys the funtion delete-constraints , whih tells the respetive onstraint solversto delete these onstraints sine they are not longer existing. Afterwards, BACKTRACKis applied to the hanged proof plan, the hanged history, and the remaining ationsto be deleted.If Adel is not deletable (step 4 in Figure 4.10), then BACKTRACK alls the funtion
dependent-actions to ompute the ations that depend from Adel and that have tobe deleted in order to make Adel deletable. BACKTRACK is then reursively appliedto the urrent proof plan, the urrent history, and the onatenation of the ations



62 Chapter 4. Knowledge-Based Proof Planningomputed by dependent-actions and the urrent ations that have to be deleted.As example for a situation, where an ation is not deletable beause other ationsdepend on it, onsider the following situation. PLAN introdues an ation A thatredues a task with goal L to two new tasks with goals L1 and L2. Next, PLANapplies the ation A1 to lose L1. Afterwards, PLAN fails to apply an ation to thetask with goal L2 and employs BACKTRACK to remove the ation A that introduedL2. However, the deletion of A would not only remove the line L2 but also the lineL1 with respet to whih ation A1 was introdued. Hene, before A an be deletedthe ation A1 has to be deleted.4.2.4 Ation Computation and Seletion
CHOOSEACTION is the subalgorithm of PLAN that omputes alternative lists of a-tions and selets one of them. Figure 4.11 shows a pseudo-ode desription of thealgorithm. CHOOSEACTION is applied to a task, the urrent history, and the lists ofmethodsM and ontrol rules C. If suessful, CHOOSEACTION returns a seleted a-tion and a set of alternative ations (see step 7 in Figure 4.11), otherwise it returnsfail (see step 2 in Figure 4.11).

CHOOSEACTION omputes ations suessively. It starts with an under-spei�ed,initial ation that ontains only a hosen method and the given task. Then, itsuessively mathes lines of the method with the goal and the supports of thetask as well as variables spei�ed in the delarations of the method with terms,positions, et. The substitutions of these mathings re�ne suessively the bindingof the ation suh that more and more spei�ed ations are reated. In order tohek whether a partiular ation of a method is valid, CHOOSEACTION evaluatesthe appliation onditions of the method with respet to the binding of the ation.Afterwards, it ompletes the binding of the ations by onduting the outline om-putations and by omputing the new lines. Finally, it selets one ation among theresulting fully spei�ed ations.In the following, we explain CHOOSEACTION with the example 4.5 of setion 4.1.2.We apply CHOOSEACTION to the task LThm J fLAss1 ; LAss2g, an empty history, alist of methods that ontains the method =Subst-B, and a list of ontrol rules thatontains the ontrol rule supps+params-=Subst whose impat is explained below.The �rst step in CHOOSEACTION is the re-ordering of the alternative list of meth-ods. This is done by the funtion evalcrules-methods , whih obtains as input M,C and the given task. evalcrules-methods evaluates the ontrol rules in C of kind`Methods' onM and returns a (possibly) hanged list of alternative methods. Fromthis list CHOOSEACTION piks the �rst one (step 2 in Figure 4.11) and employs thefuntion initial-action-set to reate the initial set of ations that onsists of one ationwhose premises, onlusions, bindings, and onstraints are empty, whose method isthe hosen method, and whose task is the given task.For our example, we assume that evalcrules-methods returns the list [=Subst-B,: : :℄. Then, CHOOSEACTION hooses =Subst-B as method and produes an initial setof ations that ontains only the following ation:Ationmethod =Subst-Btask LThm J fLAss1 ; LAss2gpremisesonlusionsbindingonstraints



4.2. Proof Planning with PLAN 63Input: (1) a task T , (2) a history ~H, (3) a list of methods M, (4) a list of ontrol rules C.Output: Either a pair of an ation and a list of ations or fail.Algorithm: ChooseAtion(T , ~H,M,C)Let T=Lopen J SUPPSLopen .1. Order MethodsMethods:= evalcrules-methods(M,C,T ).2. Selet MethodIf Methods emptythenTerminate and return fail.elseM :=first (Methods).Ations:=initial-action-set(T;M).3. Math GoalLet 	Cons be the 	 onlusions of M .Ations:=match-goal (Lopen,	Cons,Ations).If Ations empty, then Methods:=rest (Methods), goto 2.4. Selet and Math Supports and ParametersLet 	Prems and BPrems be the 	 premises and blank premises of M .Let Params be the parameter variables of M .Supps+Params:=evalcrules-s+p(SUPPSLopen ,C,T ,M ,Ations).Ations:= match-s+p (Supps+Params,	Prems [ BPrems,Params,Ations).If Ations empty, then Methods:=rest (Methods), goto 2.5. Evaluate Appliation ConditionsAtions:=eval-appl-conds(Ations,M).If Ations empty, then Methods:=rest (Methods), goto 2.6. Outline Computations
eval-outline-computations(Ations).
complete-outline(Ations).7. Selet an AtionAtions:=remove-backtracked(Ations, ~H).Ations:=evalcrules-actions(Ations,C).If Ations = ;thenMethods:=rest (Methods), goto 2.elseTerminate and return (first (Ations),rest (Ations)).Figure 4.11: The CHOOSEACTION algorithm.The next step (step 3 in Figure 4.11) in CHOOSEACTION mathes the goal with the	 onlusions of the seleted method. To do so, CHOOSEACTION employs the funtion

match-goal . This funtion is applied to the goal, the 	 onlusions of the seleted



64 Chapter 4. Knowledge-Based Proof Planningmethod, and the set of ations omputed so far. Its omputations and its outputdepend on the existene of 	 onlusions in the hosen method. If the method hasno 	 onlusions (i.e., a forward method), then match-goal simply returns the listof ations it obtained as input. If the method has 	 onlusions (i.e., a bakwardmethod), then match-goal mathes the goal with the 	 onlusions, respetively.For eah suessful mathing it reates a new ation whose binding ontains thesubstitution resulting from the mathing and whose onlusions ontain the goalannotated with 	. Finally, match-goal returns the set of all new ations.In our example the mathing of the goal LThm with the 	 onlusions of=Subst-B results in a substitution with two elements: L3 7! LThm and f 7!even(a + b). Thus, match-goal returns an ations set that ontains only the fol-lowing ation: Ationmethod =Subst-Btask LThm J fLAss1 ; LAss2gpremisesonlusions 	 LThm: LAss1 ; LAss2 ` even(a+ b) (Open)binding fL3 7! LThm; f 7! even(a+ b)gonstraintsNext, CHOOSEACTION hooses supports and parameters and mathes them with	 and blank premises and the parameter variables of the seleted method (step 4in Figure 4.11). This results in further substitutions, whih re�ne the ationsomputed so far. First, CHOOSEACTION evaluates the ontrol rules of the kind`Supps+Params'. This is done by the funtion evalcrules-s+p , whih is appliedto the supports of the goal, the ontrol rules C, the task, the urrent method, andthe ations omputed so far. Control rules of the kind `Supps+Params' do not onlyreorder and manipulate the support lines but they return a new type of elements,namely pairs of support lines and parameter instantiations. Thus, the parameterseletion is not an isolated deision but is ombined with the seletion of supportlines.12 Then, CHOOSEACTION employs the funtion match-s+p . match-s+p obtainsas input the pairs of support lines and parameter instantiations, the 	 and blankpremises of the seleted method, and the set of ations omputed so far. Withrespet to eah ation omputed so far (i.e., depending on the binding of an ationomputed so far) match-s+p mathes the support lines and parameters pairs withthe 	 and blank premises and the parameter variables of the method, respetively.For eah suessful mathing it reates a new ation whose binding is extendedwith the substitution resulting from the mathing and whose premises omprise themathed support lines. Finally, match-s+p returns the set of new ations.In our example, the ontrol rule supps+params-=Subst �res and returns the twosupport lines and parameter instantiation pairs (fLAss1g; < 1 1 >) and (fLAss2g; <1 2 >), where < 1 1 > is the parameter position of the a in the formula even(a+ b)of the goal LThm and < 1 2 > is the parameter position of the b.13 For both pairsand with respet to the only ation omputed so far, match-s+p sueeds to maththe premise L1 and the parameter pos of =Subst-B with the ontent of the pairs,respetively. It returns a set of ations that ontains the following two elements:12We deided for this ombined approah sine typially the parameter seletion is diretlyrelated to the support line seletion.13The ontrol rule supps+params-=Subst �res if the urrent method is =Subst-B and if there aresome support lines that are equations suh that one side of the equations equals a subterm in theformula of the goal. If supps+params-=Subst �nds suh a support line it returns a pair onsistingof the support line and the respetive subterm position in the formula of the goal.



4.2. Proof Planning with PLAN 65Ationmethod =Subst-Btask LThm J fLAss1 ; LAss2gpremises LAss1 : LAss1 ` a := (Hyp)onlusions 	 LThm: LAss1 ; LAss2 ` even(a+ b) (Open)binding fL3 7! LThm; L1 ! LAss1 ; f 7! even(a+ b); �! �;t! a; t0 ! ; pos!< 1 1 >gonstraints Ationmethod =Subst-Btask LThm J fLAss1 ; LAss2gpremises LAss2 : LAss2 ` b := (Hyp)onlusions 	 LThm: LAss1 ; LAss2 ` even(a+ b) (Open)binding fL3 7! LThm; L1 ! LAss2 ; f 7! even(a+ b); �! �;t! b; t0 ! ; pos!< 1 2 >gonstraintsThe �rst ation results from mathing L1 and pos with LAss1 and < 1 1 >,respetively, whereas the seond ation results from mathing L1 and pos withLAss2 and < 1 2 >, respetively.In the next step (step 5 in Figure 4.11), CHOOSEACTION evaluates the appliationonditions of the seleted method. The evaluation of the appliation onditionsis performed by the funtion eval-appl-conds , whih obtains as input the ationsomputed so far and the seleted method. For eah given ation eval-appl-condsevaluates the appliation onditions of the method with respet to the binding ofthe ation. The evaluation of appliation onditions an reate further substitutions,whih are then added to the binding of the ation. Moreover, the evaluation an re-ate onstraints for external onstraint solvers, whih are then added as onstraintsof the ation. Eah ation for whih the evaluation fails is rejeted. eval-appl-condsreturns the set of all ations for whih the evaluation sueeds.In our example, the appliation onditions of =Subst-B evaluate to true forboth ations omputed so far. Sine no onstraint results from the evaluation ofthe appliation onditions the onstraints of both ations are set to the empty set.Next, CHOOSEACTION ompletes the ations by onduting the outline ompu-tations of the seleted method and by omputing the new outline lines (i.e., �premises and onlusions) (see step 6 in Figure 4.11). This is done by the funtions
eval-outline-computations and complete-outline , whih both are applied to the set ofations omputed so far. Both funtions do not hange the set of ations but theyre�ne the ations already in the set. eval-outline-computations evaluates the outlineomputations for eah ation and adds the resulting substitutions to the binding ofthe ation. Similarly, complete-outline omputes the missing outline lines for eahation and adds the orresponding substitutions to the binding of the ation. Newoutline lines are justi�ed as follows: � premises are justi�ed with Open whereasnew � onlusions are justi�ed by an appliation of the seleted method to thepremises of the ation.For our example, eval-outline-computations and complete-outline omplete the a-tions omputed so far as follows:



66 Chapter 4. Knowledge-Based Proof PlanningAtionmethod =Subst-Btask LThm J fLAss1 ; LAss2gpremises � LThm0 : LAss1 ; LAss2 ` even(+ b) (Open)LAss1 : LAss1 ` a := (Hyp)onlusions 	 LThm: LAss1 ; LAss2 ` even(a+ b) (Open)binding fL3 7! LThm; L1 ! LAss1 ; L2 ! LThm0 ; f 7! even(a+ b); �! �;t! a; t0 ! ; pos!< 1 1 >; f 0 ! even(+ b)gonstraints ; Ationmethod =Subst-Btask LThm J fLAss1 ; LAss2gpremises � LThm0 : LAss1 ; LAss2 ` even(a+ ) (Open)LAss2 : LAss2 ` b := (Hyp)onlusions 	 LThm: LAss1 ; LAss2 ` even(a+ b) (Open)binding fL3 7! LThm; L1 ! LAss2 ; L2 ! LThm0 ; f 7! even(a+ b); �! �;t! b; t0 ! ; pos!< 1 2 >; f 0 ! even(a+ )gonstraints ;Finally, CHOOSEACTION deides for one of the omputed ations (step 7 in Fig-ure 4.11). First, it rejets all ations that orrespond to ations that have alreadybeen baktraked. This is done by the funtion remove-backtracked , whih is ap-plied to the urrent set of ations and the given history. If an ation has thesame given lines and the same binding as an ation that is stored in the historyas deleted ation, then this ation is removed from the alternative list. To theremaining ations CHOOSEACTION applies the funtion evalcrules-actions to evaluatethe ontrol rules of kind `Ations'. Provided the resulting list of ations is notempty, CHOOSEACTION terminates and returns a pair onsisting of the �rst elementof the list of ations and the rest of the list of ations (i.e., the hosen ation andthe list of alternatives). If the list of ations is empty, then CHOOSEACTION returnsto the method seletion point (step 2 in Figure 4.11) and repeats the sequene ofmathings, appliation ondition evaluation, outline omputations evaluation, andoutline ompletion for the next method of the method list. Similarly, CHOOSEACTIONreturns to the method seletion point and selets the next method, when the set ofations beomes empty during the mathings or by the evaluation of the appliationonditions. If CHOOSEACTION fails to ompute an ation that does not orrespondto a baktraked ation and is not rejeted by the ontrol rules, then it terminatesand returns fail (see step 2 in Figure 4.11).



Chapter 5A Short Introdution to theCase StudiesIn this hapter we shall introdue the limit domain [169, 168, 172℄ and the residuelass domain [166, 163, 165℄ for whih we onduted in-depth ase studies for theappliation ofMulti. The limit domain was �rst takled with the previous plannerPLAN whose appliation was suessful for many theorems but failed on sometypial ones. The analysis of the failed attempts of PLAN strongly inuened thedesign of Multi. The residue lass domain was diretly takled with Multi.Detailed disussions on how Multi takles problems of these domains an befound in hapter 8 and hapter 9. We briey introdue both domains already heresine we shall use examples from both domains to motivate and disuss the Multisystem throughout the remainder of the thesis.5.1 The Limit DomainIn the following, we shall explain proof planning limit theorems and their relatives.These theorems are formulated and proved in the theory IR of the real numbers. Inthe remainder of this thesis, =��� ; ���� ;+��� ;���� ; jj�� denote the division, multi-pliation, addition, subtration, and the absolute value funtion in IR, respetively.Theorems of the limit domain make statements about the limit limx!a f(x) of afuntion f at a point a, about the limit limseqX of a sequene X , about theontinuity of a funtion f at a point a, and about the derivative of a funtion f ata point a. Sine the standard de�nitions of limit, ontinuity, and derivative arelim(��)��o � �f�� �a� �l� 8�� (0 < �)9Æ� (0 < Æ ^ 8x� (jx� aj > 0 ^ jx� aj < Æ )jf(x)� lj < �)))limseq(��)�o� �X�� �l� 8�� (0 < �)9k� (k 2 IN ^ 8n� (n 2 IN ^ n > k ) j(X n)� lj < �)))ont(��)�o � �f�� �a� 8�� (0 < �)9Æ� (0 < Æ ^ 8x� (jx� aj < Æ ) jf(x)� f(a)j < �)))deriv(��)��o � �f�� �a� �f 0� limx!a f(x)�f()x�the proofs of these theorems are so-alled �-Æ-proofs , i.e., proofs that postulatethe existene of a Æ suh that a onjeture of the form : : : jX j < � is proved underassumptions of the form : : : jY j < Æ.



68 Chapter 5. A Short Introdution to the Case StudiesNotation 5.1: Instead of the formula lim(f�� ; a� ; l�) we heneforth write the moreommon equation expression limx!a f(x) = l. Analogously, we write limseqX = l in-stead of limseq(X�� ; l�) and deriv(f; a) = f 0 instead of deriv(f�� ; a� ; f 0�).An example theorem from the limit domain is LIM+ that states that the limitof the sum of two funtions f and g equals the sum of their limits; that is, iflimx!a f(x) = l1 and limx!a g(x) = l2 then limx!a(f(x) + g(x)) = l1 + l2. When thede�nition of limx!a is expanded, the orresponding planning problem onsists of twoassumptions8�1 (0 < �1 ) 9Æ1 (0 < Æ1^8x1 (jx1�aj > 0^jx1�aj < Æ1 ) jf(x1)�l1j < �1)))and8�2 (0 < �2 ) 9Æ2 (0 < Æ2^8x2 (jx2�aj > 0^jx2�aj < Æ2 ) jg(x2)�l2j < �2))).And the theorem beomes8� (0 < �) 9Æ (0 < Æ ^ 8x (jx� aj > 0 ^ jx� aj < Æ) j(f(x) + g(x)) � (l1 + l2)j < �))).Similar theorems in this lass are LIM- and LIM* for the di�erene and theprodut of limits of funtions. Moreover, there are orresponding theorems aboutontinuity. Continuous+ states that the sum of two ontinuous funtions is ontin-uous, and Continuous- and Continuous* make similar statements for the di�ereneand produt of ontinuous funtions. We shall introdue some further examplesfrom the limit domain in the remainder of the thesis.When proving a limit theorem like LIM+, a Æ has to be onstruted that dependson an � suh that ertain estimations hold. This is a non-trivial task for students aswell as for traditional automated theorem provers.1 The typial way a mathemati-ian disovers a suitable Æ is by inrementally restriting the possible values of Æ.When proof planning limit theorems, PLAN adapts this approah by ooperatingwith the onstraint solver CoSIE : (in)equality tasks that are simple enough forCoSIE (i.e., tasks that are in the input language for CoSIE) are passed to CoSIEand CoSIE provides suitable instantiations for Æ, when solutions for meta-variablesare omputed and inserted into the �nal proof plan.For �nding �-Æ-proofs, among others, the general methods 9I-B, 9E-F, 8I-B,8E-F, ^I-B, ^E-F, )I-B, )E-F, and =Subst-B and the domain-spei� meth-ods TellCS-B, TellCS-F, AskCS-B, Solve*-B, and ComplexEstimate-Bare required. We introdued 8I-B, 9E-F, AskCS-B, TellCS-B, TellCS-F, andComplexEstimate-B already in setion 4.1.4; =Subst-B is explained already insetion 4.1.1. Similar to 8I-B and 9E-F also 9I-B, 8E-F, ^I-B, ^E-F, )I-B, and)E-F apply ertain natural dedution rules. Ations of 9I-B perform a bakward9I step. They lose a goal with formula 9x P [x℄ and introdue a task whose goalhas the formula P [mv℄ in whih x is replaed by a new meta-variablemv. Similarly,ations of 8E-F perform a forward 8E step and derive a new support P [mv℄ witha new meta-variable mv from a given support 8x P [x℄. Ations of ^I-B perform abakward ^I step and redue a task whose goal has the formula A1 ^ A2 to newtasks whose goals have the formulas A1 and A2. Ations of ^E-F perform theorresponding forward ^E deompositions on onjuntive support lines. Ationsof )I-B perform a bakward )I step and redue a task with goal A ) B to anew task whose goal has the formula B and A as additional hypothesis. Moreover,A beomes the formula of a new support for this task. Ations of )E-F perform1Bledsoe proposed in 1990 several versions of LIM+ as a hallenge problem for automatedtheorem proving [28℄. The simplest versions of LIM+ (problem 1 and 2 in [28℄) are at the edgeof the apabilities of traditional automated theorem provers but LIM* is ertainly beyond theirapabilities.



5.1. The Limit Domain 69an )E step. When applied to a task with goal C and an support with formulaA ) B they introdue two new tasks: a task with goal C, whih ontains also anew support with B as formula, and a task with goal A. Ations of the Solve*-Bmethod exploit transitivity of <;>;�;� and redue a goal with formula a1 < b1 toa new task with formula b2� � b1� in ase a support a2 < b2 exists and a1; a2 anbe uni�ed by the substitution �. Then, also a further new task is reated whose for-mula is the onjuntion of all mappings of the substitution � (ompare desriptionof method ComplexEstimate-B in setion 4.1.4).When applied to an �{Æ{problem, PLAN �rst deomposes the initial task witha omplex formula into subtasks whose formulas are (in)equalities. This is doneby ations that deompose formulas in tasks, e.g., ations of the methods ^I-B,8I-B, 9I-B et. Then, tasks whose formulas are simple (in)equalities are losedby ations of TellCS-B and their formulas are passed as onstraints to CoSIE .Tasks, whih follow from the onstraints olleted by CoSIE , are losed by ations ofAskCS-B. In order to satisfy more omplex tasks, the unwrapping of (in)equalitysupports from the initial assumptions is neessary. This is realized by ations thatdeompose supports, e.g., ations of the methods ^E-F, 8E-F, 9E-F et. Theintrodution of these ations results in (in)equality supports that an be used tofurther takle tasks with omplex formulas with ations of the methods Solve*-Bor ComplexEstimate-B. By ations of these methods tasks whose formulas areomplex (in)equalities are suessively redued to tasks whose formulas are simple(in)equalities that an be losed and passed to CoSIE by ations of TellCS-B.Finally, when no task is left and PLAN invokes the funtion employ-CS , CoSIEomputes instantiations for the meta-variables that are onsistent with the olletedonstraints.Next, we briey disuss the appliation of PLAN to the LIM+ problem.2 PLAN�rst deomposes the initial theorem to tasks with the formulas 0 < mvÆ andj(f(x)+g(x))�(l1+l2)j < � wheremvÆ is a meta-variable introdued for Æ and xand � are onstants that replae x and �, respetively. Moreover, the assumptions0 < �, jx�aj > 0, and jx�aj < mvÆ are reated during the deomposition of theinitial theorem and beome supports of the new tasks. 0 < mvÆ an be passed di-retly to CoSIE by an ation of TellCS-B. j(f(x)+g(x))� (l1+ l2)j < � annotbe passed to CoSIE diretly. This triggers the deomposition of one of the two ini-tial assumptions. If the initial assumption on f is deomposed, then PLAN obtainsas new supports 0 < Æ1 and jf(mvx1)� l1j < mv�1 . Now PLAN an ompute andintrodue an ation of ComplexEstimate-B using the latter new support line.During the evaluation of the appliation onditions of ComplexEstimate-B thesubstitution mvx1 7! x is reated and the omputer algebra system Maple om-putes a deomposition (f(x)+g(x))�(l1+ l2) = 1�(f(x)� l1)+(g(x)+ l2) (thatis, the variables k and l of ComplexEstimate-B are bound to 1 and g(x) � l2,respetively). Thus, the ation of ComplexEstimate-B introdues new tasks withformulas mv�1 < �2�mv , j1j � mv, 0 < mv, jg(x) � l2j < �2 , and mvx1 :=x. Theformulas of the former three tasks and of the last one an all be passed diretlyto CoSIE by ations of TellCS-B. To deal with the remaining task with formulajg(x) � l2j < �2 PLAN deomposes the seond initial assumption (on g) and de-rives new support lines with formulas 0 < Æ2 and jg(mvx2)� l2j < mv�2 . An ationof Solve*-B redues the goal with respet to the seond new support to two newtasks with formulas mv�2 � �2 and mvx2 :=x. Both tasks are losed by ations ofTellCS-B and their formulas are passed to CoSIE .The deomposition of the initial assumptions results not only in the used supportlines but also in tasks with the formulas 0 < mv�1 , jmvx1 � aj > 0, jmvx1 � aj < Æ12A detailed desription on how Multi solves this problem is given in setion 8.1.



70 Chapter 5. A Short Introdution to the Case Studiesfrom the assumption on f and the analogue tasks from the assumption on g. Thetask 0 < mv�1 is losed by the introdution of an ation of TellCS-B, whihpasses the formula to CoSIE . To lose the other tasks PLAN introdues ationsof the method Solve*-B that use the supports with formulas jx � aj < mvÆand jx � aj > 0 (from the deomposition of the initial goal). The appliation ofSolve*-B to the task jmvx1�aj < Æ1 and the support jx�aj < mvÆ results in twonew tasks with formulas mvÆ � Æ1 and mvx1 :=x. The appliation of Solve*-B tothe task jmvx1�aj > 0 and the support jx�aj > 0 results also in two new tasks withformulas 0 � 0 and mvx1 :=x. Whereas 0 � 0 is losed by an ations of AskCS-Bthe other three tasks are losed by ations of TellCS-B, whih pass their formulasto CoSIE . The orresponding tasks from the assumption on g are handled in thesame way. Thereby the onstraints mvÆ � Æ2 , mvx2 :=x, and mvx2 :=x are passedto CoSIE . Moreover, some ations of the TellCS-F method during the planningproess pass onstraints in support lines to CoSIE : 0 < Æ1 , 0 < Æ2 , 0 < �.After propagating onstraints, CoSIE has the �nal onstraint store in Figure 5.1.When asked for suitable instantiations for the meta-variables, CoSIE provides thebindings mvx1 7! x;mvx2 7! x;mv 7! 1, mv�1 7! �2 , mv�2 7! �2 , and mvÆ 7!min(Æ1 ; Æ2). These instantiations omputed by CoSIE are exatly the solutionsthat standard textbooks use for Æ, �1, and �2 for LIM+.mvx1 = xmvx2 = x0 < Æ1 < +10 < Æ2 < +10 < � < +10 < mv�1 � �2 ; �2�mv0 < mv�2 � �20 < mvÆ � Æ1 ; Æ21 � mv � �2�mv�1Figure 5.1: The �nal onstraint store of CoSIE for LIM+.PLAN an suessfully plan all the hallenge problems of Bledsoe [28℄, i.e.,the limit theorems LIM+, LIM-, LIM*, the theorems Continuous+, Continuous�,Continuous*, limx!ax = a, limx!a  = , and the theorem that the omposition ofontinuous funtions is again ontinuous. Moreover, we tried to apply PLAN totakle systematially the limit problems reorded in the textbook of Bartle andSherbert \Introdution to Real Analysis" [12℄. A summary of these experimentsan be found in the master thesis of J�urgen Zimmer [255℄. It turned out thatPLAN failed to plan several theorems from [12℄. As we shall disuss in the nexthapter when motivating the development of Multi this is not due to missing orinappropriate methods but due to PLAN's inadequate algorithm.5.2 The Residue Class DomainIn the following, we shall introdue the residue lass domain. The theorems of thisdomain are formulated and proved in the theories ZZ of integers and Group. Sinethis ase study was diretly performed with Multi we give no desription on howPLAN takles residue lass problems.



5.2. The Residue Class Domain 715.2.1 An Informal Introdution to the Residue Class DomainIn the residue lass domain we are interested in proving properties of mathematialstrutures onsisting of residue lass sets over the integers and binary operations.First we examine their basi algebrai properties to lassify the strutures in termsof group, monoid et. Moreover, we are interested in proving that two struturesare isomorphi or not.A residue lass set over the integers is either the set of all ongruene lassesmodulo an integer n, i.e., ZZn, or an arbitrary subset of ZZn. Conretely, we aredealing with sets of the form ZZ3;ZZ5;ZZ3nf�13g;ZZ5nf�05g, f�16; �36; �56g; : : :, where �13denotes the ongruene lass 1 modulo 3. If  is an integer, we write ln() for theongruene lass  modulo n. Additionally, we allow for diret produts of residuelass sets of arbitrary yet �nite length; thus, we an have sets of the form ZZ3
ZZ5,ZZ3nf�13g 
 ZZ5nf�05g 
 f�16; �36; �56g, et.A binary operation Æ on a residue lass set is given in �-notation. Æ an be ofthe form �xy x, �xy y, �xy , where  is a onstant ongruene lass (e.g., �13),�xy x�+y, �xy x��y, �xy x��y, where �+, ��, �� denote addition, multipliation, andsubtration on ongruene lasses over the integers, respetively. Furthermore, Æan be any ombination of the basi operations with respet to a ommon modulofator, for example, �xy (x�+�13) ��(y �+�23). For diret produts of residue lass setsthe operation is a ombination of the single binary operations for the element tuples,for example, �xy x�+y � �xy x��y.We are interested in algebrai properties of residue lass sets RSn modulo neither with one binary operation Æ or with two binary operations Æ and ?. Both,Æ and ? are required to be operations with respet to the modulo fator n of theresidue lass. Suh a mathematial struture onsisting of a residue lass set withone or two binary operations is alled a residue lass struture (or simply struture)and is denoted by (RSn; Æ) or (RSn; Æ; ?), respetively. For strutures with oneoperation, (RSn; Æ), we are interested in lassifying them in terms of magma, semi-group, monoid, quasi-group, loop, or group and whether they are Abelian. Todetermine the algebra of a struture we have to prove or to refute some of thefollowing properties:1. Closure: RSn is losed under Æ. This is formalized by the de�ned oneptlosed(RSn; Æ) that abbreviates 8x:RSn 8y:RSn (x Æ y) 2 RSn.2. Assoiativity: RSn is assoiative with respet to Æ.(asso(RSn; Æ) � 8x:RSn 8y:RSn 8z:RSn x Æ (y Æ z) :=(x Æ y) Æ z.)3. Unit element: There exists a unit element in RSn with respet to Æ.(9e:RSn unit(RSn; Æ; e) � 9e:RSn 8y:RSn [y Æ e :=y℄ ^ [e Æ y :=y℄.)4. Inverses: Every element in RSn has an inverse element with respet to Æ andthe unit element e.(inverse(RSn; Æ; e) � 8x:RSn 9y:RSn [x Æ y :=e℄ ^ [y Æ x :=e℄.)5. Divisors: For every two elements of RSn there exist two orresponding divi-sors in RSn with respet to Æ.(divisors(RSn; Æ) � 8a:RSn 8b:RSn [9x:RSn a Æ x :=b℄ ^ [9y:RSn y Æ a :=b℄.)6. Commutativity: RSn is ommutative with respet to Æ.(ommu(RSn; Æ) � 8a:RSn 8b:RSn a Æ b :=b Æ a.)Given a struture (RSn; Æ; ?) onsisting of a residue lass set and two binaryoperations, �rst we an determine its ategory with respet to eah operation sep-arately. Then, we hek the property of distributivity



72 Chapter 5. A Short Introdution to the Case Studies7. Distributivity: RSn is distributive with respet to Æ and ?.(distrib(RSn; Æ; ?) � 8a:RSn 8b:RSn 8:RSn [a ? (b Æ ) :=(a ? b) Æ (a ? )℄ ^ [(a Æb) ?  :=(a ? ) Æ (b ? )℄.)We an lassify (RSn; Æ; ?) in terms of ring, ring-with-one, division ring, or �eld.The proof problems resulting from the properties 1 to 7 are alled the simple residuelass problems .Furthermore, we are interested in distinguishing lasses of isomorphi strutures.Two strutures (RS1n1 ; Æ1) and (RS2n2 ; Æ2) are isomorphi, if and only if there existsa funtion h : RS1n1 ! RS2n2 , suh that h is an injetive and surjetive homomor-phism. Thus, we have to prove or to refute the following property:8. Isomorphi: (RS1n1 ; Æ1) and (RS2n2 ; Æ2) are isomorphi.(Iso(RS1n1 ; Æ1; RS2n2 ; Æ2)�9h:F (RS1n1 ;RS2n2 ) Inj(h;RS1n1) ^Surj(h;RS1n1 ; RS2n2) ^Hom(h;RS1n1 ; Æ1; RS2n2 ; Æ2),where F (RS1n1 ; RS2n2) is the set of all total funtions from RS1n1 into RS2n2 ,Inj(h;RS1n1) � 8x1:RS1n1 8x2:RS1n1 h(x1) :=h(x2)) x1 :=x2,Surj(h;RS1n1 ; RS2n2) � 8x:RS2n2 9y:RS1n1 h(y) :=x,Hom(h;RS1n1 ; Æ1; RS2n2 ; Æ2) �8x1:RS1n1 8x2:RS1n1 h(x1 Æ1 x2) :=h(x1) Æ2 h(x2).)5.2.2 Formalizations of Conepts in the Residue Class Do-mainFirst, we formalize in �-alulus the simple properties used in the preeding setion.Closed(�o)(���)o � �G�o � Æ��� 8a�:G 8b�:G G(a Æ b) (5.1)Asso(�o)(���)o � �G�o � Æ��� 8a�:G 8b�:G 8�:G(a Æ (b Æ )) :=((a Æ b) Æ ) (5.2)Unit(�o)(���)o � �G�o � Æ��� �e�8a�:G [(a Æ e) :=a℄ ^ [(e Æ a) :=a℄ (5.3)Inverse(�o)(���)o � �G�o � Æ��� �e�8a�:G 9x� :G [(a Æ x) :=e℄ ^ [(x Æ a) :=e℄ (5.4)Divisors(�o)(���)o � �G�o � Æ��� 8a�:G 8b�:G[9x� :G (a Æ x) :=b℄ ^ [9y� :G (y Æ a) :=b℄ (5.5)Commu(�o)(���)o � �G�o � Æ��� 8a�:G 8b�:G [(a Æ b) :=(b Æ a)℄ (5.6)Distrib(�o)(���)(���)o � �G�o � Æ��� � ?��� 8a�:G 8b�:G 8�:G[(a ? (b Æ )) :=((a ? b) Æ (a ? ))℄^[((a Æ b) ? ) :=((a Æ ) ? (b Æ ))℄ (5.7)The onepts for isomorphism problems are formalized as follows.Hom(��)(�o)(���)(�o)(���)o � �h�� �A�o � Æ��� �B�o � ?���8x�:A 8y�:A h(x Æ y) :=h(x) ? h(y) (5.8)Inj(��)(�o)o � �f�� �A�o (5.9)8x�:A 8y�:A f(x) :=f(y)) x :=y (5.10)Surj(��)(�o)(�o)o � �f�� �A�o �B�o 8x�:B 9y�:A f(y) :=x (5.11)Iso(�o)(���)(�o)(���)o � �A�o � Æ��� �B�o � ?��� 9h:F (A;B) (5.12)Inj(h;A) ^ Surj(h;A;B) ^Hom(h;A; Æ; B; ?) (5.13)



5.2. The Residue Class Domain 73Next, we formalize the notion of a ongruene lass and a residue lass set . Westart with the basi notion of a ongruene lass:l���o � �n� �m� �x� [ZZ(x)℄ ^ [(x mod n) :=m℄ (5.14)Provided, l is applied to two arguments n and m, the resulting set ontains allintegers x suh that (x mod n) :=m. One ruial point of the de�nition is that thevalue for n an range over all numbers. However, the appliation of mod ensuresthat the above expression is meaningful only, if n is an integer, whih in partiularis not zero. Having ongruene lasses as building bloks available we an de�neresidue lass sets asRS�(�o)o � �n� �r�o 9m� :IN [r :=ln(m)℄ ^ [NonEmpty(ln(m))℄: (5.15)A residue lass set over an integer n, that is, the appliation of RS to an integer n,is denoted by RSn (as introdued in the preeding setion).The basi operations �+; ��; �� on ongruene lasses are de�ned as follows:�+(�o)(�o)�o � �r�o �s�o �z� 9x� :r 9y� :s z :=x+ y (5.16)��(�o)(�o)�o � �r�o �s�o �z� 9x� :r 9y� :s z :=x � y (5.17)��(�o)(�o)�o � �r�o �s�o �z� 9x� :r 9y� :s z :=x� y (5.18)These de�nitions (5.16) { (5.18) make no restrition on the ongruene lasses. Forinstane, they do not have to be ongruene lasses with respet to the same modulofator. However, in pratie, operations between ongruene lasses with di�eringmodulo fator are meaningless.With respet to de�nition 5.15 the type of a residue lass set RSn is (�o)o.Moreover, with respet to the de�nitions 5.16 { 5.18 the type of a binary operationon residue lasses is (�o)(�o)�o (i.e., the basi binary operations on residue lassesgiven in the preeding setion are: �x�oy�o x, �x�oy�o y, �x�oy�o �o, �x�oy�o x�+y,�x�oy�o x��y, �x�oy�o x��y when ompletely typed). The de�nitions 5.1 { 5.7 speifythe onepts losed, asso et. for a general set G�o and a general binary operationÆ��� on G using the type-variable �. When applied to a residue lass set RSn anda binary operation on residue lasses, � is instantiated by �o. Similarly, the � andthe � in the de�nitions 5.8 { 5.13 are instantiated by �o, when the orrespondingonepts are applied to residue lass sets and operations.
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Chapter 6Basis of Proof Planningwith Multiple StrategiesThe development of proof planning with multiple strategies was motivated by prob-lems we enountered with the PLAN proof planner, when we extended the explo-ration of the limit domain and when we explored further domains. These problemsaused a reonsideration of 
mega's proof planning approah and gave rise to thedevelopment of multi-strategy proof planning, whih we realized in the Multi sys-tem.In this hapter, we shall introdue the basi notions of proof planning with mul-tiple strategies and disuss the blakboard arhiteture of the Multi system. Thisblakboard arhiteture reets a paradigm shift for proof planning from the rigidpreondition ahievement paradigm on whih PLAN is based to a problem solvingproess in whih independent omponents for di�erent kinds of plan re�nements andmodi�ations an exibly ooperate guided by meta-reasoning on their appliabilityand desirability in a given situation.The struture of the hapter is as follows. As motivation we start with a disus-sion of the drawbaks of PLAN and ompare our observations with mathematialexperiene. In setion 6.2, we introdue the basi onepts of proof planning withmultiple strategies and desribe Multi's blakboard arhiteture. Afterwards, wedisuss the design deisions ofMulti and ompare theMulti approah with relatedwork.6.1 MotivationThe problem solving approah of the previous planner PLAN is hard-oded into itsalgorithm in several aspets. First, the three omponents for ation introdution,baktraking, and meta-variable instantiation are employed in a pre-de�ned way:As long as there are tasks, PLAN tries to introdue ations to takle the tasks; itperforms baktraking if and only if it enounters a task for whih it fails to omputean ation; it delays the instantiation of meta-variables until all planning tasks aresolved. Seond, the apabilities of the single omponents of PLAN are limited:The baktraking omponent performs only dependeny direted baktraking thatremoves the ation that introdued the task for whih no ation was found. Theomponent for meta-variable instantiation employs only external onstraints solversto ompute instantiations for meta-variables based on olleted onstraints. Finally,the omponent for ation introdution always performs the same yle of ation



78 Chapter 6. Basis of Proof Planning with Multiple Strategiesomputation and seletion.In the following, we shall disuss some examples and senarios that show thedrawbaks of this hard-oded problem solving approah. Together with the draw-baks, we shall also analyze what funtionalities are neessary to overome theproblems. In partiular, we shall disuss available domain knowledge that ould beuseful but annot be employed by PLAN sine it is beyond the means of methodsand ontrol rules. Finally, we shall ompare our observations with mathematialexperiene.6.1.1 Flexible Meta-Variable InstantiationPLAN instantiates meta-variables only if all tasks are losed. Moreover, it employsonly onstraints solvers to obtain instantiations for meta-variables. These restri-tions ause that PLAN fails on some problems sine it annot make use of availableknowledge of suitable instantiations to simplify the problems.For instane, onsider exerise 4:1:3 in the analysis textbook [12℄.Exerise 4:1:3 Let f : IR! IR and let  2 IR. Show that limx1! f(x1) = l if and onlyif limx!0 f(x+ ) = l.Two impliations have to be proof planned for solving this exerise:limx1! f(x1) = l ) limx!0 f(x+ ) = l (6.1)and limx!0 f(x+ ) = l ) limx1! f(x1) = l (6.2)With respet to the de�nition of limit given in setion 5.1 for (6.1) we need toshow that8� (0 < �) 9Æ (0 < Æ ^ 8x (jx� 0j > 0 ^ jx� 0j < Æ ) jf(x+ )� lj < �)))holds under the assumption that8�1 (0 < �1 ) 9Æ1 (0 < Æ1 ^ 8x1 (jx1 � j > 0 ^ jx1 � j < Æ1 ) jf(x1)� lj < �1))).PLAN �rst deomposes the task formula. This results in new tasks with formu-las 0 < mvÆ and jf(x+ )� lj < � and new supports with formulas jx� 0j < mvÆand jx � 0j > 0 where mvÆ is a meta-variable and x and � are onstants. Thenew task with formula 0 < mvÆ an be diretly losed with an ation of TellCS-B.The formula jf(x+)� lj < � of the other task is too omplex to be sent to CoSIEdiretly. Hene PLAN unwraps the assumption whih results in a new support withformula jf(mvx1)� lj < mv�1 as well as two new tasks with formulas jmvx1�j < Æand jmvx1 � j > 0. Now the task with formula jf(x + ) � lj < � an be losedby an ation of Solve*-B that uses the new support. This ation yields new taskswith the formulas mv�1 � � and mvx1 :=x+, whih both an be losed and passedto CoSIE by ations of TellCS-B.The tasks with formulas jmvx1 � j < Æ1 and jmvx1 � j > 0 should be losed bythe method Solve*-B using the supports jx�0j < mvÆ and jx�0j > 0. However,Solve*-B is not appliable and hene proof planning is bloked beause (mvx1 � )and (x � 0) annot be uni�ed. If PLAN ould use the information that x + 



6.1. Motivation 79is the (only) suitable instantiation for mvx1 available in the onstraint store, thenan eager instantiation of mvx1 by x +  would unblok the planning beause theformulas of the task would be instantiated to jx+ � j < Æ1 and jx+ � j > 0.Then, the tasks ould be redued to tasks with the simpli�ed formulas jxj < Æ1and jxj > 0 to whih Solve*-B would be appliable using the simpli�ed supportsjxj < mvÆ and jxj > 0 that are implied by jx � 0j < mvÆ and jx � 0j > 0.1The lak of the exibility to instantiate meta-variables during the planning pro-ess whenever needed or bene�ial (even if there are still tasks) is one problem ofPLAN. The other problem is that the omputation of instantiations is restritedto onstraint solvers (i.e., to CoSIE). In other domains, however, there an beother means providing suitable instantiations for meta-variables. For instane, on-sider the problems of the residue lass domain: many of these problems postulatethe existene of elements of the involved residue lass sets that have some speialproperties. For instane, when lassifying the struture (ZZ5; �+) as a monoid wehave to prove | among other things | that the struture has a unit element:9e:ZZ5 8y:ZZ5 [y �+e = y℄ ^ [e�+y = y℄. In the planning proess the existentially quan-ti�ed variable is substituted by a meta-variable. Proof planning suh problemsbeomes onsiderably easier, if suitable instantiations for the meta-variables an beprovided early in the proof by external orales. In the residue lass domain, om-puter algebra systems turned out to be our main knowledge soure for instantiationsrather than onstraint solvers. When proof planning for the problem given above, ameta-variable mve is introdued for e. When we pass the struture (ZZ5; �+) to theomputer algebra system GAP [93℄, a system speialized on algebra, then GAPan diretly provide the solution �05. The instantiation of mve by �05 redues theproblem at hand to the problem to show that this is the right instantiation insteadof showing that there is a suitable instantiation at all.The lesson learned from these and similar examples is that we need hetero-geneous knowledge soures for the omputation of substitutes for meta-variables.Moreover, these knowledge soures should be exibly employed whenever needed orbene�ial during the proof planning proess rather than at the end only.6.1.2 Flexible Baktraking and Reasoning on FailuresIf a task ours for whih PLAN fails to ompute an appliable ation (we all thissituation a failure), then PLAN's only remedy is dependeny direted baktrakingby deleting the ation that introdued this task. Moreover, failures are the onlyevents that trigger baktraking in PLAN. These restritions ause that PLANfails on some problems and that it annot make use of knowledge of how to dealand produtively make use of failures.For instane, onsider knowledge of where to baktrak. Suppose an ation A isintrodued during the planning proess, whih leads into a searh branh that endswith a task T for whih no appliable ation exists. Furthermore, suppose that theanalysis of this failure yields that the whole searh tree following the introdutionof A ontains no solution. Then, the best reation with respet to this analysis isto baktrak all ations following A as well as A itself in order to leave this searhbranh that ontains no solutions. Sine the dependeny direted baktrakingomponent of PLAN an baktrak only one ation at time there is no possibilityto make use of the available knowledge. PLAN would baktrak A not before1Suh simpli�ations are onduted by ations of the methods Simplify-F and Simplify-B.Both methods employ Maple to simplify given numerial terms. Simplify-F is a forward method,whih applies Maple to the formula of a support in order to derive a new simpli�ed support.Simplify-B is a bakward method, whih applies Maple to a task in order to redue the task toa simpli�ed task.



80 Chapter 6. Basis of Proof Planning with Multiple Strategieshaving traversed exhaustively the omplete searh spae following the introdutionof A. Thus, when the knowledge is available to baktrak to a ertain point in thesearh spae, then it is obviously desirable to baktrak diretly sequenes of ationsat one. In the ase studies that are desribed in hapter 8 and hapter 9, we shalldisuss several onrete situations where suh knowledge is available.Another kind of knowledge desribes how to produtively use failures. For in-stane, Ireland and Bundy desribe in [122, 123℄ how to path failed proofattempts of the proof planner CLaM by exploiting information on failures. We en-ountered situations in the limit domain where failures an be produtively used.The Cont-If-Deriv theorem states that a funtion f is ontinuous at point a if ithas a derivative f 0 at point a. In the proof planning proess the de�nition of on-tinuous and derivative in both, the task and the assumption, is replaed �rst byits �{Æ{de�nition. Further deomposition of the task formula results in a task withformula jf(x) � f(a)j < � where � and x are onstants. The deomposition ofthe assumption results in a new support with formula j f(mvx0 )�f(a)mvx0�a � f 0j < mv�0where mvx0 and mv�0 are new meta-variables. Indeed, the task an be proved un-der this assumption. This results | among others | in a task with the formulamvx0 :=x, whih is losed by an ation of the method TellCS-B that passes theformula to CoSIE . Unfortunately, another task with formula jmvx0 � aj > 0 is alsoreated during the deomposition of the assumption. This task an be redued toa task with the formula mvx0 6= a. Suppose, we use the information mvx0 :=x byeager instantiation of meta-variables suh that this tasks results in x 6= a. Nev-ertheless, proof planning reahes a dead end at this task sine there is no supportavailable to lose it. How an we deal with this failure? The analysis of this andsimilar situations indiates that a ase-split is needed on x 6= a _ x :=a, whih hasto be introdued before the task jf(x) � f(a)j < � is takled. Then, this taskhas to be proved for two ases: In the �rst ase, x 6= a is assumed and the taskjf(x) � f(a)j < � an be proved from the assumption as desribed above. Obvi-ously the problemati subtask x 6= a an now be losed diretly by the assumptionx 6= a of the ase-split. In the seond ase, x :=a is assumed and the task followssine jf(x)� f(a)j < � an be simpli�ed to jf(a)� f(a)j = 0 < � by an ation of=Subst-B. The resulting task is satis�ed by a support with the same formula thatresulted from the deomposition of the original task. When should the ase-splitbe introdued? By mathematial intuition it should be introdued when the taskx 6= a is reated and annot be losed. This demands reasoning about this failure,to baktrak to a ertain point in the searh spae, and to introdue the ase-split.An a priori introdution of a ase-split is not possible sine neither the need for aase-split nor the elements for the ases are given.Another situation where we ould make use of failures in a produtive way arisesin examples like exerise 4:1:3 (see last setion). We have to show that8�1 (0 < �1 ) 9Æ1 (0 < Æ1 ^ 8x1 (jx1 � j > 0 ^ jx1 � j < Æ1 ) jf(x1)� lj < �1)))holds under the assumption that8� (0 < �) 9Æ (0 < Æ ^ 8x (jx� 0j > 0 ^ jx� 0j < Æ ) jf(x+ )� lj < �))).The deomposition of the task formula results | among others | in a task withformula jf(x1) � lj < �1 . Unwrapping the assumption yields a new support linewith formula jf(mvx + ) � lj < mv�. Atually, Solve*-B should be applied tothis task. However the omputation of a orresponding ation of this method failssine x1 and mvx +  annot be uni�ed. How an we deal with this failure? We



6.1. Motivation 81analyzed this situation and similar ones and found that the appliation of methodsis sometimes bloked beause uni�ations of terms do not sueed but have a residuet1 = t2. For some examples this residue t1 = t2 is onsistent with CoSIE 's urrentonstraint store. The analysis of these examples indiates that, if (1) a methodappliation is bloked beause of a failed uni�ation with a residue t1 = t2 and (2)CoSIE states that this residue t1 = t2 is onsistent with its urrent onstraint store,then we an speulate the lemma t1 = t2 as new open task and rewrite the taskon whih the planner failed with this equation. Afterwards the speulated lemmaan be losed by an ation of TellCS-B and the rewritten task an be solved sinethe uni�ation beomes unbloked.2 In our example we would speulate the lemmamvx+  := x1 and would redue the task with respet to this equation to a newtask with formula jf(x1)� lj < mv�. Then, Solve*-B is appliable with respet tothe rewritten task and the support jf(x1)� lj < �1 . Similar to the introdution ofa ase-split, the lemma t1 = t2 annot be speulated a priori. First, the appliationof methods suh as Solve*-B has to fail. Then, the analysis of this failure anprovide suitable t1 and t2 suh that t1 = t2 an be speulated.The lesson learned from these situations and similar ones is that we need di�erentways to deal with failures and the possibility to reason about a failure in order toexibly reat to it. Moreover, our examples illustrate that the exible employmentof baktraking an be helpful. Although, baktraking should not be the onlypossibility to reat on failures.6.1.3 Flexible Ation Computation and SeletionSimilar to the omponents for baktraking and meta-variable instantiation, alsoPLAN's ation omputation and seletion annot be adapted to di�erent problemdomains. However, there are situations that need di�erent behaviors.PLAN uses only the CHOOSEACTION subproedure desribed in setion 4.2.4 toompute and selet the next ation. CHOOSEACTION �rst selets a method. Then,it hooses with respet to this method supports and parameters and omputes allresulting possible ations. Finally, it deides among these ations. If the subproe-dure sueeds to �nd an ation for a method, then it will not ompute and reasonon ations of any other method. An alternative to this subproedure is a proedurefor ation seletion that omputes �rst all possible ations with respet to all givenmethods and deides then for an ation based on the information of all possibleations. This subproedure is alled CHOOSEACTIONALL; its pseudo-ode desriptionis given in appendix A. The advantage of CHOOSEACTIONALL is that the deisionfor one ation an be done by ontrol rules based on the knowledge of all possi-ble ations. However, CHOOSEACTIONALL requires that for all possible methods themathing of method objets with PDS objets is performed whereas CHOOSEACTIONavoids these expensive operations as muh as possible by heking one method afterthe other.Although CHOOSEACTION is suÆient for most appliations, in some appliationsthe advantages of CHOOSEACTIONALL outweigh its disadvantages. In [53℄, we desribethe realization of semantially guided proof planning in 
mega. The idea of se-mantially guided proof planning (proposed by Choi and Kerber [52℄) is to usesets of referene models to guide the hoie of the next ation to be introdued.The referene models provide a measurement on whih ations produe best new2In general, the introdution of uni�ation residues as new tasks opens a Pandora's box: when-ever we deal with a residue we introdue some new residues, whih in turn must be dealt with.How we restrit the introdution of residues in tasks in order to avoid this problem is desribedin hapter 8 where we shall disuss the ase study on problems from the limit domain.



82 Chapter 6. Basis of Proof Planning with Multiple Strategiesassumptions or goals. This approah works the better the more ations it an hoosefrom. Thus, CHOOSEACTIONALL is better suited than CHOOSEACTION.This example is another piee of evidene that we need algorithms that areadaptable to the speial needs of di�erent problem lasses.6.1.4 Knowledge of Di�erent Proof TehniquesMathematiians usually have several proof tehniques to takle a ertain lass ofproblems. When analyzed and formalized for proof planning, these proof tehniquesresult in sets of methods and ontrol rules and the knowledge of whih sets ofmethods and ontrol rules belong together beomes part of the domain knowledgeof a mathematial domain.In setion 5.1 we introdued the limit domain and desribed how PLAN on-struts �-Æ-proofs. PLAN employs a ertain set of methods and ontrol rules thatprove a limit problem suh as limx!2x3+2�x2 = 16 with an �{Æ{tehnique. The sameproblem an be solved also in totally di�erent ways. For instane, based on thebasi limit theorems suh as LIM+ and LIM*, this problem an also be solved bysuessively deomposing the funtion x3 + 2 � x2 to sums and produts for whihthe theorems an be applied. This proof is shorter and more abstrat than the �rstone and relies on di�erent methods (i.e., methods that make use of already provedfats) and ontrol rules.As another example, onsider the problem to prove that the residue lass stru-ture (ZZ5; �+) is assoiative, whih requires to show that for all x; y; z 2 ZZ5 x�+(y �+z)equals (x�+y) �+z. One proof tehnique to takle this problem is to perform an ex-haustive ase-split on all possible ases of the universally quanti�ed variables thatrange over �nite domains and to hek for eah single ase that the resulting equa-tion holds. Another tehnique is to redue the initial task to general equationswhose validity is tested, for instane, by a omputer algebra system. Again the twotehniques employ di�erent sets of methods and ontrol rules and result in di�erentproof plans.Why is the knowledge of whih sets of methods and ontrol rules belong togetherimportant for proof planning? To deal with the large sets of methods and ontrolrules that result from the exploration of di�erent mathematial domains is a non-trivial task: if they are employed all at one, then the resulting searh spae maybeome unmanageable. However, an a priori exlusion of methods and ontrol rulesis diÆult sine doing so may forego the possibility to �nd the solution. Domainknowledge that desribes whih sets of methods and ontrol rules belong togetheran help sine it provides a means to struture the large body of methods andontrol rules.3Conneted with the domain knowledge of whih methods and ontrol rules formproof tehnique units is also mathematial knowledge of how to ontrol the ombi-nation and appliation of these units. For instane, there is ontrol knowledge ofwhih unit should be preferred to takle a partiular problem, if several proof teh-niques for this problem are known. Moreover, there is ontrol knowledge of when3The only existing struturing mehanism for methods and ontrol rules used in the PLANframework are 
mega's theories in whih also methods and ontrol rules are stored. However,methods and ontrol rules that emulate a ertain proof tehnique do not neessarily belong all tothe same theory. For instane, to perform �-Æ-proofs for limit problems PLAN employs methodsthat deal with (in)equalities on real numbers (e.g., TellCS-B, ComplexEstimate-B), methodsthat perform simple manipulations of logial onnetives and quanti�ers (e.g., ^I-B, 8I-B), andmethods that deal with equations (e.g., =Subst-B). Sine these methods are stored in di�erenttheories an additional struturing mehanism to group them together is needed to reet theknowledge of whih methods and ontrol rules ooperate to ahieve together an �-Æ-proof.



6.1. Motivation 83a unit should be �nished and another one should be started. A swith to anotherproof tehnique unit ould be aused by the observation that the urrent proof teh-nique is likely to fail on the given problem and that another proof tehnique, whihseems to be more promising, should be tried. Another reason to swith to anotherproof tehnique unit ould be that a unit redues the initial problem to severalsubproblems for whih there are more suitable units. Examples for suh ontrolknowledge is given in hapter 9 where we shall disuss the residue strutures asestudy.PLAN provides no means to employ the desribed knowledge. This an beprovided by an extension of the plain planning that strutures methods and ontrolrules and inludes meta-reasoning on how to apply and ombine the units of methodsand ontrol rules.6.1.5 Knowledge of Parameterized Algorithms and Instanes
mega provides several omponents to takle a theorem, whih all re�ne or modifya PDS. A user of 
mega an hoose among proof planning, proof by analogy,and several �rst-order and higher-order ATPs. Often there is knowledge of whihalgorithm is suitable to takle whih problems. For instane, the appliation of theanalogy omponent is sensible only if there is a suitable soure problem that hasalready been proved. First-order ATPs will sueed only if the problem at hand isa �rst-order problem or an be redued to a �rst-order problem. Proof planning isthe suitable hoie only for problems that belong to domains for whih the methodand ontrol rule knowledge is available. If the algorithms are parameterized, thenthe user has to deide whih instane of the algorithm to apply (e.g., see [114℄).4The knowledge of whih instane and algorithm is suitable to takle whih prob-lem is important sine it allows for adapting an algorithm to a partiular problem.Conneted with this knowledge is heuristi knowledge of how to ontrol the ombi-nation and appliation of di�erent instanes, e.g., knowledge of how to hoose amongseveral appliable instanes and algorithms, when to swith to another instane andalgorithm, and so on.PLAN does not allow for a exible ombination of di�erent algorithms for proofre�nement and modi�ation and their instanes guided by heuristi ontrol knowl-edge. Its omponents for ation introdution, baktraking, and meta-variable in-stantiation are onneted in a pre-de�ned way. Algorithms di�erent from theseomponents an be employed by PLAN only within methods and ontrol rules(e.g., ATPs). That is, PLAN does not swith to another algorithm but employsother algorithms only as support systems for proof planning. This forbids, for in-stane, a ombination of proof planning with analogy in whih one algorithm passessubproblems to the other algorithm similar to a user who deides for di�erent algo-rithms and instanes in order to takle di�erent subproblems within one problemsolving attempt.The lesson learned is that we need a mehanism that applies di�erent algorithmsand their instanes and ombines them in one problem solving attempt. The meha-nism should be guided by meta-reasoning on how to apply and ombine the di�erentalgorithms and their instanes.4A parameterized algorithm provides parameters to determine its behavior. Di�erent instanesof a parameterized algorithm speify di�erent behaviors of the algorithm by employing di�erentinstantiations of its parameters.



84 Chapter 6. Basis of Proof Planning with Multiple Strategies6.1.6 Mathematial ExperieneThe examples desribed in the preeding setions provide evidene that, in order totakle heterogeneous sets of problems, di�erent proof plan operations and modi�a-tions are neessary that an be exibly ombined guided by meta-reasoning. Thatis, there is not one proof planning strategy that is suitable for all lasses of problemsbut rather the proof planning approah should be adaptable by meta-reasoning tothe needs of di�erent problems.This observation is onsistent with mathematial experiene where di�erentproblem solving strategies and their exible appliations are ruial human skills inorder to adapt the theorem proving to the needs of di�erent lasses of problems, asShoenfeld points out in his book on mathematial problem solving [209℄:As the person begins to work on a problem, it may be the ase that someof the heuristi tehniques that appear to be appropriate are not. [: : :℄ Inonsequene, having a mastery of individual heuristi strategies is onlyone omponent of suessful problem solving. Seleting and pursuing theright approahes, reovering from inappropriate hoies, [: : :℄ is equallyimportant. Shoenfeld, 1985, [209℄ pp. 98{99Shoenfeld emphasizes the signi�ane of both, the availability of several prooftehniques to deal with ertain problem lasses as well as their ontrolled appli-ation. Several problem solving strategies inrease the likelihood that a problemis solved beause of several reasons. First, di�erent approahes are neessary totakle di�erent lasses of problems. Seond, a pool of approahes for a ertain lassof problems inreases the likelihood that at least one approah an solve a onreteproblem from the lass. Third, in order to deal with non-trivial mathematial prob-lems it is neessary to takle di�erent subproblems by di�erent means. Thus, itis neessary to exibly ombine di�erent problem solving strategies and to swithamong them during one problem solving proess.Another problem of PLAN, whih we disussed in setion 6.1.4, is that it pro-vides no means to struture available methods and ontrol rules in meaningful units.For proof planning this is a problem beause the searh spae beomes unmanage-able when the number of methods grows and the more ontrol rules the planner hasto evaluate the more the proof proess may slow down. Again our observation onthe need for a struturing mehanism is onsistent with mathematial experiene.Indeed, ategorizing a problem and seleting then the right knowledge to taklethe problem are ruial human skills as Shoenfeld and Hinsley , Hayes , andSimon point out:Individuals with extensive experiene in any partiular domain ategorizetheir prior experienes in that domain and then use those ategorizationsboth to interpret urrent situations and to aess relevant methods fordealing with those situations. Shoenfeld, 1985, [209℄ p. 244People have a body of information about eah problem type whih is po-tentially useful in formulating problems of that type for solution, [: : :℄, di-reting attention to important problem elements, making relevane judg-ments, retrieving information onerning relevant equations et.Hinsley, Hayes, and Simon, 1977, [115℄ p. 92



6.1. Motivation 85Mathematial knowledge is strutured with respet to problem lasses to whosesolution it an ontribute. This avoids a ognitive overload sine understanding aproblem and reognizing to whih problem lass it belongs (also alled the problempereption in [209℄) allows a mathematiian to hoose the knowledge needed totakle the problem.In his book on mathematial problem solving [196℄ Polya distinguishes twophases of the knowledge struturing, whih he alls mobilization and organization.1. In order to solve a problem, we must have some knowledge of thesubjet-matter and we must selet and ollet the relevant items ofour existing but initially dormant knowledge. [: : :℄ Extrating suhrelevant elements from our memory may be termed mobilization.2. In order to solve a problem, however, it is not enough to reolletisolated fats, we must ombine these fats, and their ombinationmust be well adapted to the problem at hand. [: : :℄ This adaptingand ombining ativity may be termed organization.Polya, 1971, [196℄ p. 157Knowledge-based proof planning provides methods to enode single steps rele-vant for a ertain domain and ontrol rules to ombine and adapt the methods. Sofar, however, it provides no means to enode the result of a mobilization and or-ganization proess, i.e., it provides no means to enode whih methods and ontrolrules belong together to takle a ertain lass of problems.6.1.7 Summary of MotivationThe examples and senarios disussed in this setion show the main drawbaks ofPLAN:1. PLAN's algorithm annot be adapted to the partiular needs of di�erentlasses of problems. Its hard-oded integration of very restrited omponentsfor ation introdution, baktraking, and meta-variable instantiation repre-sents just one partiular problem solving strategy suitable for many problemsof the limit domain but insuÆient as a general tehnique.2. The ombination with other algorithms that an ontribute to the solution ofa proof planning problem is not suÆiently supported.3. A lot of domain knowledge of di�erent proof plan re�nements and modi�-ations and their ombination is available. However, sine this knowledge isbeyond the apabilities of methods and ontrol rules, there is no means toinorporate and use it in PLAN.Our examples illustrate that, in order to takle heterogeneous sets of problems,various plan re�nements and modi�ations are neessary. In partiular, in order toenable di�erent problem solving behaviors and the exible adaption to the needsof di�erent (sub)problems, the deision on when to all a ertain re�nement andmodi�ation should not be enoded one and forever into the system but rather bedetermined by meta-level reasoning using available heuristi ontrol knowledge.



86 Chapter 6. Basis of Proof Planning with Multiple Strategies6.2 The Conepts of MultiFrom the observation of the drawbaks of PLAN (see the previous setion) wederive the following requirements for the design of the new system Multi:� InMulti, the planning funtionalities meta-variable instantiation, baktrak-ing, and ation introdution should be learly separated algorithms.� Multi should enable the inorporation of other algorithms that an ontributeto the proof plan onstrution.� Multi should allow for the spei�ation and inorporation of di�erent in-stanes of employed parameterized algorithms.� Multi should provide a struturing mehanism for methods and ontrol rules.� Multi should enable the ombination of the di�erent algorithms and theirinstanes within one problem solving approah.� In Multi, the deision on when to all a ertain algorithm or instane shouldnot be hard-oded into the system but rather be determined by meta-levelreasoning using available heuristi ontrol knowledge.In order to meet these requirements, proof planning with multiple strategiesin Multi deomposes the previous monolithi proof planning proess and replaesit by separated parameterized algorithms as well as di�erent instanes of thesealgorithms, so-alled strategies. The strategies, whih speify di�erent behaviors ofthe algorithms, are the basi elements for proof onstrution in multiple-strategyproof planning. That is, the goal of multiple-strategy proof planning is to omputea sequene of strategy appliations that derives a given theorem from a given setof assumptions. The deision on when to apply a strategy is not enoded oneand forever into the system but rather is determined by meta-level reasoning usingheuristi ontrol knowledge of strategies and their ombination.In the following, we �rst introdue in setion 6.2.1 the basi onepts of proofplanning with multiple strategies and illustrate them with examples. Then, wedesribe in setion 6.2.2 Multi's blakboard arhiteture. Setion 6.2.3 disussesthe reasoning at the strategy-level with strategi ontrol rules. We onlude withan informal desription of all algorithms urrently employed byMulti that are notexempli�ed in setion 6.2.1.6.2.1 Algorithms, Strategies, and TasksAlgorithmsMulti enables the inorporation of heterogeneous, parameterized algorithmsfor di�erent kinds of proof plan re�nements and modi�ations. Currently, Multiemploys the following algorithms (tehnial desriptions of these algorithms, i.e., ofthe plan re�nements or modi�ations they perform, are given in hapter 7):
PPLANNER re�nes a proof plan by introduing new ations.
INSTMETA re�nes a proof plan by instantiating meta-variables.
BACKTRACK modi�es a proof plan by removing re�nements of other algorithms.
EXP re�nes a proof plan by expanding omplex steps.



6.2. The Conepts of Multi 87
ATP re�nes a proof plan by solving subproblems with mahine-oriented automatedtheorem provers.
CPLANNER re�nes a proof plan by transferring steps from a soure proof plan orfragment.The deomposition of the previous monolithi proof planner of 
mega allows toextend and generalize the funtionalities of its subomponents. This results in theindependent and parameterized algorithms PPLANNER, INSTMETA, and BACKTRACK foration introdution, meta-variable instantiation, and baktraking. EXP, ATP, and
CPLANNER integrate new re�nements of the proof plan.StrategiesInstanes of these algorithms an be spei�ed in di�erent strategies. Tehnially,a strategy is a ondition-ation pair. The ondition part states when the strategy isappliable. The ation part onsists of a modi�ation or re�nement algorithm andan instantiation of its parameters. Similar to the knowledge of the appliabilityof methods we separate the legal and heuristi knowledge of the appliability ofstrategies. The ondition part of a strategy states the legal onditions that haveto be satis�ed in order for the strategy to be appliable, whereas strategi ontrolrules reason about the heuristi utility of the appliation of strategies.To exeute or to apply a strategy means to apply its algorithm to the urrentproof planning state with respet to the parameter instantiation spei�ed by thestrategy. For instane, the parameters of PPLANNER are a set of methods, a list ofontrol rules, a termination ondition, and an ation seletion proedure. WhenMulti exeutes a PPLANNER strategy, the PPLANNER algorithm introdues only a-tions that use the methods spei�ed in the strategy. The ations are omputed andseleted by the ation seletion proedure (e.g., CHOOSEACTION or CHOOSEACTIONALL)spei�ed by the strategy. The ation seletion proedures evaluate then the ontrolrules spei�ed by the strategy during the omputation of ations. The appliationof the strategy terminates, when its termination ondition is satis�ed. Hene, dif-ferent strategies of PPLANNER provide a means to struture the method and ontrolrule knowledge. Both algorithms, INSTMETA and BACKTRACK, have one parameter.The parameter of INSTMETA is a funtion that determines how the instantiation fora meta-variable is omputed. If Multi applies a INSTMETA strategy with respetto a meta-variable mv, and if the omputation funtion of the strategy yields aterm t for mv, then INSTMETA substitutes mv by t in the proof plan. The parameterof BACKTRACK is a funtion that omputes a set of re�nement steps of other algo-rithms that have to be deleted. When Multi applies a BACKTRACK strategy, then
BACKTRACK removes all re�nement steps that are omputed by the funtion of thestrategy as well as all steps that depend from these steps.Notation 6.1: Strategies are denoted in the sans serif font (e.g., NormalizeLineTask,UnwrapHyp).TasksMulti extends the task onept of PLAN. Sine Multi employs further kindsof tasks, the tasks used in PLAN (i.e., a pair onsisting of an open line and itssupports) are alled line-tasks in Multi. Multi uses also instantiation-tasks andexpansion-tasks . The introdution of a meta-variable into the plan results in aninstantiation-task, that is, the task to instantiate this meta-variable. Similarly, theintrodution of a method or tati step into the PDS , whih is onstruted duringthe proof planning proess, results in an expansion-task, that is, the task to expand



88 Chapter 6. Basis of Proof Planning with Multiple Strategiesthis step. An instantiation-task stores the meta-variable for whih an instantiationhas to be onstruted. The instantiation task for meta-variable mv is written asmvjInst. An expansion-task onsists of a proof line L in the PDS, whih is justi�edwith a method or a tati appliation. The expansion-task with line L is written asLjExp. Multi stores all used kinds of tasks in an agenda.Di�erent tasks an be takled by di�erent algorithms and strategies. For in-stane, sine strategies of INSTMETA introdue instantiations for meta-variables theyare suitable to takle instantiation-tasks. EXP is the suitable hoie to deal withexpansion-tasks, whereas strategies of PPLANNER or ATP an takle line-tasks. Astrategy heks in its ondition part whether it is appliable to a partiular task.That is, the ondition of a strategy is a prediate on tasks. To apply a strategy toa task means to exeute the strategy with respet to the task.The algorithms and kinds of tasks urrently employed by Multi have beenderived from the ase studies. However, the Multi framework is envisaged to beextended by further algorithms and further kinds of tasks, if needed.Example StrategiesIn the following, we desribe some strategies needed to aomplish �-Æ-proofs(see setion 5.1). The methods and ontrol rules for �-Æ-proofs are strutured intothe three strategies NormalizeLineTask, UnwrapHyp, and SolveInequality. All threestrategies are instantiations of PPLANNER. A more detailed desription of the ap-pliation of these strategies and their ooperation when aomplishing �-Æ-proofs isgiven in setion 8.1.The strategy SolveInequality (see Table 6.1) is appliable to prove line-taskswhose formulas are inequalities or whose formulas an be redued to inequali-ties. It omprises methods suh asComplexEstimate-B, TellCS-B, TellCS-F,AskCS-B, and Solve*-B (see setion 5.1). Its list of ontrol rules ontains therules prove-inequality and eager-instantiate. Possible ations are omputedand seleted with the CHOOSEACTION proedure. The strategy terminates, whenthere are no further line-tasks whose formulas are inequalities or whose formulasan be redued to inequalities. Note that it is the parameterization of PPLANNERthat makes SolveInequality appropriate to takle line-tasks whose formulas are in-equalities as stated in the ondition part of the strategy.Strategy: SolveInequalityCondition inequality-taskAtion Algorithm PPLANNERAtion Proedure CHOOSEACTIONMethods ComplexEstimate-B, TellCS-B,TellCS-F, Solve*-B, AskCS-B : : :C-Rules prove-inequality, eager-instantiate,: : :Termination no-inequalitiesTable 6.1: The SolveInequality strategy.NormalizeLineTask (see Table 6.2) is used to deompose line-tasks whose goalsare omplex formulas with logial onnetives and quanti�ers. Typial methodsin NormalizeLineTask are ^I-B and 8I-B (see setion 5.1). NormalizeLineTask em-ploys the CHOOSEACTION proedure for the ation omputation and seletion andterminates, when all omplex line-tasks are deomposed to literal line-tasks.The aim of UnwrapHyp (see Table 6.3) is to unwrap a foused subformula ofan assumption in order to make it available for proving a line-task. The list of its



6.2. The Conepts of Multi 89Strategy: NormalizeLineTaskCondition complex-line-taskAtion Algorithm PPLANNERAtion Proedure CHOOSEACTIONMethods 8I-B, 9I-B, ^I-B,: : :C-RulesTermination literal-line-tasks-onlyTable 6.2: The NormalizeLineTask strategy.methods inludes, for instane, 8E-F and ^E-F. The ontrol rule takle-fousdetermines that, if UnwrapHyp is applied, then the ations of the available methodsan be used only if they use a support in their premises that arries a fous andwhen their onlusions do not takle the foused subformula. For instane, if a line-task has the supports B1 ^ B2 and A1 ^ (A2 ^ fous(A3 ^ A4)), then only ationsof ^E-F that use the seond support with the fous are allowed. The introdutionof two ations of ^E-F derive the new support fous(A3 ^ A4) to whih no furtheration of ^E-F an be applied sine it would deompose the foused subformula.Similar to NormalizeLineTask and SolveInequality, UnwrapHyp uses the CHOOSEACTIONalgorithm. It terminates as soon as all foused formulas are unwrapped.Strategy: UnwrapHypCondition focus-in-subformulaAtion Algorithm PPLANNERAtion Proedure CHOOSEACTIONMethods 8E-F, 9E-F, ^E-F, : : :C-Rules takle-fousTermination focus-at-topTable 6.3: The UnwrapHyp strategy.In order to instantiate meta-variables that our in onstraints olleted byCoSIE , we implemented the two INSTMETA strategies InstIfDetermined and Compute-InstFromCS (see Table 6.4). InstIfDetermined is appliable only, if CoSIE states thata meta-variable is already determined by the onstraints olleted so far. Then, theomputation funtion onnets to CoSIE and reeives this unique instantiation forthe meta-variable. ComputeInstFromCS is appliable to all meta-variables for whihonstraints are stored in CoSIE . The omputation funtion of this strategy requestsfrom CoSIE to ompute an instantiation for a meta-variable that is onsistent withall onstraints olleted so far.Strategy: InstIfDeterminedCondition determined-in-csAtion Algorithm INSTMETAFuntion get-determined-instantiationStrategy: ComputeInstFromCSCondition mv-in-csAtion Algorithm INSTMETAFuntion compute-consistent-instantiationTable 6.4: The INSTMETA strategies InstIfDetermined and ComputeInstFromCS.



90 Chapter 6. Basis of Proof Planning with Multiple StrategiesThe dependeny-direted baktraking desribed in setion 4.2.3 is realized asthe strategy BakTrakAtionToTask (see Table 6.5) of the BACKTRACK algorithm.BakTrakAtionToTask instantiates the BACKTRACK algorithm with the funtion
step-to-line-task , whih omputes the ation that introdued a line-task. BakTrak-AtionToTask is appliable to eah line-task.Strategy: BakTrakAtionToTaskCondition line-taskAtion Algorithm BACKTRACKFuntion step-to-line-taskTable 6.5: The BakTrakAtionToTask strategy.6.2.2 Multi's Blakboard Arhiteture
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HistoryFigure 6.1: Multi's blakboard arhiteture.When we designed proof planning with multiple strategies, we aimed at a sys-tem that allows for the exible ooperation of independent omponents for proofplan re�nement and modi�ation, guided by meta-reasoning. For the implemen-tation we deided to use a blakboard arhiteture beause this is an establishedmeans to organize the ooperation of several independent omponents, so-alledknowledge soures, for solving a omplex problem. Blakboard systems do not relyon a pre-de�ned ontrol of the appliation of the involved omponents but providethe exibility to employ their knowledge soures opportunistially as the followingquotations point out:



6.2. The Conepts of Multi 91As we hope to illustrate in this book, the blakboard model is a very simpleyet powerful idea for oping with problems haraterized by the need todeal with [: : :℄ a non-deterministi solution strategy.Engelmore and Morgan, 1988, [76℄ Prefae pixAs a result, the sequene of knowledge soure invoation is dynami andopportunisti rather than �xed and pre-programmed.Engelmore and Morgan, 1988, [76℄ p_14In the following, we give an informal overview onMulti and the ideas behind it.A detailed tehnial desription of the algorithms and onepts as well as a formalde�nition of strategi proof planning with Multi are given in the next hapter.Multi's arhiteture is displayed in Figure 6.1. In this �gure dashed arrowsindiate information ow whereas solid arrows indiate that a knowledge sourehanges the ontent of the respetive blakboard. Multi's arhiteture is similarto the Hearsay-III and the BB1 blakboard systems, whih we disussed in se-tion 2.2, in that it employs two blakboards, the so-alled proof blakboard and theontrol blakboard .We deided for a two-blakboard arhiteture to emphasize the importane ofboth the solution of the proof planning problem whose status is stored on the proofblakboard and the solution of the ontrol problem, that is, whih possible strategyshould the system perform next. Moreover, the two blakboard arhiteture is moresuitable for potential extensions of our approah that we shall disuss in setion 6.3and setion 6.4. The proof blakboard ontains the urrent strategi proof plan,whih onsists of a sequene of ations, an agenda, a PDS , and a sequene ofbinding stores, whih store the olleted instantiations of meta-variables, as well asthe strategi history. The ontrol blakboard ontains three repositories to storeinformation relevant for the ontrol problem: job o�ers, demands, and a memory.Corresponding to the two blakboards, there are also two sets of knowledgesoures shown in Figure 6.1 that work on these blakboards. The strategies arethe knowledge soures that work on the proof blakboard. A strategy an hangethe proof blakboard by re�ning or modifying the agenda, the PDS, the historyof strategies, and bindings of the meta-variables. The strategy omponent ontainsall the strategies that an be used. If a strategy's ondition part is satis�ed withrespet to a ertain task in the agenda, then the strategy posts its appliabilitywith respet to this task as a job o�er onto the ontrol blakboard. Tehnially,a job o�er is a pair (S; T ) with a strategy S and a task T , whih signs that Tsatis�es the ondition of S. That is, in the terminology of blakboard systems, atask that satis�es the ondition of a strategy is the event that triggers the strategy.The MetaReasoner is the knowledge soure working on the ontrol blakboard. Itevaluates strategi ontrol knowledge represented by strategi ontrol rules in orderto rank the job o�ers. The arhiteture ontains a sheduler that heks the ontrolblakboard, for its highest ranked job o�er. Then, it exeutes the strategy of thejob o�er with respet to the task spei�ed in the job o�er. In a nutshell, Multioperates aording to the yle in Figure 6.2, whih passes the following steps:Job O�er Strategies whose ondition is true put a job o�er onto the ontrol blak-board.Guidane The MetaReasoner evaluates the strategi ontrol rules to order the jobo�ers on the ontrol blakboard.Invoation A sheduler invokes the strategy who posed the highest ranked jobo�er.



92 Chapter 6. Basis of Proof Planning with Multiple StrategiesExeution The algorithm of the invoked strategy is exeuted with respet to theparameter instantiation spei�ed by the strategy.
Execution Guidance

Invocation

Job Offer

Figure 6.2: Cyle of Multi.The hoie of a job o�er an depend on partiular demand information issued bystrategies onto the ontrol blakboard and the ontent of the memory. An exeutedstrategy an reason on whether it should interrupt. This an be sensible if thestrategy is stuk or if it turns out that it should not proeed before another strategyis exeuted. Then, the exeution of a strategy interrupts itself, plaes demands forother strategies onto the ontrol blakboard, and stores a pair onsisting of itsexeution status and the demands it posed in the memory. Interrupted exeutionsof a strategy stored in the memory plae job o�ers for their re-invoation ontothe ontrol blakboard. A job o�er from the memory onsists just of a pointer tothe memory entry that posed this job o�er. If suh a job o�er is sheduled, theinterrupted strategy exeution is re-invoked from the memory.By posing demands and interrupting strategies partiularly desired ooperationsbetween strategies an be realized. For instane, we disussed in setion 6.1.1 thatertain problems on whih PLAN fails ould be solved if meta-variables would beinstantiated as soon as CoSIE states that they are uniquely determined. In orderto realize this the INSTMETA strategy InstIfDetermined and the PPLANNER strategySolveInequality have to ooperate. This ooperation works as follows: The strategySolveInequality ontains the ontrol rule eager-instantiate. If evaluated duringan exeution of SolveInequality, this ontrol rule heks whether InstIfDeterminedis appliable for an ourring meta-variable. If this is the ase, it auses the in-terruption5 of the exeution of the SolveInequality strategy and poses the demandthat InstIfDetermined should be applied with respet to the instantiation-task of themeta-variable. The status of the interrupted SolveInequality strategy is stored in thememory from where it an be reinvoked as soon as the posed demand is satis�edby the orresponding appliation of InstIfDetermined.6.2.3 Reasoning at the Strategy-LevelIn the Multi system, no order or ombination of re�nements or modi�ations onthe proof blakboard is pre-de�ned. The hoie of strategy appliations results frommeta-reasoning at the strategy-level that is onduted by the MetaReasoner, whihevaluates the strategi ontrol rules on the job o�ers on the ontrol blakboard.Strategi ontrol rules are formulated in the same ontrol rule language as ontrolrules on tasks, methods, supports and parameters, and ations (see setion 4.1.3).They an reason about all information stored on the ontrol blakboard and the5Interruption is an expliit hoie point in the PPLANNER algorithm, see setion 7.5.2.



6.2. The Conepts of Multi 93proof blakboard (i.e., about the proof plan onstruted so far and the plan proesshistory) as well as about the mathematial domain of the proof planning problem.The advantage of this knowledge-based ontrol approah is that the ontrolof Multi an be easily extended and hanged by modifying the strategi ontrolrules. In ontrast, when the ombination of integrated omponents of a systemis hard-oded into a ontrol proedure, then eah extension or hange requiresreimplementation of parts of the main ontrol proedure. Moreover, the strategiontrol rules delaratively represent the heuristial ontrol knowledge of how toombine the strategies of Multi, so that this knowledge an be ommuniated tothe user.In the following, we shall disuss �ve strategi ontrol rules, whih are the bak-bone of the strategi ontrol in Multi.(ontrol-rule prefer-demand-satisfying-offers(kind strategi)(IF (job-offer-satisfies-demand JO))(THEN (prefer JO)))(ontrol-rule prefer-memory-offers(kind strategi)(IF (and (job-offer-from-memory JO)(no-further-demands JO)))(THEN (prefer JO)))(ontrol-rule defer-memory-offers(kind strategi)(IF (and (job-offer-from-memory JO)(further-demands JO)))(THEN (defer JO)))Figure 6.3: The three strategi ontrol rules prefer-demand-satisfying-offers,prefer-memory-offers, and defer-memory-offers.The use of demands and the memory for the goal-direted ooperation of strate-gies is realized by the strategi ontrol rules prefer-demand-satisfying-offers,prefer-memory-offers, and defer-memory-offers given in Figure 6.3. The ruleprefer-demand-satisfying-offers states that, if a job o�er on the ontrol blak-board satis�es a demand on the ontrol blakboard, then this job o�er is preferred.Similarly, prefer-memory-offers states that, if there is a job o�er from an inter-rupted strategy exeution in the memory and all demands of this strategy exeutionare already satis�ed, then this job o�er should be preferred. defer-memory-offersdefers job o�ers from interrupted strategy exeutions, if they have still unsatis�eddemands.The rules prefer-baktrak-if-failure and rejet-applied-offers (seeFigure 6.4) realize a basi failure reasoning and the rejetion of already appliedstrategies. The purpose of the prefer-baktrak-if-failure rule is to inte-grate baktraking with strategies of PPLANNER. When a PPLANNER strategy runsinto a failure, that is, it enounters a line-task for whih it �nds no applia-ble ation, then it interrupts and stores the status of its exeution in the mem-ory. prefer-baktrak-if-failure auses baktraking by preferring a job of-fer of the BakTrakAtionToTask strategy with the line-task on whih the exe-ution of the PPLANNER strategy failed. Afterwards, the interrupted strategy ex-



94 Chapter 6. Basis of Proof Planning with Multiple Strategies(ontrol-rule rejet-applied-offers(kind strategi)(IF (job-offer-already-applied JO))(THEN (rejet JO)))(ontrol-rule prefer-baktrak-if-failure(kind strategi)(IF (and (algorithm-of-last-strategy-is PPLANNER)(last-strategy-failure-on-line-task T)(baktrak-job-offer-on JO T)))(THEN (prefer JO)))Figure 6.4: The strategi ontrol rules rejet-applied-offers and prefer-bak-trak-if-failure.eution an be re-invoked on the hanged proof blakboard. The idea behindrejet-applied-offers is that a strategy that failed on a task should not betried again on this task (although it is still appliable to the task, and, thus, itplaes a job o�er onto the ontrol blakboard). rejet-applied-offers hekswhether a job o�er orresponds to a strategy exeution that has already been triedbut was baktraked later on. In this ase, rejet-applied-offers rejets the jobo�er.The priority6 of these ontrol rules inreases in the following order: prefer-demand-satisfying-offers, prefer-memory-offers, defer-memory-offers,rejet-applied-offers, prefer-baktrak-if-failure. Although these on-trol rules are the bakbone of Multi's ontrol, they realize only a default behaviorand an be exluded by the user of Multi or an be overridden by other strategiontrol rules with higher priority. For instane, in the ase studies in hapter 8 andhapter 9 we shall see how more spei� ontrol rules enable an elaborate failurereasoning or ause the repeated appliation of the same strategy although it failedseveral times on a task.6.2.4 Further AlgorithmsThe strategies PPLANNER, INSTMETA, and BACKTRACK are introdued and exempli�edin setion 6.2.1. Here we shall informally introdue the other three algorithms usedin Multi, namely EXP, ATP, and CPLANNER. Formal desriptions of all algorithmsan be found in setion 7.5 in the next hapter.
EXPThe algorithm EXP takles expansion-tasks. An expansion-task does not referdiretly to an introdued ation but ontains a proof line in the onstruted PDSwhose justi�ation is a omplex step, that is, a method or a tati appliation. Fora proof line L with an abstrat justi�ation (J P1 : : : Pn) where J is a methodor a tati and P1; : : : ; Pn are the premises, EXP omputes a proof segment, whihderives L from P1; : : : ; Pn at a lower level of abstration. If J is a method, then
EXP omputes the proof segment by instantiating the proof shema of J . If J is atati, then EXP evaluates the expansion funtion of J . Afterwards, EXP adds the6The MetaReasoner evaluates �rst the strategi ontrol rules with lower priority. Sine they areevaluated later on, the strategi ontrol rules with higher priority ause the �nal hanges of thealternative list of job o�ers.



6.2. The Conepts of Multi 95new proof lines into the onstruted PDS and adds a new justi�ation to L at alower level of abstration.Currently, the algorithm EXP is not parameterized. Sine we distinguish tehni-ally between a strategy and its algorithm we have implemented the strategy ExpSas the only strategy for the EXP algorithm. The appliation ondition of ExpS statesthat this strategy is appliable to all expansion-tasks.
ATPThe algorithm ATP enables the appliation of automated theorem provers withinMulti in order to prove line-tasks. Its parameters are two funtions for the appli-ation of an automated theorem prover (or several ones) and the hek whether theobtained output is aepted as a proof. The �rst funtion obtains as input the line-task to whih the ATP strategy is applied and returns the output of the employedATP(s). The seond funtion obtains the output of the ATPs and returns eithertrue or false where true means that the funtion aepts the output as proof.When a strategy of ATP sueeds for a line-task Lopen J SUPPSLopen , then
ATP loses the line Lopen by the appliation of the tati atp to the premisesSUPPSLopen . Moreover, the output obtained from the appliation funtion of thestrategy beomes the parameter of the justi�ation. Whether this tati applia-tion an be expanded depends on the aepted output. Currently, the expansionfuntion of atp an deal with the following outputs:� Resolution proofs from the provers Otter [150℄, Bliksem [68℄, Spass [239℄,ProTeIn [13℄, and equational proofs produed by the provers eqp [152℄ andWaldMeister [114℄. On these outputs the expansion funtion of atp allsTramp [159℄, a proof transformation system that transforms resolution-styleproofs into assertion level ND-proofs to be integrated into the PDS .� ND-proofs produed by Tramp, if Tramp is used as prover and not as trans-formation system (see below), and | with little transformational e�ort |ND-proofs provided by the higher-order prover tps [8℄ (see [16℄ on what kindof transformations are neessary to inorporate tps proofs into a PDS).Other output of automated theorem provers an be aepted by the respe-tive strategies of ATP but annot be further proessed urrently by the expansionfuntion of the atp tati.Strategy: CallTrampCondition first-order-problemAtion ATP Apply employ-tramp-on-taskATP Output Chek check-assertion-proofTable 6.6: The CallTramp strategy.As example of a strategy of ATP onsider CallTramp, whih is depited in Ta-ble 6.6. The appliation ondition of CallTramp, first-order-problem , is satis�ed byline-tasks, whose formulas are �rst-order. The appliation funtion, employ-tramp-
on-task , employs Tramp not as transformation module but as prover. This is possi-ble sine Tramp annot only transform the output of the onneted provers but analso all these provers on a problem. When employed in this mode, Tramp obtains aproblem formalization, alls the onneted automated theorem provers on the prob-lem, and returns | if one of the onneted provers sueeds | an assertion-level



96 Chapter 6. Basis of Proof Planning with Multiple StrategiesND-proof. The output hek funtion of CallTramp, check-assertion-proof , hekswhether the output provided by Tramp is an ND-proof of the task.7
CPLANNERCase-based reasoning is the approah to takle new problems or subproblemsby adapting given solutions or parts of given solutions of other problems or sub-problems [47℄. Case-based reasoning omponents for 
mega were �rst developed asstand-alone systems not diretly intertwined with the proof planner or other ompo-nents. The last system developed in this paradigm was the Topal system [231, 173℄.Topal obtains as input a soure proof plan and a target problem. It suessivelytransfers method appliations from the soure proof plan into a proof plan of thetarget problem. To do so, it omputes and maintains possible mappings from objetsof the soure proof plan (e.g., tasks and proof lines) to orresponding objets of thetarget proof plan. With these mappings it omputes new ations for the targetproof plan from ations in the soure proof plan. Topal proesses the given soureproof plan hronologially whih means that Topal selets the ations to transferin the order of the soure proof plan.The CPLANNER algorithm in Multi extends Topal in several ways. First,
CPLANNER is parameterized and enables the realization of di�erent kinds of ase-based reasoning. For instane, we realized a task-direted approah as an alterna-tive to the hronologial Topal approah. This task-direted approah, whih isenoded in the CPLANNER strategy TaskDiretedAnalogy (see Table 6.7), �rst seletsa task in the target proof plan and then selets an ation to transfer in the soureproof plan depending on the seleted task. Seond, CPLANNER allows not only forthe transfer of method appliations but also for the transfer of strategy appliationsfrom a strategi soure proof plan into a strategi target proof plan. Moreover, theintegration of CPLANNER into Multi enables the exible ombination of ase-basedreasoning with the other algorithms in Multi.The parameters of CPLANNER are a list of so-alled ation transfer proedures ,a list of ontrol rules, and a termination ondition. Ation transfer proeduresdesribe how soure ations are transfered into target ations. The ontrol rulesguide the seletion of ation transfer proedures and interrupts. The terminationondition spei�es when the exeution of the strategy terminates.Tehnially, an ation transfer proedure is a triple of a list of hoie points, a listof instantiation funtions, and a omputation funtion. The hoie points speifywhih objets have to be seleted during the transfer proess, the instantiationfuntions provide the alternative lists for the hoie points, respetively, and theomputation funtion omputes either a new target ation or a new demand for atuple of seleted objets. When the omputation funtion provides a new targetation, then CPLANNER introdues this ation into the proof plan under onstrution.A demand auses CPLANNER to interrupt with this demand (see setion 7.5.3 fordetails).For instane, TaskMeth is an ation transfer proedure that realizes a task-direted transfer of soure ations. TaskMeth spei�es the hoie points targettask, soure ation, target premises, and target parameters in this order. That is,it �rst selets the task in the target problem to takle and then selets the ationto transfer in the soure problem depending on this task. Finally, it hooses thetarget premises and target parameters depending on the seleted target task and7check-assertion-proof heks only whether the returned objet is a proof tree whose root isthe goal of the task and whose leaves are the supports of the task. It does not hek whether eahjusti�ation is orret sine this would demand to expand the assertion-level proof.



6.2. The Conepts of Multi 97the seleted soure ation. The omputation funtion of TaskMeth obtains thehosen objets as input and omputes a new ation of the method of the soureation.TaskInst is an ation transfer proedure for appliations of INSTMETA strategies.It �rst hooses an instantiation-task in the target plan. Next, it hooses an appli-ation of an INSTMETA strategy in the soure plan. Then, its omputation funtionreates the demand to takle the instantiation-task with the INSTMETA strategy ofthe soure ation.TaskPP lanner is an ation transfer proedure for appliations of PPLANNERstrategies. TaskPP lanner �rst hooses a line-task in the target proof plan andnext an appliation of a PPLANNER strategy in the soure plan. The appliation ofa PPLANNER strategy essentially onsists of a sequene of method ations (see se-tion 7.2 for details). TaskPP lanner redues the transfer of the seleted PPLANNERstrategy appliation to the transfer of the orresponding method ation sequene.That is, it reates a demand for the reursive appliation of the CPLANNER strat-egy TaskDiretedAnalogy with respet to the seleted task and with the sequene ofmethod ations as soure ations.The ation transfer proedures TaskMeth, TaskInst, and TaskPP lanner areombined in the CPLANNER strategy TaskDiretedAnalogy, whih is given in Table 6.7,in order to realize the task-direted transfer approah. The appliation ondition ofTaskDiretedAnalogy, always-true-line+inst , is satis�ed by all line- and instantiation-tasks. The list of ontrol rules is empty. The termination ondition, no-local-tasks ,is satis�ed, when the initial task to whih the strategy is applied and all tasksderived from this task are losed.Strategy: TaskDiretedAnalogyCondition always-true-line+instAtion Ation Trans. Pros. TaskMeth, TaskPP lanner, TaskInstC-Rules ;Termination no-local-tasksSoure Ations (free)Table 6.7: The TaskDiretedAnalogy strategyThe appliability of TaskDiretedAnalogy is not only restrited by its ondition
always-true-line+inst , but also by its additional parameter, soure ations, whih isnot a parameter of the algorithm CPLANNER. Suh additional parameters of strate-gies are alled free parameters . They are not instantiated one and forever in thestrategy. Rather, strategi ontrol rules an suggest instantiations for a free param-eter during the proof planning attempt.8 A strategy with free parameters is appliedonly if a strategi ontrol rule instantiates the free parameters.The free parameter of TaskDiretedAnalogy, soure ations, has to be instantiatedby a strategi ontrol rule with the sequene of soure ations that the strategyshould transfer.9 A strategi ontrol rule an hoose, for instane, a omplete soureproof plan from a database of solved problems or it an hoose a subsequene ofations of a given soure proof plan. Instead of using ations of another problem(so-alled external analogy) a strategi ontrol rule an also suggest a subsequene8Tehnially, strategies with free parameters post job o�ers, when their ondition is satis�edand strategi ontrol rules an then instantiate the free parameters by attahing instantiations tothe job o�er.9The instantiation funtions of the ation transfer proedures look up the given soure ationsduring the exeution of the strategy and suggest then alternatives depending on these ations.



98 Chapter 6. Basis of Proof Planning with Multiple Strategiesof ations of the proof plan under onstrution to be transfered to another part ofthe same proof plan (so-alled internal analogy).Examples for the appliation of the TaskDiretedAnalogy strategy in the asestudies are given in setion 8.2.1. Further examples and a detailed disussion ofase-based reasoning in Multi an be found in [210℄.6.3 Disussion of the ArhitetureIn the previous setion, we gave reasons for our deision to realizeMulti as a blak-board. In this setion, we shall disuss how Multi's blakboard arhiteture om-pares to other existing blakboard arhitetures. In partiular, we shall ompareMulti's arhiteture with the two blakboard frameworks BB1 and Hearsay-III and point out possible extensions for Multi similar to features of BB1 andHearsay-III. Afterwards, we shall disuss how the strategies inMulti ompare tostandard onepts of agents and why we did not implement a multi-agent arhite-ture for Multi. We onlude with a brief disussion of the fundamental di�erenesbetween Multi and 
ants, the other blakboard-based omponent in 
mega.6.3.1 Blakboard ArhiteturesWe start with a disussion of some general features of Multi that relate it toseveral of the lassial blakboard arhitetures as, for instane, disussed in [76℄(see also setion 2.2). Afterwards, we ompare it with the BB1 and the Hearsay-III blakboard arhitetures (see setion 2.2.2 and setion 2.2.3).6.3.1.1 General Disussion of Multi's ArhitetureKnowledge SouresMulti has two di�erent kinds of knowledge soures: the strategies and theMetaReasoner. The strategies are ondition-ation pairs, whih is a well-establishedapproah in blakboard systems used already in the Hearsay-II [77℄ system. Inontrast, theMetaReasoner evaluates sets of strategi ontrol rules and is omparablewith the knowledge soures of the Hasp [181℄ system, whih are sets of rules.HierarhiesIt is a well-established approah for blakboard systems to organize the blak-boards as well as the knowledge soures hierarhially. Some knowledge soureswork only at one partiular hierarhy level, whereas other knowledge soures trans-fer information from one level to other levels. For instane, the Hearsay-II system,whih is used for speeh reognition, distinguishes the phrase-level and the word-level. There are knowledge soures that work on the entries of one level only, re-spetively, and there are knowledge soures that produe phrase-level entries basedon existing word-level entries. Multi employs two blakboards, whih are bothdivided into regions. However, there is no hierarhy relation between these regions.Rather, they just separate di�erent kinds of information. Moreover, a knowledgesoure in Multi is not assoiated with a ertain region on the blakboard but anhange several parts simultaneously.



6.3. Disussion of the Arhiteture 99Parallel vs. SequentialThe use of multiple, independent soures of knowledge enables the exploitationof parallel programming tehniques. Examples for blakboard-based approahesthat enable parallelism are the Cage [180℄ and the Poligon [180, 201℄ system.In [180℄ Nii et al. desribe di�erent ways to exploit parallelism in blakboardsystems. In partiular, they mention the onurrent appliation of di�erent knowl-edge soures and the onurreny of proesses within knowledge soures. They alsodesribe problems originating from onurreny. If knowledge soures work on-urrently, then eah knowledge soure has to be able to write on the blakboardwithout hindering other running knowledge soures or knowledge soures shed-uled for exeution. Hene, systems whose blakboards and knowledge soures arehierarhially arranged are partiularly suited to exploit onurreny sine knowl-edge soures that work at di�erent levels of the blakboard an always be appliedonurrently without hindering eah other.In the urrent implementation, Multi does not exploit onurreny for tworeasons. First, in Multi there are no di�erent levels or parts of the blakboardson whih knowledge soures ould easily work onurrently. Seond, strategies areoften onneted in omplex ways whih ompliates their onurrent exeution.For instane, onsider a proof situation, where a line-task is takled by a strategySP of PPLANNER and an instantiation-task is takled by a strategy SI of INSTMETA.Potential ations of SP may depend on the exeution of SI . That is, whether or notSI does instantiate the meta-variable of the instantiation-task enables or disablesations in PPLANNER. If SP and SI are exeuted onurrently, then the suess ofSP may depend on the arbitrary moment of the instantiation. As another exampleonsider two line-tasks, whih are takled by two strategies S1 and S2 of PPLANNERthat pass onstraints to CoSIE (e.g., two exeutions of the strategy SolveInequality).It is possible that S1 fails when exeuted after S2. This happens if onstraintspassed by S1 are inonsistent with onstraints, whih were passed by S2 and werealready aepted by CoSIE . If S1 is exeuted �rst and S2 is exeuted seond, thenS2 may sueed by introduing other ations although CoSIE might rejet somepassed onstraints. If S1 and S2 are exeuted onurrently, then the suess ofstrategy S1 may depend on the random order in whih both strategies pass theironstraints. In both situations the suess of onurrently exeuted strategies maydepend on the atual order of partiular operations. Sine we want to avoid suhrandom e�ets inuening the solution proess we prefer the sequential exeutionof strategies expliitly guided by the ontrol knowledge in ontrol rules in Multi(e.g., ontrol rules that perform a ertain meta-variable instantiation at a ertainmoment).A potential way to exploit parallelism in Multi ould be to onurrently applyseveral strategies to the same task, if several job o�ers for one task are ranked equallygood by the strategi ontrol rules. This would allow to hek the performane ofseveral strategies in a ompetitive manner rather than to apply them sequentiallyand reover from failing ones. We have not realized this approah so far, sine itrequires to store several subproofs for the same subproblem, whih is not supportedby the urrent implementation of the PDS .6.3.1.2 Comparing Multi with Hearsay-III and BB1Tehnially, Multi is a simpli�ed instantiation of the Hearsay-III arhiteture.Coneptually, it omprises additional elements for goal-direted reasoning that aresimilar to apabilities of BB1. To ompare Multi with Hearsay-III we shallpoint out similarities and di�erenes of the arhitetures and the main yles. We



100 Chapter 6. Basis of Proof Planning with Multiple Strategiesshall ondut the omparison of Multi and BB1 at the oneptual level by dis-ussing whether and howMulti satis�es the behavioral goals for intelligent ontrol-problem-solving stated in setion 2.2.3 as a motivation for the design of BB1. Weshall suggest possible extensions of Multi based on this omparison.Multi vs. Hearsay-IIIAs Hearsay-III, Multi employs two di�erent blakboards for the solutionof the domain problem and the ontrol problem. In Multi these blakboards arealled the proof blakboard and the ontrol blakboard. Moreover, asHearsay-III,Multi distinguishes two kinds of knowledge soures working on these blakboards,namely strategies, whih work on the proof blakboard, and the MetaReasoner,whih is the only knowledge soure working on the ontrol blakboard. As theknowledge soures in Hearsay-III Multi's strategies are ondition-ation pairs.The ativation reords of Hearsay-III are alled job o�ers inMulti and are main-tained in a list on the ontrol blakboard. Multi realizes a base sheduler as a loopthat hooses the �rst job o�er from this list and exeutes the orresponding strat-egy. Sine there is only one knowledge soure working on the ontrol blakboard inMulti there is no need for several sheduling levels on the ontrol blakboard as inHearsay-III.The main yles of ativation reord/job o�er reation, seletion and exeutionare essentially the same in Multi and Hearsay-III. The only di�erene is thatMulti's MetaReasoner is not triggered by partiular events. Rather than plaingjob o�ers itself onto the ontrol blakboard and ompeting with other knowledgesoures, its exeution is enoded into the ontrol yle of Multi (see Figure 6.2on page 92). Another important di�erene between Multi and Hearsay-III isthe duration of knowledge soure exeutions. In Hearsay-III, knowledge soureexeutions are indivisible: they run until ompletion and annot be interrupted. InMulti, a strategy exeution an be interrupted as desribed in setion 6.2.2.Multi vs. BB1Multi satis�es the behavioral requirements that motivated the development ofBB1 (see [111℄) as follows:� Make expliit ontrol deisions that solve the ontrol problem.This is realized in Multi by strategi ontrol rules that expliitly reason onthe job o�ers posed by the strategies.� Deide what ations to perform by reoniling independent deisions aboutwhat ations are desirable and what ations are feasible.Multi satis�es this goal by expliitly distinguishing between the knowledge ofwhen a strategy exeution is feasible (stated in the ondition of the strategy)and the knowledge of when a strategy exeution is desirable (formalized instrategi ontrol rules). Moreover, the reasoning proesses on legal feasibilityand heuristi desirability are stritly separated (see Multi's ontrol yle inFigure 6.2 on page 92).� Adopt, retain, and disard individual ontrol heuristis in response to dynamiproblem-solving situations.Control heuristis are implemented in Multi's strategi ontrol rules. Inthe urrent implementation it is not possible to hange the set of strategiontrol rules during a run (see the following disussion of possible extensionsof Multi).� Deide how to integrate multiple ontrol heuristis of varying importane.



6.3. Disussion of the Arhiteture 101InMulti it is possible to express a priority among the heuristis implementedin strategi ontrol rules. However, in the urrent implementation of Multithere is no hierarhy notion for the employed heuristis as in the di�erentlevels of the BB1 ontrol blakboard.� Dynamially plan strategi sequenes of ations.In the urrent implementation of Multi, it is not possible to plan wholesequenes of strategy exeutions. However, posing demands and interruptingstrategies allows for a goal-direted behavior in Multi that is a simple formof the goal-direted reasoning in BB1 (see the following disussion of possibleextensions of Multi).Several extensions of Multi ould be onsidered in the future:1. The goal-direted reasoning approah ould be extended. For instane, thereould be ontrol knowledge soures that notie highly desirable strategieswhose onditions are not satis�ed. After analyzing the onditions of thesestrategies, suh a ontrol knowledge soure would pose demands for otherstrategies whose exeutions likely enable the exeution of a highly desirablestrategy. A �rst example realizing suh goal-direted reasoning in Multi isdesribed in setion 8.2.3 in the ase studies. Here, a strategi ontrol rulereognizes that a (desirable) strategy, whih is supposed to be appliable, doesnot pose a job o�er. As a onsequene, the strategi ontrol rule prefers a jobo�er whose exeution will likely enable the desired strategy appliation.2. Another approah to extend the goal-direted reasoning in Multi ould bemeta-planning at the strategy-level. Supposed the preonditions and thee�ets of the strategies are desribed in some formal language, then plan-ning ould be onduted at the strategy-level by speial ontrol knowledgesoures. A plan of strategy exeutions and their relationships (e.g., whihstrategy exeution is supposed to provide e�ets that another strategy exeu-tion requires as preonditions) ould then inuene the solution of the domainproblem similar as demands. That is, strategi ontrol rules analogous toprefer-demand-satisfying-offers ould prefer job o�ers that orrespondto steps in the strategy plan or | if there is no suh job o�er | they ouldprefer job o�ers that are likely to enable steps in the strategy plan.3. BB1 allows to hange the employed heuristis by plaing ontrol deisionsonto the ontrol blakboard. Similarly, it would be possible to plae inMultiall ontrol related issues on the ontrol blakboard and to allow for their ma-nipulation by partiular knowledge soures. For instane, Multi ould storeall given strategies and strategi ontrol rules on the ontrol blakboard. Thestatus of a strategy or a strategi ontrol rule ould be hanged by knowledgesoures from ative to passive and vie versa. Multi would then onsideronly ative strategies for invoation and the MetaReasoner would evaluateonly ative ontrol rules.The development of Multi and the introdution of the strategy-level for proofplanning is due to the observation that there is a need for suh a level. The evideneourred in the experiments we onduted in the limit and the residue lass domain.Although very interesting in general, it is not lear whether the possible extensionsofMulti will be neessary and sensible for proof planning in the future. However, itis lear that all mentioned extensions would not only provide additional apabilities,but would also reate further omputational overhead. Hene, we did not inludethese features into the urrent implementation of Multi, but only suggest them aspossible extensions, in ase they are needed.



102 Chapter 6. Basis of Proof Planning with Multiple Strategies6.3.2 Knowledge Soures vs. AgentsMulti employs a blakboard arhiteture in order to allow for the exible o-operation of independent knowledge soures. However, there are also other AI-arhitetures for this purpose, in partiular, multi-agent arhitetures. In this se-tion, we shall disuss the question to what extend our knowledge soures qualify asagents and why we did not deide for a multi-agent system.Currently, there is no universally aepted de�nition for the notion agent.10However, there is a onsensus on at least some of the attributes a omputationalentity has to exhibit to be alled an agent. In [248℄, Wooldridge identi�es asessential property of an agent the apability of exible, autonomous ations, whihhe haraterizes with three abilities: reativity, pro-ativeness, and soial ability.11Reativity means that agents are robust in the sense that they an adapt to thehanges in their environment. Pro-ative means that agents exhibit not only goal-direted behavior but also take the initiative to pursue their goals. Finally, soialabilities enable agents to negotiate with other agents to share goals and to ooperate.In our arhiteture the strategies, that is, the knowledge soures of the proofblakboard, show some pro-ative and some reative harateristis. They arepro-ative sine they are not expliitly sheduled by a pre-de�ned ontrol routine.Rather they beome ative themselves as soon as their ondition part is satis�ed.Then, they post job o�ers onto the ontrol blakboard in order to indiate that theyan ontribute to the problem solving proess. The strategies are partially reativesine they an adapt with respet to the information on the proof blakboard. Forinstane, sine the ontrol rules of strategies of PPLANNER rely on the proof ontextstored on the proof blakboard these strategies may introdue di�erent ations indi�erent proof ontexts (for the same task).The strategies lak soial abilities. They an ooperate either in a data-drivenmanner in whih a strategy beomes triggered by hanges aused by another strat-egy or else on demand when one strategy expliitly interrupts and posts a demandfor another strategy. There are no negotiations among the strategies in Multi.Rather, the question whih strategy to apply next is deided by the MetaReasoner,whih evaluates the strategi ontrol rules. If we distributed the heuristi knowledgeenoded in the strategi ontrol rules to all a�eted strategies, then the strategiesould afterwards negotiate diretly with eah other whih (appliable) one is themost desirable one. This would result in more autonomous entities, that omprisenot only the knowledge of when they are appliable (knowledge of legal feasibil-ity) but also of when it is useful that they are applied or when they should givepreedene to other strategies (knowledge of heuristi utility).Why did we deide for a separated enoding of the heuristi utility knowledge inontrol rules as opposed to the legal feasibility onditions of a strategy that are partof the strategy spei�ation? The arguments for the separation at the strategy-levelare essentially the same as at the method-level where the knowledge of the legal fea-sibility of the methods (in the appliation onditions of the methods) is separatedfrom the knowledge of their heuristi utility (in ontrol rules). First, knowledgebeomes better manageable when developed and implemented in small, indepen-dent units. This also failitates the knowledge aquisition proess sine it allowsfor a divide and onquer approah. Seond, several experiments (e.g., see [176℄)indiate the superiority of a separate representation of ontrol knowledge in AI-10Nwana and Ndumu haraterize in [185℄ the urrent situation as follows: \We have asmuh hane on agreeing on a onsensus de�nition for the word `agent' as Arti�ial Intelligeneresearhers have of arriving at one for `Arti�ial Intelligene'.11Wooldridge emphasizes that his de�nition of an intelligent agent is not aepted as a uni-versally one.



6.3. Disussion of the Arhiteture 103planning. The separation failitates modi�ations and learning sine di�erent kindsof knowledge an be modi�ed independently, for instane, in order to experimentwith di�erent searh ontrols or to learn new ontrol at run-time.12 Last but notleast, mathematial problem solving favors the separation of ontrol knowledge fromother knowledge as Shoenfeld points out:The perspetive taken in this book is that it is useful to think of resouresaand ontrol as two qualitatively di�erent, though deeply intertwined, as-pets of mathematial behavior. This distintion raises deliate issues,for disussions of resoures must inlude questions of aess and atten-tion that are, in a broad sense, issues of ontrol.Shoenfeld, 1985, [209℄ pp. 134{135aShoenfeldmentions as resoures of a partiular domain: (1) informal and intu-itive knowledge about the domain, (2) fats, de�nitions, and the like, (3) algorithmiproedures, (4) routine proedures, (5) relevant ompetenies, (6) knowledge aboutthe rules of disourse in the domain (see [209℄ pp. 54{55).6.3.3 Multi vs. 
antsWith Multi and 
ants (see setion 3.2.4), 
mega employs two blakboard-basedomponents. A diret omparison of the two arhitetures (i.e., whih elementsof the one arhiteture relate to whih elements in the other arhiteture) is notsuitable sine they serve di�erent purposes. Rather, we shall point out the di�erentpurposes of 
ants and Multi and disuss how these objetives inuened theirdesigns. In partiular, we shall disuss how and why 
ants employs onurrenyand why we do not perform similar proesses in Multi onurrently.The original motivation for 
ants was to support interative proof onstrutionwith rules and tatis. Without 
ants, the user of 
mega has to test the availabletatis and rules, olletively alled inferene rules, in order to �nd an appliable one.In partiular, �nding suitable instantiations of the arguments and the parametersof an inferene rule is a painstaking proess. The 
ants mehanism frees theuser from this work by providing the information about whih inferene rules areappliable in the atual proof situation. For eah inferene rule, 
ants employsa separate blakboard on whih independent, onurrent knowledge soures, so-alled agents, assemble information on possible appliations of the inferene rule.Appliable instantiations of the inferene rule are reported by a monitoring agentto the suggestion blakboard. The entries of this blakboard are then provided assuggestions to the user who selets one.For some inferene rules, appliable instantiations an be found very quikly (ifthey exist); for other inferene rules �nding appliable instantiations an omprisetime-onsuming alls to external systems (e.g., ATPs) whose performane and re-sult annot be predited. In order to avoid that the user has to wait for the nextsuggestions until all agents �nish their omputations 
ants employs the indepen-dent agents onurrently. This allows for an any-time behavior of the system, whihimmediately reports found instantiations to the user, who an then deide to applyone of the suggestions or to wait for further ones. Time onsuming proesses thatare not �nished, when the user selets a suggestion are not terminated but ontinueto run in the bakground.Reent researh aims to employ the 
ants mehanism also for automated proofonstrution. Instead of providing suggestions to the user a seletor hooses and12Although there are only preliminary approahes to learn searh ontrol in 
mega so far (e.g.,see setion 9.2.2) we are planning to ondut further experiments on learning ontrol knowledge.



104 Chapter 6. Basis of Proof Planning with Multiple Strategiesapplies a suggestion from the suggestion blakboard. The automated 
ants is en-visaged for appliation in domains for whih no or only little knowledge is available.In suh domains, 
ants should perform proof searh with rather general rules andtatis and with external systems. The idea is that the onurrent agents allowfor the interleaving of repeated alls of external systems, in partiular ATPs, withongoing problem manipulation and (hopefully) simpli�ation.The ontrol layer in 
ants is rather poorly developed so far. 
ants employssome general heuristis on whih suggestions to pass from the rule blakboards tothe suggestion blakboard as well as on how to rank the suggestions on the sugges-tion blakboard. The urrent seletor simply takes the highest ranked suggestion.Although not developed to employ sophistiated ontrol information like used inproof planning, the adaption of the ontrol to di�erent appliation domains willbe neessary. However, it is not yet lear how further ontrol information for do-mains an be used in 
ants. Another open researh question is when to terminateresoure-onsuming proesses.In ontrast to 
ants,Multi's primary motivation was to develop a knowledge-based, automated omponent. Multi an employ elaborate domain knowledge andsophistiated ontrol knowledge. Multi depends on this knowledge, suh that itan be applied only to domains for whih suitable knowledge has been aquired.In setion 6.3.1 we disussed already why the urrent implementation of Multidoes not enable the onurrent exeution of several strategies. Another possibil-ity to employ onurreny would be to evaluate strategi ontrol rules while somestrategies still hek their ondition parts. This would result in an any-time behav-ior like in 
ants. Although this would be tehnially possible, we deided for asequential hek of the ondition parts and the subsequent evaluation of the strate-gi ontrol rules sine Multi is a knowledge-based system in whih an any-timebehavior like in 
ants is not helpful.If the MetaReasoner evaluated the ontrol rules before all strategies posed theirjob o�ers onto the ontrol blakboard, then its deisions would depend on whihstrategies did atually pose their job o�ers so far. Thereby, we would risk to missthe best strategy in the urrent situation sine it did not pose a job o�er so far.Multi's philosophy is to aquire and formalize spei� domain knowledge (whihis a diÆult work). If suitable domain knowledge is available it is not sensible tobase the evaluation and inorporation of this knowledge on random e�ets suh aswhih strategies did atually pose their job o�ers so far.13 When the MetaReasonerwaits until all strategies posed their job o�ers, then the onurrent hek of the on-dition parts of the single strategies is only sensible when the heks are distributedto di�erent proessors. Sine the ondition parts of the strategies are rather sim-ple funtions so far, we did not onsider a distribution, whih would reate muhomputational overhead.6.4 Related WorkIn the previous setion we disussed aspets of Multi's blakboard arhitetureand ompared it with other blakboard arhitetures as well as with multi-agentarhitetures. In this setion, we shall disuss peuliarities of proof planning withmultiple strategies and ompare it with related approahes from AI-planning andinterative and automated dedution.13Note that for the onurrent omputation and seletion of ations in PPLANNER holds the sameargument as for strategies: the deisions ould depend on random e�ets, whih is against theknowledge-based philosophy of 
mega's proof planning.



6.4. Related Work 105We start with a omparison of the notion of a strategy in Multi with thenotion usually used in AI-planning and automated dedution. Then, we ompare theombination of strategies and algorithms possible inMulti with some approahes ofAI-planning and automated dedution that ombine di�erent algorithms or di�erentinstanes of an algorithm. Afterwards, we disuss how other proof planning systemsuse the notion strategy. We onlude with a disussion of the little theories approahrealized in the Imps system and how it ompares with the knowledge struturingrealized in Multi.6.4.1 Strategies in AI-Planning and Automated DedutionIn AI-planning as well as in mahine-oriented automated dedution the notion of astrategy is typially used in the sense of a searh strategy . A searh strategy deter-mines how the searh spae is traversed by inuening deisions at the hoie points.For instane, an AI-planner following the preondition ahievement paradigm hasto deide whih unsatis�ed preondition to takle next. If there are several ationsthat an satisfy the hosen preondition, it has also to deide whih ation to hoose.A typial searh strategy (or at least a part of a searh strategy) in preonditionahievement planning is to prefer that ation that introdues the smallest number ofnew unsatis�ed preonditions. A resolution-based ATP has to deide whih lausesto use in the next resolution step. Common strategies for resolution-based ATPsassign weights to the lauses and then prefer lauses with the highest weights.There is a wealth of work on searh strategies that guide AI-planning systemsand mahine-oriented ATPs. Surveys on the subjet are given in [33, 34℄ for auto-mated dedution and in [194, 99℄ for AI-planners, where the interested reader will�nd extensive bibliographies.Tehnially, searh strategies in AI-planning and automated theorem proving aswell as Multi's strategies all speify instanes of parameterized algorithms. Proofplanning with multiple strategies goes beyond the strategy onepts usually usedin AI-planning and automated theorem proving by establishing failities suh asbaktraking as separated algorithms in their own rights. Although PPLANNER isMulti's main faility for the proof plan onstrutionMulti is open for all kinds ofre�nement or modi�ation algorithms that an ontribute to the theorem provingproess. The main di�erene between searh strategies and PPLANNER strategies isthe kind of knowledge they omprise. Typially, a searh strategy relies on domain-independent heuristis that hardly over human proof or plan disovery heuristis.Sine the heuristis are domain-independent their utility for a partiular problemannot be predited. Thus, suh a searh strategy an perform totally di�erent onsimilar problems of the same domain. PPLANNER strategies, in ontrast, omprise theknowledge of how to takle a partiular lass of problems and try to integrate domainspei� mathematial knowledge and pratie. Moreover, Multi's strategies areondition-ation pairs, that is, they expliitly omprise the knowledge to whihlass of problems they are appliable in their ondition parts.6.4.2 Combination of Systems and StrategiesSupposed there are several strategies for one system or several systems appliableto a problem, then the question is whih strategy or whih system should be ap-plied to the problem. Contests among AI-planning systems14 and mahine-oriented14See ftp://ftp.s.yale.edu/pub/mdermott/aipsomp-results.htmlhttp://www.s.toronto.edu/aips2000/http://www.dur.a.uk/d.p.long/ompetition.html



106 Chapter 6. Basis of Proof Planning with Multiple StrategiesATPs15, respetively, show that there is no system or strategy that outperformsall other systems or strategies in all domains. Hene, it is an obvious approah toombine di�erent strategies or systems in order to extend the solvability horizon ofthe ombined system. In the following, we shall disuss several approahes from AI-planning and mahine-oriented automated theorem proving, whih ombine severalstrategies of one system (homogeneous ombination) or several systems (heteroge-neous ombination). Another riterion to lassify the approahes is whether theyemploy several strategies or systems in a ompetitive manner or in a ooperativemanner . Several strategies or systems are applied in a ompetitive manner if eahproess obtains the omplete problem as input and tries to �nd a solution for theproblem where the proesses are either time-slied or parallelized. The ombinedsystem stops as soon as one proess sueeds to prove the entire problem (\the win-ner takes it all"). Several strategies or systems work ooperatively if they an workon di�erent subproblems of the overall problem and are able to exhange results.The ombined system stops as soon as the integrated systems or strategies produetogether a solution of the entire problem.6.4.2.1 Combinations in AI-PlanningFink desribes in [87℄ the ompetitive seletion of several strategies of the plannerProdigy. Prodigy provides several searh strategies, whih Fink alls \SearhEngines". He uses the three searh strategies APPLY, DELAY, and ALPINE.When hoosing the strategy that should be applied to a problem, then there aretwo questions:1. Whih one is the most promising strategy for the problem at hand, that is,whih should be tried �rst?2. After whih amount of time should the strategy be interrupted if it was notsuessful in order to try another strategy?Fink's approah relies on a utility measurement for eah strategy and a set oftime bounds based on the experiene about the performane of the three strategieson other problems. The strategy and the time bound with the highest estimatedutility are hosen. It is not surprising that the three strategies solve in additionmore problems than a single one. The remarkable result of the approah is that itwas possible to ompute suitable time bounds for the appliation of the strategies.Whereas Fink uses several strategies of one planner, the ompetitive approahof Howe et al. relies on the hoie among several planners [117℄. Motivated fromthe results of the planner ompetition at AIPS 1998, whih had no overall winner,Howe and olleagues used a meta-planner, alled BUS, whih an employ six plan-ners: STAN, IPP, SGP, BlakBox, Upop, and Prodigy. For a given problem,BUS omputes �rst for eah system the estimated run time and the suess proba-bility. To estimate the run time and the suess probability BUS examines ertainfeatures of the problem and its planning domain (e.g., the number of operators inthe planning domain, or the number of goals of the problem). Then, it ompares thefeatures of the new problem and its planning domain with problems already takledwith the six planners. BUS orders the planners with respet to a ertain averagefor the results of the planner ompetitions held at the AIPS onferenes 1998, 2000, 2002,respetively.15See http://www.s.miami.edu/~tptp/CASC/17/http://www.s.miami.edu/~tptp/CASC/JC/for the results of the ATP ompetitions held at the CADE 2000 and the IJCAR 2001 onferenes.



6.4. Related Work 107of predited run time and predited suess probability and applies the systemssequentially in this order. First, eah system is applied with its estimated run timeas time bound. If one system sueeds, BUS terminates; otherwise it omputesnew time bounds and applies the planners again with these new time bounds untilan overall time bound for the whole system is reahed. Again, it is not surprisingthat six planners an solve more problems than a single one. But the experimentswith BUS provide lear evidene that the average run time of the BUS system isonsiderably smaller than the average run times of the single planners | althoughthe BUS system has an additional organization e�ort and the examined featuresfor the performane analysis are rather general.Wilkins and Myers propose in [245℄ the Multiagent Planning Arhiteture(MPA) as a framework for the ooperative integration of diverse tehnologies intoa system apable of solving omplex planning problems. Central in MPA is thenotion of a planning ell. Planning ells are hierarhially organized olletions ofplanning agents (PA) that are ommitted to one partiular planning proess. Oneell employs di�erent kinds of planning agents: Eah ell has a meta-PA that servesas the manager of the ell, that is, it deomposes a planning task and distributes itto the PAs of the ell. Moreover, eah ell employs a plan server, whih provides theentral repository for plans and plan-related information and makes this informationaessible to all other ell agents. The plan server is a passive agent that respondsto messages sent by other agents, but does not issue messages to other agentson its own initiative. Further PAs an employ existing software systems. In theappliation senario in [245℄, PAs employ the Sipe-2 planner [246℄ and the Opissheduler [220℄. MPA allows for implementing several on�gurations of ells: asingle ell on�guration for generating individual solutions to a planning task, anda multiple-ell on�guration for generating alternative solutions in parallel, where inmultiple-ell on�gurations a meta-planning-ell manager distributes the problemto the single ells and ollets their solutions.6.4.2.2 Combinations in Automated Theorem ProvingThere are several ompetitive approahes based on the SETHEO prover [145℄.SETHEO is a theorem prover for �rst order prediate logi based on the modelelimination alulus [146℄. In [80℄ Ertel desribes the RCTHEO system. RC-THEO employs a set of parallel proessors, whih all are running the same versionof SETHEO in whih the deisions at several hoie points are randomized. Eahopy of the randomized SETHEO is started with a di�erent random seed. Sinedi�erent random seeds produe di�erent searh paths they de�ne di�erent \strate-gies" of the randomized SETHEO. In [211℄ Shumann desribes experimentswith SiCoTHEO. As opposed to RCTHEO, in SiCoTHEO parallel proessorsrun di�erent instanes of SETHEO that are reated by varying ertain pre-de�nedparameters that inuene the traversal of the searh spae of SETHEO. In on-trast to SETHEO, both systems, RCTHEO and SiCoTHEO, show super-linearspeed-ups on ertain problems. However, their suess varies onsiderably amongdi�erent problems. The idea of Wolf is that ompeting strategies should beomplementary with respet to a given problem set, that is, the sets of problemssolved in a ertain time limit by two di�erent strategies should di�er \signi�antly".In [247℄Wolf desribes a methodology for omputing shedules of omplementarystrategies with suitable time bounds based on experiments with training sets ofproblems. The approah is implemented in a system alled p-SETHEO. Experi-ments with p-SETHEO evidene that the strategy shedules learned on a trainingset do outperform other strategy shedules on new problem sets.



108 Chapter 6. Basis of Proof Planning with Multiple StrategiesDenzinger and Fuhs desribe in [70℄ a methodology, the so-alled TECHSapproah (TEams for ooperative Heterogeneous Searh), for ahieving ooperationbetween several ATPs and several instanes of them (i.e., several instanes of onesystem have to use di�erent searh strategies). The experiments desribed in [70℄use the systems Spass, SETHEO, and Disount. In the TECHS approah, (dif-ferent) instanes of the integrated systems form searh teams. All inluded instanesare wrapped with ommuniation failities that enable the interhange of seletedintermediate results. This results in so-alled searh agents. The searh of the singleagents and the exhange of intermediate information is organized in yles: duringthe working phase the single agents work independently and parallel on the givenproblem, whereas during the ooperation phase they exhange information. Theinterhanged information onsists of lauses. Eah agent employs so-alled referees,whih deide whih lauses of the own searh state should be ommuniated to theother agents and whih lauses reeived from the other agents should be integratedinto the searh state. In the onduted experiments the TECHS approah learlyoutperformed the single systems and their instanes as well as a purely ompetitiveparallel ombination of them.6.4.2.3 Comparison with MultiMulti allows for both, the homogeneous ombination of several strategies of onealgorithm and the heterogeneous ombination of di�erent algorithms (via strategiesof these algorithms). Moreover,Multi employs its strategies in a ooperative man-ner. With respet to these dimensions the TECHS and MPA approahes are thelosest related ones to Multi. In the following, we shall ompare some aspets ofthe three approahes.Whereas TECHS prefers loal, diret ommuniation of partial results amongthe agents (i.e., the agents in TECHS ommuniate lauses), Multi and MPA usea entral omponent in whih the urrent solution state is stored: Multi stores thesolution state in the elements of the blakboards, MPA uses a plan server. TECHSand MPA run their agents in parallel and on di�erent mahines whereas in Multithe strategies are sheduled sequentially and run on the same mahine.The three systems di�er on what and how knowledge of the integrated ompo-nents and their employment is represented and used. Multi emphasizes the for-malization and inorporation of expliit knowledge of the appliability of strategiesand the ontrol of the searh proess. In its ondition part eah strategy omprisesthe knowledge on whih tasks the strategy is feasible, and strategi ontrol rulesenode heuristi knowledge of the utility of strategy appliations. In MPA, theknowledge of the employment of the agents is enoded into the manager of a plan-ning ell. The manager distributes tasks to the single agents and assigns di�erentresponsibilities to them suh as plan generation or sheduling. It is possible thatthe manager re-arranges the planning ell and hanges the responsibilities of theagents. Hene, the responsibility of an agent is not part of the agent itself but ispart of the manager of the planning ell, whih stores it in a table. In TECHS,send-referees and reeive-referees provide a possibility to enode knowledge of theombination of the agents by determining whih lauses an agent ommuniatesto other agents and whih lauses it aepts from other agents. For instane, inthe senario desribed in [70℄ the provers Spass, SETHEO, and Disount wereoupled. Sine Disount is a pure equational prover only equational unit lausesare relevant for it. This knowledge an be enoded into the send-referees passinglauses to Disount or into the reeive-referee aepting the lauses for Disount.



6.4. Related Work 1096.4.3 Notions of Strategies in Proof PlanningIn the proof planners Tiger [184, 193℄ and �CLaM [204℄ there exist di�erent notionsof strategies, whih we shall disuss in the following.6.4.3.1 Struturing Inremental Proof Planning by Meta-Rule SetsIn the inremental proof planning approah [97℄ implemented in the Tiger systemthe entral struture is a meta-rule. Meta-rules provide a delarative representationof the knowledge about the domain of appliation and about tatis. Tehnially, ameta-rule is a triple onsisting of a preondition, an ation, and a persistene on-dition (persistene onditions are optional). The preonditions and the persisteneonditions are onjuntions of prediates on the urrent proof under onstrution.In the simplest ase, an ation is a tati. In general, an ation is a sequene oftatis and reursive alls to meta-rule sets interleaved with optional ontinuationonditions. Thus, meta-rules an be strutured in meta-rule sets providing a furtherlevel of abstration and struturing [98℄.Proof planning with meta-rule sets works as follows: The planner is alled withrespet to a ertain meta-rule set. First, the planner heks the preonditions of thegiven meta-rules and hooses one meta-rule whose preondition is satis�ed. Then,the planner exeutes the ation of the hosen meta-rule. If the ation onsists of onetati, it applies this tati. If the ation onsists of a sequene of tatis, it sues-sively applies these tatis. If the appliation of one tati in the sequene fails, thewhole ation fails and all tatis of the ation already applied are retrated. If theation inludes a all to another meta-rule set, the planner is invoked reursivelywith respet to this meta-rule set. If a meta-rule inludes a persistene ondition,the planner repeats the exeution of the ation of the meta-rule until the persisteneondition is satis�ed.Meta-rule sets orrespond to PPLANNER strategies in Multi as a struturingmehanism for meta-rules or methods and ontrol rules. Both approahes allow tointerrupt a strategy/meta-rule set and to swith to another strategy/meta-rule set.Multi goes beyond the apabilities of inremental proof planning with meta-rulesets by enabling the opportunisti, event-driven ombination of strategies. This ispossible sine in its ondition part a strategy inludes an expliit representationof the knowledge to whih tasks it is appliable. Moreover, ontrol rules expliitlyrepresent the heuristi knowledge about when the swith to another strategy is de-sirable. In ontrast, in inremental proof planning eah reursive invoation of ameta-rule set is enoded in some ations ontained in other meta-rule sets. Neitherthe knowledge of the feasibility of a meta-rule set nor the knowledge of the desir-ability of a swith is expliitly represented. Thus, an opportunisti, event-drivenombination of the meta-rule sets is not possible.The exible inorporation of algorithms for di�erent proof plan re�nements andmodi�ations (e.g., baktraking, instantiation of variables, ATPs) is not overedby the strategies of inremental proof planning.6.4.3.2 Compound Methods in �CLaMLike in 
mega also CLaM's and �CLaM's planning operators are alled methods.A proof method in CLaM and �CLaM an be atomi or ompound. A ompoundmethod is also alled a strategy (e.g., see [69℄).Tehnially, strategies, i.e., omplex methods, are onstruted from simplermethods with onstrutors that are alled methodials [203℄ (in analogy to a tatial



110 Chapter 6. Basis of Proof Planning with Multiple Strategiesin LCF see setion 3.2.2). For instane, (repeat meth sym eval) is a ompoundmethod that applies repeatedly the method sym eval, whih is itself again a om-pound method, while repeat meth is a methodial. Other methodials exist, forinstane, for sequening methods and reating OR hoies, and, thus, omplex proofstrategies for ontrolling the searh for a proof an be reated suessively. A proofstrategy an also involve so-alled ritis , that is, proedures for reasoning on andpathing of failures (see setion 8.4 for a loser disussion of ritis).An example for a omplex proof strategy realized in �CLaM is indution, whih isimplemented as a seletion of atomi and ompound methods. The top-level strat-egy indution top meth repeatedly attempts a disjuntion of methods (i.e., meth-ods onneted with the OR methodial). These inlude basi tautology heking,generalization of ommon subterms and also symboli evaluation and the indutionstrategy, ind strat. Within ind strat, the method indution meth performs aripple analysis to hoose an indution sheme (from a seletion spei�ed in �CLaM'stheories) and produes subgoals for base and step ases. The top-level strategy isapplied one more to the base ases. The step ases are annotated and then thewave method is repeatedly applied to them followed by the method fertilize.Afterwards, the annotations are removed and the results are passed on to the top-level strategy again. The proess terminates when all subgoals have been reduedto true.Proof planning in �CLaM is similar to proof planning with meta-rule sets as dis-ussed in the previous setion. The user employs �CLaM with a ompound method.Then, �CLaM proesses the problem at hand with respet to the methodial expres-sion of the ompound method inluding reursive alls of other ompound methods.Proof planning in �CLaM does not separate heuristi ontrol knowledge; rather,preonditions of methods may inlude legal and heuristi onditions. Thus, methodsin �CLaM ombine the funtionalities of methods and ontrol rules in 
mega'sproof planning. In partiular, �CLaM uses rippling , a domain-independent di�ereneredution heuristi, whih is enoded in the preonditions of the methods [43℄.Similar to PPLANNER strategies in Multi, ompound methods provide a meansto struture and restrit the available methods. Sine ompound methods havepreonditions, the representation of knowledge of when the ompound method isappliable and when a swith to the ompound method is desirable would be pos-sible. However, at present the preonditions of the ompound methods are justtrue.16 Swithes among the ompound methods are hard-oded into the om-pound methods and the methodials they use and are not a hoie point in its ownright. Thus, an opportunisti, event-driven ombination of ompound methods likein Multi is (urrently) not possible.As in inremental proof planning also in �CLaM the strategies do not overthe exible inorporation of algorithms for di�erent proof plan re�nements andmodi�ations suh as baktraking, instantiation of variables, or ATPs).6.4.4 Struturing Knowledge in Little TheoriesIn [82℄ Farmer and olleges present the little theories approah implemented inthe Imps system [81, 83℄ (Interative Mathematial Proof System). The idea behindthis approah is to employ a network of small axiomati theories (i.e., theories thatonsist of small sets of axioms, respetively), alled little theories, in order to developa portion of mathematis with an interative theorem proving system. Di�erenttheorems are proved in di�erent theories, depending on the required knowledge.16Personal ommuniation with Louise Dennis .



6.5. Summary of the Chapter 111Apart from the fat that the use of �ne-grained knowledge, the logial power ofpartiular sets of axioms, and the relations among them are interesting researhquestions in their own rights, the little theories approah provides two pratialbene�ts to the Imps system:1. It allows for minimal axiomatizations for spei� groups of theorems.2. It allows to make use of knowledge of the group of problems that should betakled. In partiular, so-alled proessors an be assoiated with a little the-ory. Proessors are hand-oded algorithms that exploit fats about partiularoperators, either to simplify expressions or to deide formulas in some sym-boli lass. Proessors may be far more eÆient than the appliation of basiinferenes to derive the same onlusion.The �rst bene�t failitates the reuse of theorems in Imps: The smaller the set ofaxioms on whih a theorem depends the easier the theorem an be reused in othertheories.17 If the sets of axioms are very large, then the export of theorems intoother theories beomes unmanageable. Similarly, strategies of PPLANNER allow tostruture the methods and ontrol rule knowledge. This is neessary in order todeal with the overwhelming knowledge that beomes unmanageable if not suitablystrutured (see setion 6.1.4).The seond bene�t reets an insight that motivated and inuened the devel-opment of knowledge-based proof planning in general as well as Multi's strategyapproah in partiular: mathematis of any omplexity requires a mixture of dif-ferent kinds of reasoning that have to be organized in order to be appropriatelyappliable. Similar to the proessors in little theories, methods in 
mega an per-form steps partiular to a ertain domain or partiular to a ertain lass of problemsand a partiular proof tehnique. Both little theories and strategies provide a meansto organize the variety of available partiular steps, simpli�ations, deision proe-dures and so on, suh that the resulting units provide a means to takle a ertainlass of problems.6.5 Summary of the ChapterIn this hapter, we introdued the basi notions of proof planning with multiplestrategies and its implementation in the Multi system.The development of of proof planning with multiple strategies was due to prob-lems we enountered with 
mega's previous planner PLAN. The onduted ex-periments for �-Æ-proofs and for residue lass problems showed that PLAN's hard-oded integration of restrited omponents for ation introdution, baktraking,and meta-variable instantiation represents one partiular problem solving strategysuitable for many problems but insuÆient as a general tehnique. Beause of itsrigid algorithm PLAN annot be adapted to the needs of di�erent problem lassesand laks any means to employ domain knowledge beyond methods and ontrolrules, i.e., knowledge of di�erent proof plan re�nements and modi�ations and their17Note that theories in 
mega and Imps are onneted di�erently. The theories in Imps forma network. Theories are onneted by theory interpretations, whih is a syntati translationbetween two theories preserving theorems. That is, if a formula is a theorem of the soure theory,then its image is a theorem of the target theory. When a theorem depends only of a minimalset of axioms, then this failitates the export of the theorem to other theories and its reuse inthese theories. The theories in 
mega, in ontrast, are arranged in a tree. An edge onnets twotheories T and T 0 when T 0 depends on T , that is, T 0 inherits all axioms and de�nitions of T .Thus, all theorems of T are automatially also theorems of T 0.



112 Chapter 6. Basis of Proof Planning with Multiple Strategiesexible ombination. Our experiments illustrate that, in order to takle a largebody of problems, various proof plan re�nements and modi�ations are neessary,and that the deision on when to all a ertain re�nement or modi�ation shouldnot be hard-oded into the system but rather be determined by meta-level reasoningusing available heuristi ontrol knowledge.In order to meet these requirements, multiple-strategy proof planning deom-poses the previous monolithi proof planning proess and replaes it by separatedparameterized algorithms for di�erent kinds of plan re�nements or modi�ations aswell as di�erent instanes of these algorithms, whih are alled strategies. Heuris-ti ontrol knowledge of the appliation and ombination of the strategies an beenoded in strategi ontrol rules.To enable the exible ombination of strategies guided by the meta-level reason-ing in the strategi ontrol rules, we deided to implement Multi in a blakboardarhiteture. Blakboard systems do not rely on a pre-de�ned ontrol of the appli-ation of the involved omponents but provide the exibility to employ their om-ponents, whih are alled knowledge soures, opportunistially. Multi employs twoseparated blakboards: the proof blakboard ontains the status and the history ofthe proof planning problem, the ontrol blakboard ontains the information rele-vant for the ontrol problem, that is, whih possible step should the system performnext. The strategies are the knowledge soures that work on the proof blakboard.An invoked strategy an re�ne or modify the proof plan under onstrution andreords its hanges in a history. The knowledge soure that works on the ontrolblakboard is alled the MetaReasoner. It evaluates the strategi ontrol rules inorder to prefer or rejet the appliation of strategies.As ompared with the previous proof planning, strategies and strategi ontrolrules introdue another hierarhial level and its heuristi ontrol. Moreover, theyprovide a means to enode and inorporate (mathematial) domain knowledge intothe proof planning proess beyond methods and method-level ontrol rules. Inthe ase studies in hapter 8, hapter 9, and hapter 10 we shall illustrate theavailable knowledge at the strategy-level and its importane for knowledge-basedproof planning. However, before we disuss the ase studies we �rst give a moretehnial desription of the onepts in Multi and the employed algorithms in thenext hapter.



Chapter 7Formal Desription of MultiIn the previous hapter, we motivated and explained the design of Multi and itsbasi onepts. In this hapter, we shall give a formal desription of Multi.Proof planning with multiple strategies omputes strategi ations and intro-dues them into a strategi proof plan. A strategi ation is the instantiation ofa strategy pattern orresponding to method ations, whih are instantiations ofmethods. Similar to proof plans in PLAN a strategi proof plan onsists of asequene of ations, an agenda, and a PDS. Strategi proof plans ontain addition-ally a sequene of so-alled binding stores to keep trak of introdued meta-variableinstantiations.The struture of the hapter is as follows. First, we introdue some new datastrutures used by Multi among others binding stores. In setion 7.2, we desribethe di�erent kinds of strategi ations in Multi. Afterwards, we formally desribestrategi proof plans and give the operational semantis of strategi ations in se-tion 7.3. Setion 7.4 desribes the strategi manipulation reords, whihMulti usesto onstrut a history. After the introdution of all neessary elements, we desribeMulti's main yle and the modi�ation and re�nement algorithms integrated sofar in setion 7.5. We onlude this hapter with the disussion of some partiulartehnial features of Multi in setion 7.6.7.1 New Data StruturesIn this setion, we disuss some new data strutures used in Multi and their roleduring the strategi proof planning proess.Binding StoresMulti allows to reason on existing meta-variables and possible instantiationsfor them. An equation of the form mv�:=b t� where mv� is a meta-variable andt� is a term of the same type � is alled a binding . t is alled the instantiation ofthe binding for mv. During the strategi proof planning proess the urrent set ofbindings is stored in a so-alled binding store.New bindings are not applied to existing proof lines in the onstruted PDS or toproof lines in existing ations. Sine the appliation of the bindings would replaeourrenes of the meta-variables by ourrenes of their urrent instantiations,it would not be possible to baktrak binding deisions in order to bind meta-



114 Chapter 7. Formal Desription of Multivariables di�erently (sine the information on whih subterms of the proof lines havebeen whih meta-variables would have been lost). Rather, the urrent bindings areapplied to opies of proof lines as soon as these are used. For instane, if a line-taskhas the task formula jmvx � j < Æ and the urrent binding store ontains thebinding mvx:=b , then PPLANNER applies the urrent binding to a opy of the taskformula (see setion 7.5.2 for details). The resulting formula, namely j � j < Æ,is then used in the ation omputation proess instead of jmvx � j < Æ. Methodsan beome appliable wrt. the instantiated formula whereas they are not appliablewrt. the original formula with the meta-variables. For our example, a method forarithmeti simpli�ations beomes appliable and an redue the formula j�j < Æto 0 < Æ whih is not possible for jmvx�j < Æ . However, this step depends on thebinding of mvx; if this binding is removed (by baktraking the step that introduedthe binding), then this step is not valid anymore.Multi onstruts a sequene of binding stores in order to keep trak of the de-pendenies between the hanging bindings and the introdued ations. The intro-dution of a new binding reates a new binding store in the sequene. All followingsteps are performed with respet to this urrent binding store. When bindings areremoved, then the binding store before the introdution of this binding is restoredand all following binding stores are removed from the sequene. Moreover, all a-tions that potentially depend on the removed binding stores are deleted as well (fordetails see setion 7.5.7 where baktraking in Multi is desribed). We extendedthe notion of an ation in proof planning for Multi. Ations have an additionalslot binding-store in order to store a pointer to the binding store that was the urrentone when the ation was omputed.Notation 7.1: In the remainder of the thesis, the following symbols (maybe la-beled with some subsripts or supersripts) are assoiated with the following objets:BS denotes a binding store,~BS denotes a sequene of binding stores.Task TagsIn Multi, a strategy is exeuted with respet to a partiular task (from theblakboard point of view we an say that the existene of the task triggers theinvoation of the strategy). A partiular exeution of a strategy takles then thetask by whih it was triggered rather than arbitrary tasks. This is easy to realizefor the algorithms EXP, ATP, and INSTMETA sine these algorithms perform just onere�nement step before they terminate. The situation is more ompliated for thealgorithms PPLANNER and CPLANNER sine they may perform a sequene of proof planmodi�ations (e.g., introdue several ations) before they terminate or interrupt.When applied with respet to an initial task, these algorithm should takle thistask and tasks that are derived from it but they should ignore other tasks in theagenda. Moreover, if a strategy exeution of CPLANNER or PPLANNER interrupts andother strategies are exeuted, then some of these strategies work on tasks reatedby the interrupted strategy some of them work on other tasks. When the initialstrategy is re-invoked again, then it should takle tasks derived from its own tasksbut it should ignore other tasks reated meanwhile. To organize this behavior amaintenane mehanism is needed, whih keeps trak of whih tasks are relevantfor whih strategies.In Multi, the desired behavior is supported by so-alled task tags . When astrategy of CPLANNER and PPLANNER is invoked, then it reates a new task tag �T ,whih uniquely refers to this exeution of the strategy. The task tag is pinned to thetask that triggered the strategy. When a proof plan modi�ation in Multi redues



7.1. New Data Strutures 115a task to some new tasks, then the new tasks inherit all tags from the initial one.An exeution of a strategy of CPLANNER or PPLANNER onsiders only tasks that arryits tag. When the strategy exeution terminates, then its tag is removed from alltasks. When a strategy exeution interrupts and is re-invoked later on, then there-invoation ontinues to work with the task tag reated by the initial invoation.If used in several not-terminated strategies, then one task an arry several tags.For instane, when an exeution of a PPLANNER strategy reates a task T , then Tarries the tag of this exeution. Afterwards, the exeution interrupts and a di�erentstrategy is applied to T . Then, this seond strategy exeution reates a new tag,whih is also pinned to T . All ations introdued by this seond strategy exeutioninherit both tags of T . When the seond strategy exeution terminates and its tagis removed, then the resulting tasks arry still the tag of the �rst strategy exeution.Thus, when the �rst strategy exeution is re-invoked, it an ontinue to takle thesetasks.Note that the task tags desribe only whih tasks an be takled by a strategyexeution. This does not mean that the other tasks are \invisible" or temporarilyremoved. Control rules evaluated by CPLANNER and PPLANNER an reason on alltasks of the urrent agenda.Exeution MessagesWhen a strategy exeution stops, then its result and the reason why it stops arerelevant information for Multi sine Multi treats di�erent kinds of terminationdi�erently (see setion 7.5). Moreover, this information is important for the meta-reasoning with strategi ontrol rules. Therefore, eah strategy exeution in Multistops with a so-alled exeution message, whih ontains the available terminationinformation. So far, Multi uses the following exeution messages:� A suess message ours when the strategy exeution is suessful on thegiven task.� A failure message ours when the strategy exeution fails on the given taskbeause of some problems (e.g., a strategy of PPLANNER fails beause there areno further appliable ations).� An interruption message ours when a strategy of CPLANNER or PPLANNER isinterrupted.The algorithms an attah further information to the exeution messages, whihan also be used by the strategi ontrol rules. For instane, an algorithm an attahinformation on what kind of failure ourred to a failure message (see setion 7.6.5).Exeution messages are stored in the history entries reated by the strategyexeutions (see setion 7.4). When whih algorithm terminates with whih exeutionmessage is desribed in detail in setion 7.5. When a strategy exeution terminateswith a suess message we also say that the appliation of the strategy was suessful .Demands and Memory EntriesFor the algorithms CPLANNER and PPLANNER a strategy exeution an interrupt.If this is the ase, the strategy exeution reates so-alled demands and adds themto the demand repository on the ontrol blakboard. Multi knows for the followingdemands :



116 Chapter 7. Formal Desription of Multi� A demand S �ON � T , whih spei�es a strategy S and a task T , is alleda strategy-task-demand . This demand is satis�ed by a suessful appliationof the strategy S to the task T .� A demand S �ON�?, whih spei�es a strategy S but no task, is alled astrategy-demand . This demand is satis�ed by a suessful appliation of thestrategy S to any task.� A demand ?�ON � T , whih spei�es a task T but no strategy, is alleda task-demand . This demand is satis�ed by a suessful appliation of anystrategy to the task T .An interrupted strategy exeution writes also an entry into the memory reposi-tory on the ontrol blakboard. A memory entry is a pair (�T ; fPD1 ; : : : ; PDng) of atask tag �T and a set of pointers fPD1 ; : : : ; PDng to the demands of the interruptedstrategy exeution in the demands repository. Multi uses the �T to re-invoke thestrategy exeution later on (see setion 7.5.2 for details). Moreover, it makes useof the pointers to hek whether the demands of the interrupted strategy are satis-�ed suh that the strategy exeution an be re-invoked again (see setion 7.5.1 fordetails).7.2 Strategi AtionsPLAN omputes and introdues ations into a proof plan. An ation is an in-stantiation of a method, whih is a pattern of a proof step (see setion 4.1.2). Toextend this approah of ation omputation and introdution to strategi proofplanning there is a strategi pattern assoiated with eah algorithm in Multi (ex-ept BACKTRACK). The appliation of a strategy omputes an instantiation of thepattern of its algorithm, a so-alled strategi ation, and introdues it into thestrategi proof plan.In this setion we shall desribe the strategi ations reated by the algorithms
PPLANNER, INSTMETA, EXP, ATP, and CPLANNER. The algorithm BACKTRACK does notreate ations but deletes ations of other algorithms. Note that, heneforth, weall instantiations of methods method ations in order to distinguish them from thedi�erent strategi ations, whih we all PPLANNER ations , INSTMETA ations , EXPations , ATP ations , and CPLANNER ations .Tehnially, strategi ations are implemented as frame data strutures. Eahstrategi ation has the slots strategy, task, and binding-store. The strategy of anation and the task of an ation are pointers to the strategy and the task withrespet to whih the ation was omputed. The binding store of an ation is apointer to the binding store, whih was the urrent binding store, when the ationwas omputed. Depending on the algorithm the di�erent strategi ations have alsofurther slots.
PPLANNER and CPLANNERThe algorithms PPLANNER and CPLANNER suessively introdue ations into astrategi proof plan, PPLANNER with respet to a given set of methods and ontrolrules, CPLANNER with respet to a given plan or a given plan fragment. Thus,ations of PPLANNER and CPLANNER are essentially abstrations of the sequene ofations introdued by the respetive algorithm. The sequene of introdued ationsis stored in the slot ation-sequene of a PPLANNER or CPLANNER ation.



7.2. Strategi Ations 117Exeutions of PPLANNER and CPLANNER strategies an interrupt and an be re-invoked later on. Thus, one exeution an onsist of several periods. PPLANNER and
CPLANNER reate a strategi ation for eah period of the same strategy exeution.Eah of these ations ontains the initial task to whih the strategy was appliedin the task slot. In its ation-sequene slot eah ation ontains only those ationsthat were introdued during the orresponding exeution period. Note that theinformation stored in the strategi ations is not suÆient to identify ations thatbelong to the same strategy exeution. For that purpose also information stored inthe orresponding history entries is needed (see setion 7.4 for details on the historyentries).

PPLANNER Ationstrategy NormalizeLineTasktask LThm: LAss1 ; LAss2 ` 9x (0 < x ^ F [x℄) (open) J fLAss1 ; LAss2gbinding store BSation-sequene [A9I-B; A^I-B; : : :℄Figure 7.1: A strategi ation of PPLANNER.An example for an ation of PPLANNER is given in Figure 7.1. The strategiation results from the appliation of the strategy NormalizeLineTask to the line-taskLThm: LAss1 ; LAss2 ` 9x (0 < x ^ F [x℄) (open) J fLAss1 ; LAss2g. First, PPLANNERapplies the method 9I-B to the initial task. Then, it applies the method ^I-B to theresulting task with task-formula 0 < mvx ^ F [mvx℄. If F [mvx℄ is again a omplexformula, then PPLANNER an perform further ations in order to deompose F [mvx℄.The sequene of ations performed by PPLANNER, [A9I-B; A^I-B; : : :℄, is stored inthe slot ation-sequene of the strategi ation.
ATPThe algorithm ATP employs external automated theorem provers to prove line-tasks. If the automated theorem prover sueeds, then the ATP algorithm losesthe goal of the line-task and reates a strategi ation and stores the output of theexternal system in the slot output.An example for an ation of ATP is given in Figure 7.2. The strategy CallTrampis applied to the (trivial) problem to show that P ) P holds. The problem ispassed to Tramp, whih provides as output the ND-proof given in the output slotof the ation.

ATP Ationstrategy CallTramptask L:; ` P ) P (open) J ;binding store BSoutput L1. L1 `P (Hyp)L2. L1 `P (Weaken)L. ; `P ) P ()I L2)Figure 7.2: A strategi ation of ATP.



118 Chapter 7. Formal Desription of Multi
EXPThe algorithm EXP expands omplex steps, i.e., method or tati steps in theonstruted PDS. For a proof line L with justi�ation (J P1 : : : Pn), where J is amethod or a tati and P1; : : : ; Pn are the premises, EXP omputes a proof segmentthat derives the onlusion L of the step from its premises P1; : : : ; Pn at a lowerlevel of abstration. This proof segment is stored in the slot expansion-segment of anation of EXP. Moreover, an EXP ation ontains the slot open-lines, whih ontainsthe set of new open lines that are introdued in the expansion-segment.1An example is given in Figure 7.3. This EXP ation results from the expansionof the justi�ation (=Subst-B LThm0 LAss1) of proof line LThm (ompare withexample 4.5 in setion 4.1.2). When this step is expanded, then the proof shemaof the method =Subst-B (see setion 4.1.1) is instantiated in order to derive LThmfrom the premises LThm0 and LAss1 as given in the expansion-segment in Figure 7.3.

EXP Ationstrategy EXPtask LThm: LAss1 ; LAss2 ` even(a+ b) (=Subst-B LThm0 LAss1)jExpbinding store BSexpansion-segment LAss1 . LAss1 ` a := (Hyp)LThm0 . LAss1 ; LAss2 ` even(+ b) (Open)L1. LAss1 ; LAss2 `8P P ()) P (a) (�E LAss1 ( :=))L2. LAss1 ; LAss2 ` (�x even(x+ b))())(�x even(x+ b))(a) (8E L1 (�x even(x+b)))L3. LAss1 ; LAss2 ` even(+ b)) even(a+ b) (�$ L2)LThm. LAss1 ; LAss2 ` even(a+ b) ()E L3 LThm0 )open-lines fg Figure 7.3: A strategi ation of EXP.
INSTMETAThe algorithm INSTMETA omputes instantiations of meta-variables. An ation of
INSTMETA stores the omputed instantiation in the slot instantiation. An example foran ation of INSTMETA is given in Figure 7.4. This ation results from the appliationof the strategy ComputeInstFromCS to the task mvÆjInst. INSTMETA omputes theinstantiation min(Æ1 ; Æ2) for mvÆ and stores it in the instantiation slot.

INSTMETA Ationstrategy ComputeInstFromCStask mvÆ jInstbinding store BSinstantiation min(Æ1 ; Æ2)Figure 7.4: A strategi ation of INSTMETA.1If one of the premises P1; : : : ; Pn is open, then it is not in this slot, sine it was not hangedby the expansion (i.e., its open justi�ation was not reated by the expansion).



7.3. Strategi Proof Plans 1197.3 Strategi Proof PlansIn this setion, we shall extend the notions introdued in setion 4.2.1 to strategiproof plans. We start with the de�nitions of a strategi proof planning problem,an initial PDS of a strategi proof planning problem (whih is the same as theinitial PDS of a proof planning problem), and an initial agenda of a strategi proofplanning problem (whih is di�erent from the initial agenda of a proof planningproblem sine it may ontains instantiation-tasks).Definition 7.2 (Strategi Proof Planning Problem):A strategi proof planning problem is a quadruple (Thm; fAss1; : : : ; Assng;S; CS),where Thm and Ass1; : : : ; Assn are formulas in 
mega's higher-order language, Sis a set of strategies, and CS is a set of strategi ontrol rules. Thm is also alled thetheorem of the strategi proof planning problem whereas Ass1; : : : ; Assn are alledthe assumptions of the strategi proof planning problem.Definition 7.3 (Initial PDS, Initial Agenda):Let (Thm; fAss1; : : : ; Assng;S; CS) be a strategi proof planning problem. The ini-tial PDS of this problem is the PDS that onsists of an open line LThm with formulaThm and the lines LAssi with formula Assi and the hypothesis justi�ationHyp, re-spetively. The initial agenda of the strategi proof planning problem is the agendathat onsists of the line-task LThm J fLAss1 ; : : : ; LAssng and an instantiation-taskmvjInst for eah meta-variable in LThm; LAss1 ; : : : ; LAssn .Next, we extend the ation appliability notion of PLAN. InMulti, ations areappliable with respet to a PDS and a binding store. In partiular, an ation isappliable only if the urrent binding store equals2 the binding store with respetto whih the ation was omputed (i.e., the binding store that is stored in theslot binding store of the ation). This restrition is neessary sine the omputationof ations an rely on given bindings in the urrent binding store. Moreover, weextend the ation introdution funtions � and ~� of PLAN (see de�nition 4.11 andde�nition 4.12) to the strategi ation introdution funtions �Multi and ~�Multi.�Multi desribes the operational semantis of an ation inMulti when it is appliedto an agenda, a PDS, a sequene of ations, and a sequene of bindings stores, i.e.,�Multi de�nes a transition relation between quadruples of agendas, PDSs, sequenesof ations, and sequenes of binding stores. First, we give general de�nitions of�Multi and ~�Multi. Then, we de�ne for eah kind of ation used in Multi when itis appliable and the results of its introdution by �Multi.Definition 7.4 (Ation Introdution Funtions �Multi and ~�Multi): Theation introdution funtion �Multi is a partial funtion that maps a sequene ofations, an agenda, a PDS , a sequene of binding stores, and an appliable ationinto a sequene of ations, an agenda, a PDS , and a sequene of binding stores,i.e., �Multi : ~A� Â�P � ~BS�Aadd 7! ~A'� Â'�P '� ~BS'.The reursive ation introdution funtion ~�Multi is a partial funtion that maps asequene of ations, an agenda, a PDS, a sequene of binding stores, and a sequeneof ations into a sequene of ations, an agenda, a PDS , and a sequene of bindingstores, i.e., ~�Multi : ~A� Â�P � ~BS� ~Aadd 7! ~A'� Â'�P '� ~BS'.2Two binding stores are equal when they ontain the same bindings.



120 Chapter 7. Formal Desription of Multi~�Multi is reursively de�ned as follows:Let ~A be a sequene of ations, Â an agenda, P a PDS , ~BS a sequene of bindingstores, and ~Aadd a sequene of ations.1. If ~Aadd is empty, then~�Multi( ~A; Â;P ; ~BS; ~Aadd) := ( ~A; Â;P ; ~BS).2. Otherwise let Aadd := first ( ~Aadd) and ~A'add := rest ( ~Aadd). If Aadd is applia-ble with respet to P and the last binding store of ~BS, and if Â ontains thetask of Aadd, then~�Multi( ~A; Â;P ; ~BS; ~Aadd) := ~�Multi(�Multi( ~A; Â;P; ~BS; Aadd); ~A'add).Method AtionsA method ation is appliable with respet to a PDS, if the given lines ofthe ation are in the PDS. �Multi di�ers from � in two points. First, �Multireates not only new line-tasks but also new instantiation-tasks (for eah new meta-variable in the new outlines reated by the method ation) and new expansion-tasks(for eah onlusion of the method ation). Seond, Multi allows method ationsthat ontain binding onstraints in their onstraints slot. These binding onstraintsare labeled with Binding, whih indiates that they are not passed to an externalonstraint solver but to the binding store.3 When the ation is introdued, a newbinding store is reated and added to the sequene of binding stores. The newbinding store results from the union of the bindings of the last binding store andthe new bindings. The instantiation-tasks whose meta-variables are bound by thenew bindings are then removed from the agenda.Definition 7.5 (Appliable Method Ations): Let P be a PDS , BS a bindingstore, and Aadd a method ation with the binding store BSAadd . Moreover, let Lbe the set of proof lines of P and let 	Cons be the 	 onlusions, 	Prems the 	premises, and BPrems the blank premises of Aadd. Aadd is appliable with respetto P and BS, if1. (	Cons [ 	Prems [ BPrems) is a subset of L,2. BSAadd = BS.Definition 7.6 (�Multi on Method Ations): Let ~BS be a sequene of bindingsstores and let BS be the last binding store of ~BS. Let ~A be a sequene of ationsand let Aadd be a method ation, whih is appliable with respet to a PDS P andBS.Moreover, let �Cons be the � onlusions, 	Cons the 	 onlusions, �Premsthe � premises, 	Prems the 	 premises, and BPrems the blank premises ofAadd. Let T = Lopen J SUPPSLopen be the task of Aadd and let � be the bindingonstraints of Aadd.Prems:=�Prems [ 	Prems [BPrems,Cons:=�Cons [ 	Cons3Internal binding onstraints in method ations were �rst introdued by LassaadCheikhrouhou in an extension of PLAN for proof planning diagonalization proofs [49℄.



7.3. Strategi Proof Plans 121New-Lines:=�Cons[ �PremsNew-Supps:=(SUPPSLopen [�Cons) � 	Prems.New-Line-Tasks:=[LJ New-Supps j L 2 �Prems℄.New-Inst-Tasks:=[mvjInst j mv 2 New-Lines and not mvjInst in Â℄.New-Exp-Tasks:=[CjExp j C in Cons℄.New-Tasks:=New-Line-Tasks [ New-Inst-Tasks [ New-Exp-Tasks.Old-Inst-Tasks:=[mvjInst j mv:=b t 2 �℄.Ârest:=Â� ([T℄ [ Old-Inst-Tasks)).If Â is an agenda that ontains the task T of Aadd, then the result ( ~A'; Â';P '; ~BS')of �Multi( ~A; Â;P ; ~BS; Aadd) is de�ned by:� ~A':= ~A [ [Aadd℄.� Â':= �New-Tasks [ Ârest if Lopen 2 	Cons;[Lopen J New-Supps℄ [New-Tasks [ Ârest else:� P' results from P by1. adding the proof lines New-Lines, respetively, and2. justifying the proof lines 	Cons and �Cons by the appliation of themethod of Aadd to Prems, respetively.� If � is empty, then ~BS':= ~BS. Otherwise, ~BS':= ~BS [ [BSnew ℄ whereBSnew := fmvi:=b ti�j(mvi:=b ti) 2 BSg [ �.4
INSTMETA AtionsAn INSTMETA ation is appliable with respet to a binding store and a PDS,if the proof lines of the PDS ontain ourrenes of its meta-variable but there isno binding for the meta-variable in the binding store. When applied to an ationof INSTMETA, �Multi reates a new binding store, whih is added to the sequeneof binding stores. The new binding store results from adding a binding for themeta-variable of the instantiation-task of the ation to the last binding store of thesequene.Definition 7.7 (Appliable INSTMETA Ations): Let P be a PDS with prooflines L, BS a binding store, and Aadd an INSTMETA ation. Let TAadd = mvjInst bethe task of Aadd and BSAadd its binding store. Aadd is appliable with respet to Pand BS, if1. there are ourrenes of mv in the formulas of the proof lines L,2. there is no binding for mv in BS,3. BSAadd = BS.Definition 7.8 (�Multi on INSTMETA Ations): Let ~BS be a sequene of bindingsstores and let BS be the last binding store of ~BS. Let ~A be a sequene of ations4ti� is the term that results from the appliation of the binding onstraints in � to the subtermsof ti. That is, eah ourene of a meta-variable mv0 in ti that is bound by a onstraint mv:=b t0in � is replaed by an ourene of t0.



122 Chapter 7. Formal Desription of Multiand let Aadd be an INSTMETA ation, whih is appliable with respet to a PDS Pand BS.Moreover, let T = mvjInst be the task of Aadd and let t be the instantiation for mvin Aadd.�:=fmv:=b tg.If Â is an agenda that ontains the task T of Aadd, then the result ( ~A'; Â';P '; ~BS')of �( ~A; Â;P ; ~BS; Aadd) is de�ned by:� ~A':= ~A [ [Aadd℄.� Â':= Â - [T ℄.� P':= P .� ~BS':= ~BS [ [BSnew℄ where BSnew := fmvi:=b ti�j(mvi:=b ti) 2 BSg [ �.
ATP AtionsAn ATP ation is appliable with respet to a PDS , if the proof lines of theline-task of the ation are in the PDS. When applied to an ation of ATP with taskLopen J fS1; : : : ; Sng, �Multi loses Lopen in the PDS with an appliation of thetati atp. The only resulting new task is an expansion-task for Lopen.Definition 7.9 (Appliable ATP Ations): Let P be a PDS with the proof linesL, BS a binding store, and Aadd an ATP ation. Let TAadd = Lopen J fS1; : : : ; Sngbe the task of Aadd and BSAadd its binding store. Aadd is appliable with respet toP and BS, if1. Lopen 2 L and SUPPSLopen � L,2. BSAadd = BS.Definition 7.10 (�Multi on ATP Ations): Let ~BS be a sequene of bindingsstores and let BS be the last binding store of ~BS. Let ~A be a sequene of ationsand let Aadd be an ATP ation, whih is appliable with respet to a PDS P andBS.Moreover, let T = Lopen J SUPPSLopen be the task of Aadd and let Out be theontent of the slot output of Aadd.If Â is an agenda that ontains the task T of Aadd, then the result ( ~A'; Â';P '; ~BS')of �( ~A; Â;P ; ~BS; Aadd) is de�ned by:� ~A':= ~A [ [Aadd℄.� Â':= (Â� [T ℄) [ [LopenjExp℄.� P' results from P by justifying the proof line Lopen with an appliation of thetati atp to the supports SUPPSLopen and the parameter Out.� ~BS':= ~BS.
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EXP AtionsAn EXP ation is appliable with respet to a PDS, if the losed line in theexpansion-task of the ation is in the PDS and if the premises of the justi�ation ofthe losed line are in the PDS . When applied to an ation of EXP, �Multi introduesthe new proof lines of the expansion-segment slot into the PDS and adds all resultingnew tasks to the agenda, namely new instantiation-tasks for new meta-variables inthe new proof lines, new line-tasks for open lines in the new proof lines, and newexpansion-tasks for all new proof lines, whih have a tati or a method justi�ation.Definition 7.11 (Appliable EXP Ations): Let P be a PDS with the prooflines L, BS a binding store, and Aadd an EXP ation with the binding store BSAadd .Moreover, let TAadd = LjExp be the task of Aadd where L has the justi�ation(J P1 : : : Pn). Aadd is appliable with respet to P and BS, if1. L 2 L and fP1 : : : Png � L,2. BSAadd = BS.Definition 7.12 (�Multi on EXP Ations): Let ~BS be a sequene of bindingsstores and let BS be the last binding store of ~BS. Let ~A be a sequene of ationsand let Aadd be an EXP ation, whih is appliable with respet to a PDS P andBS.Moreover, let T = LjExp be the task of Aadd and (J P1 : : : Pn) the justi�ation ofL (before the expansion).SUPPS:=fP1; : : : ; Png.New-Lines:=expansion-segment of Aadd without L; P1; : : : ; Pn.New-Open-Lines:=open-lines of Aadd.New-Line-Tasks:=[L0 J SUPPS j L0 in New-Open-Lines℄.New-Inst-Tasks:=[mvjInst j mv 2 New-Lines and not mvjInst in Â℄.New-Exp-Tasks:=[L0jExp j(L0 2 New-Lines or L0 = L) andL0 losed by tati or method℄New-Tasks:=New-Line-Tasks [ New-Inst-Tasks [ New-Exp-Tasks.If Â is an agenda that ontains the task T of Aadd, then the result ( ~A'; Â';P '; ~BS')of �( ~A; Â;P ; ~BS; Aadd) is:� ~A':= ~A [ [Aadd℄.� Â':= (Â� [T℄) [ New-Tasks.� P' results from P by1. adding the new justi�ation spei�ed in the expansion segment to L asthe justi�ation of the lowest level of abstration, and2. adding the proof lines New-Lines.� ~BS':= ~BS.
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PPLANNER and CPLANNER AtionsA PPLANNER or CPLANNER ation AS is appliable, if all ations [A1; : : : ; An℄ inits ation-sequene slot are appliable when introdued suessively. When appliedto AS , �Multi stepwise introdues the ations from the sequene [A1; : : : ; An℄ usingthe funtion ~�Multi. Afterwards, it replaes [A1; : : : An℄ in the onstruted ationsequene by AS . That is, the ations A1; : : : ; An are not expliitly mentioned in theonstruted ation sequene but only impliitly as part of the ation of PPLANNERor CPLANNER. This guarantees that �Multi and ~�Multi reate a sequene of strategiations.Definition 7.13 (Appliable CPLANNER and PPLANNER Ations): Let P bea PDS, BS a binding store, and Aadd a PPLANNER or CPLANNER with the ationsequene [A1; : : : ; An℄. Moreover, let TAadd be the task of Aadd and BSAadd itsbinding store. Aadd is appliable with respet to P and BS, if for eah Ai; i = 1 : : : nin [A1; : : : ; An℄ holds:� Let ( ~Ai; Âi;Pi; ~BSi) := ~�Multi( ~A; Â;P; ~BS; [A1; : : : ; Ai�1℄) for an arbitrarysequene of ations ~A and an agenda Â that ontains the task TAadd . Then,Ai is appliable with respet to Pi, and ~BSi and Âi ontains the task of Ai.Definition 7.14 (�Multi on PPLANNER or CPLANNER Ations): Let ~BS be asequene of bindings stores and let BS be the last binding store of ~BS. Let ~A bea sequene of ations and let Aadd be a PPLANNER or CPLANNER ation, whih isappliable with respet to a PDS P and BS.Moreover, let [A1; : : : ; An℄ be the ation-sequene of Aadd.( ~Are; Âre;Pre; ~BSre) := ~�Multi( ~A; Â;P; ~BS; [A1; : : : ; An℄).If Â is an agenda that ontains the task of Aadd, then the result ( ~A'; Â';P '; ~BS') of�( ~A; Â;P; ~BS; Aadd) is de�ned by:� ~A':= ( ~Are � [A1; : : : ; An℄) [ [Aadd℄.� Â':= Âre.� P':= Pre.� ~BS':= ~BSre.With the funtion ~�Multi we an de�ne strategi proof plans and strategi so-lution proof plans. Atually, we shall give three di�erent notions of solution proofplans, whih speify more and more strit onditions for strategi proof plans.Definition 7.15 (Strategi Proof Plans, Strategi Solution Proof Plans):Let (Thm; fAss1; : : : ; Assng;S; CS) be a strategi proof planning problem, P initthe initial PDS of this problem, and Âinit its initial agenda.A strategi proof plan to the strategi proof planning problem is a quadruple SPP =( ~A; Â;P; ~BS) with a sequene of strategi ations ~A, an agenda Â, a PDS P , anda sequene of binding stores ~BS suh that:1. eah strategy of an ation of ~A is in S,



7.4. Strategi Manipulation Reords 1252. ( ~A; Â;P ; ~BS) = ~�Multi([℄; Âinit;Pinit; [℄; ~A),With respet to this de�nition of a strategi proof plan we an also say that�Multi maps a strategi proof plan and an ation into a strategi proof plan andthat ~�Multi maps a strategi proof plan and a sequene of strategi ations into astrategi proof plan.Definition 7.16 (Strategi Solution Proof Plans):Let (Thm; fAss1; : : : ; Assng;S; CS) be a strategi proof planning problem, P initthe initial PDS of this problem, and Âinit its initial agenda.We distinguish the following three notions of a strategi solution proof plan:� A method-level solution proof plan for the problem is a sequene of strategiations ~A suh that ~�Multi([℄; Âinit;Pinit; [℄; ~A) results in an agenda withoutline-tasks and a losed PDS.� An instantiated method-level solution proof plan for the problem is a se-quene of strategi ations ~A suh that ~�Multi([℄; Âinit;Pinit; [℄; ~A) results inan agenda without line-tasks and instantiation-tasks, a losed PDS , and abinding store sequene suh that the last binding store ontains bindings forall meta-variables ourring in proof lines of the �nal PDS .� A full solution proof plan for the problem is a sequene of strategi ations~A suh that ~�Multi([℄; Âinit;Pinit; [℄; ~A) results in an empty agenda, a losedPDS in whih all nodes are justi�ed by ND-rules, and a binding store sequenesuh that the last binding store ontains bindings for all meta-variables o-urring in proof lines of the �nal PDS .The �rst notion of solution proof plan is alled method-level solution proof plansine a strategi proof plan satisfying these onditions is reahed by omputingmethod ations whose introdution satis�es all line-tasks and reates a losed PDS.Instantiation-tasks and expansion-tasks an be ignored. The seond notion of so-lution proof plan, instantiated method-level solution proof plan, demands to taklealso instantiation-tasks. However, expansion-tasks an still be ignored. Finally, inorder to obtain a full solution proof plan the expansion-tasks have to be solved. Weshall desribe in setion 7.6.2 how a user an make Multi searh for a partiularkind of solution proof plan.7.4 Strategi Manipulation ReordsSimilar to PLAN, Multi onstruts a history onsisting of manipulation reords .These manipulation reords ontain information, whih an be used by the ontrolrules in order to perform meta-reasoning.A strategy exeution of the algorithms EXP, ATP, and INSTMETA reates one so-alled strategy-appliation reord (see Figure 7.5). The slots agenda and alternative-job-o�ers apture the ontext in whih the manipulation was done whereas the theslots introdued-ation, new-tasks, and exeution-message store the result of the ma-nipulation. The slot agenda aptures the agenda before the strategy is applied. Theslot alternative-job-o�ers ontains the list of alternative job o�ers, when the strategy



126 Chapter 7. Formal Desription of MultiStrategy-Appliation:agendaalternative-job-o�ersintrodued-ationnew-tasksexeution-messageFigure 7.5: A strategy-appliation reord.was applied. The �rst job o�er in this list is the applied strategy and the task towhih the strategy was applied. The performed manipulation, namely the ationintrodued by the exeution of the strategy, is stored in the introdued-ation slot.This slot is empty, if the exeution of a strategy failed. The new tasks reated by theintrodution of the ation are stored in the slot new-tasks. The slot exeution-messageontains the exeution-message returned by the strategy exeution.Strategy exeutions of the algorithms PPLANNER and CPLANNER reate two manip-ulation reords. When they are invoked or re-invoked, they reate a strategy-startreord ; when they terminate or are interrupted, then they reate a strategy-stopreord . Figure 7.6 shows the skeletons of these two manipulation reords.Strategy-Start:agendaalternative-job-o�erstask-tag Strategy-Stop:task-tagintrodued-ationnew-tasksexeution-messageFigure 7.6: Manipulation reords reated by PPLANNER and CPLANNER.The strategy-start and strategy-stop reords divide the information of a strategy-appliation reord into two parts: the information available when the strategy isinvoked or re-invoked, whih is stored in a strategy-start reord, and the informa-tion available when the strategy stops, whih is stored in a strategy-stop reord.Hene, a strategy-start reord has the slots agenda and alternative-job-o�ers whereas astrategy-stop reord has the slots introdued-ation, new-tasks, and exeution-message.Additionally, both reords have the slot task-tag, whih ontains the task-tag thatuniquely identi�es the strategy exeution.Note that the manipulation reords of the steps performed within a strategyexeution of PPLANNER or CPLANNER are themselves part of the history. They arenot stored in a PPLANNER or CPLANNER history element but only delimited by thestrategy-start and strategy-stop reords of the strategy exeution. This approahmakes information available as early as possible. In partiular, the information onthe situation when the strategy was invoked or re-invoked and the information onall steps performed by a strategy exeution so far are available for the ontrol rulesevaluated within the strategy exeution.Strategies of the BACKTRACK algorithm reate two manipulation reords whoseskeletons are given in Figure 7.7. The baktrak-start reord ontains the informa-tion available when the baktraking is started (stored in the agenda and alternative-job-o�ers slots) as well as the information whih ations the strategy deided todelete. The baktrak-stop reord ontains the information available when the
BACKTRACK strategy stops. Sine strategies of BACKTRACK do not reate ations,this reord ontains only a slot for the exeution message.



7.5. The Algorithms 127BakTrak-Start:agendaalternative-job-o�ersations-to-delete BakTrak-Stop:exeution-messageFigure 7.7: Manipulation reords reated by BACKTRACK.Similar to CPLANNER and PPLANNER, strategy exeutions of BACKTRACK su-essively perform also a set of individual steps. When exeuted, a strategy of
BACKTRACK omputes �rst whih ations it has to delete. These ations are storedin the start reord. However, in order to delete these ations maybe other ationshave to be deleted as well (see setion 7.5.7 for details). All single deletion stepsare stored in ation-deletion reords as in PLAN (see setion 4.2). Hene, a startand stop reord pair of a BACKTRACK strategy exeution delimits the manipulationreords of all single deletion steps performed within this strategy exeution.7.5 The AlgorithmsIn this setion, we shall desribe the algorithms used in Multi. First, we explainMulti's top-level algorithm. Then, we desribe the re�nement and modi�ationalgorithms integrated so far, namely PPLANNER, CPLANNER, EXP, ATP, INSTMETA, and
BACKTRACK.In the remainder of this setion we assume that eah funtion and algorithmused in Multi has aess to the blakboards and the entries on them. Hene, whenan algorithm or a funtion aesses information from a blakboard we shall notmention the respetive blakboard expliitly as an argument of the funtion. Theonly exeptions are the funtions write-onto-blackboard, whih sets the value of anentry on a blakboard, and take-from-blackboard, whih returns the value of an entryon a blakboard. Both funtions obtain the blakboard on whih they should workas argument. In the following desriptions of the algorithms we use PB and CB asabbreviations for the proof blakboard and the ontrol-blakboard, respetively.7.5.1 The Multi AlgorithmFigure 7.8 gives a pseudo-ode desription of theMulti algorithm. Multi is appliedto a strategi proof planning problem with a theorem Thm, a set of assumptionsAss1; : : : ; Assn, a set of strategies S, and a set of strategi ontrol rules CS . Its out-put is a strategi proof plan for the given problem (Thm; fAss1; : : : ; Assng;S; CS).Multi's �rst step is to initialize the proof and the ontrol blakboard. It writesonto the proof blakboard an empty sequene of ations, the initial agenda and theinitial PDS of the given problem, and a sequene of binding stores whose only entryonsists of an empty binding store. Moreover, it writes onto the ontrol blakboardan empty set of memory entries, an empty set of demands, and an empty sequeneof job o�ers.The next four steps, steps 2|5 in Figure 7.8, of Multi perform the strategyseletion and invokation yle that is skethed in Figure 6.2 in the previous hapter.Step 2 employs the funtions trigger-jobs-from-strategies and trigger-jobs-from-memory .
trigger-jobs-from-strategies heks whether the ondition of an element of S is satis�edby some tasks of the urrent agenda on the proof blakboard. A strategy S 2 Splaes a job o�er onto the ontrol blakboard for eah task T for whih its ondition



128 Chapter 7. Formal Desription of MultiInput: A strategi proof planning problem (Thm; fAss1; : : : ; Assng;S; CS) with a theorem for-mula Thm, a set of assumption formulas Ass1; : : : ; Assn, a list of strategies S, and a listof strategi ontrol rules CS .Output: A strategi proof plan SPP = ( ~A; Â;P; ~BS) with a sequene of strategi ations ~A, anagenda Â, a PDS P, and a sequene of binding stores ~BS.Algorithm: Multi(Thm; fAss1; : : : ; Assng;S; CS)1. InitializationLet Â:=initial-agenda(Thm; fAss1; : : : ; Assng).Let P :=initial-PDS (Thm; fAss1; : : : ; Assng).
write-onto-blackboard([℄; sequene-of-ations; PB).
write-onto-blackboard(Â; agenda; PB).
write-onto-blackboard(P ; pds; PB).
write-onto-blackboard([fg℄; sequene-of-binding-stores; PB).
write-onto-blackboard([℄; history; PB).
write-onto-blackboard(;;memory; CB).
write-onto-blackboard(;; demands; CB).
write-onto-blackboard([℄; job-o�ers; CB).2. Job O�ers
trigger-jobs-from-strategies(S).
trigger-jobs-from-memory().3. Guidane
invoke (MetaReasoner; CS).4. InvoationLet J :=remove-free-jobs(take-from-blackboard(job-o�ers; CB)).If J = ;thenterminate and return(take-from-blackboard(sequene-of-ations; PB),

take-from-blackboard(agenda; PB),
take-from-blackboard(pds; PB),
take-from-blackboard(sequene-of-binding-stores; PB)).elseLet J :=first (J ).If job-offer-from-strategy(J)then (i.e., J = (S; T ))

invoke (algorithm-of-strategy(S); (S; T );J ).else (i.e., J = (�T ; Demands))
invoke (algorithm-of-task-tag(�T );�T ;J ).5. ExeutionWait until strategy-ks-terminated().6. AdministrationIf strategy-ks-terminated-successful(), then delete-satisfied-demands().Goto step 2. Figure 7.8: The Multi algorithm.is true. The funtion trigger-jobs-from-memory writes for eah memory entry a jobo�er onto the ontrol blakboard. Afterwards, step 3 invokes the MetaReasoner,



7.5. The Algorithms 129whih evaluates the strategi ontrol rules CS on the job o�ers.In step 4, Multi �rst reads the resulting list of job o�ers and deletes the jobo�ers whose strategies have still uninstantiated free parameters. If the resultinglist is empty, then Multi terminates and returns the strategi proof plan (i.e., thesequene of ations, the agenda, the PDS, and the sequene of binding stores) onthe proof blakboard. Otherwise Multi piks the �rst job o�er and invokes theorresponding strategy. If the job o�er was plaed by a strategy S with respet toa task T , whih satis�es the ondition of S, then Multi invokes the algorithm of Swith the pair (S; T ) as argument. If the job o�er was plaed from a memory entrywith task tag �T , then algorithm-of-task-tag omputes the algorithm that reatedthe tag �T using information stored in the history and invokes this algorithm with�T as argument. In both ases the invoked algorithm obtains the list of all jobo�ers on the ontrol blakboard as seond argument.The invoked algorithm re�nes or modi�es the proof blakboard objets andmaybe plaes demands and a memory entry onto the ontrol blakboard. Multiwaits until the exeution of the strategy terminates (see step 5). Then, step 6heks whether the strategy terminated suessfully. This hek is performed bythe funtion strategy-ks-terminated-successful , whih looks up the exeution messageof the last history on the proof blakboard. If this exeution message is a suessmessage, then Multi employs the funtion delete-satisfied-demands to delete alldemands on the ontrol blakboard that are satis�ed by the terminated strategyexeution as well as all pointers in memory entries to those demands. Afterwards,Multi restarts its yle by proeeding with step 2.We onlude this setion with two remarks on the desribed algorithm:1. When employing the funtions trigger-jobs-from-memory (in step 2) and delete-
satisfied-demands (in step 6) Multi hanges the ontent of the ontrol blak-board. This is a violation of the blakboard priniple, whih states that theontent of the blakboards should only be hanged by respetive knowledgesoures. For the sake of simpliity of Multi's blakboard approah we imple-mented these minor blakboard hanges as diret funtionalities of theMultialgorithm. However, in order to avoid a violation of the blakboard prini-ple, we ould understand these two funtions as partiular knowledge souresworking on the ontrol blakboard, whih are sheduled by Multi in a pre-de�ned way.2. PLAN terminates either with a solution proof plan or, after traversing thesearh spae, with a failure. Multi terminates as soon as there is no furtherjob o�er to invoke (see step 4). However, the lak of job o�ers states nothingabout the status of the strategi proof planning proess. When there are nofurther tasks in the agenda, then there are no further job o�ers sine thereis a strategi solution proof plan on the proof blakboard. But it is possiblethat there are still tasks in the agenda although there are no further job o�ers.It is possible that there are no strategies to takle these tasks (i.e., there isno strategy whose ondition is satis�ed by the task) or strategi ontrol rulesan remove all existing job o�ers. If Multi terminates and there are stilltasks in the agenda, then it is up to the user to analyze the situation. Isthe strategi proof plan reated so far a suÆient solution proof plan (whenthe user is interested in a method-level solution proof plan then expansion-tasks and instantiation-tasks an be ignored)? Are further strategies neededthat an deal with partiular tasks? Are less restritive strategi ontrol rulesneeded that do not remove so muh job o�ers?



130 Chapter 7. Formal Desription of Multi7.5.2 The PPLANNER AlgorithmStrategies of the algorithm PPLANNER re�ne a strategi proof plan by suessivelyadding method ations, whih PPLANNER abstrats in one strategi ation, whenit terminates. A strategy of PPLANNER spei�es four parameters: a proedure forthe omputation of the next method ation to introdue, parameters for the set ofusable methods and ontrol rules, and a termination ondition. We disussed somestrategies of PPLANNER already in setion 6.2.1. More examples are given in thefollowing hapters, when we desribe the ase studies.Figure 7.9 gives a pseudo-ode desription of the PPLANNER algorithm. PPLANNERobtains two arguments. When a PPLANNER strategy S is intially invoked, then
PPLANNER's �rst input is a pair (S; T ) onsisting of the strategy S and a line-taskT . When a strategy exeution is re-invoked, then the �rst argument is the task tagof the strategy exeution. The seond argument for PPLANNER is the list of all alter-native job o�ers on the ontrol blakboard, when PPLANNER is invoked. PPLANNERreturns no spei� output but updates the ontent of the proof blakboard by intro-duing suessively method ations. Essentially, PPLANNER performs a yle of taskseletion, ation seletion, and ation introdution, whih is similar to the yle ofPLAN. This ore yle is ompleted by an initialization step and di�erent eventsthat stop the PPLANNER algorithm, namely suessful termination, interruption, andfailure.In the initialization step (step 1 in Figure 7.9) PPLANNER extrats the informationof the strategy and the initial task with respet to whih it runs. First, it employsthe funtion extract-from-input , whih omputes the urrent task tag �T , the urrentstrategy S, and the initial task T . If the �rst input of PPLANNER is a pair (S; T )(i.e., initial all of S on T ), then the information on S and T is diretlty aessibleand extract-from-input reates a new task tag �T , whih it attahes to T . If the�rst input of PPLANNER is a task tag �T (i.e., re-invokation of interrupted strategyexeution), then extract-from-input employs information from the history to omputethe strategy S and the initial task T that orrespond to the given task tag. Next,
PPLANNER uses the funtion parameters-of-strategy to obtain the parameters of thestrategy S, whih are a list of methodsM, a list of ontrol rules C, the terminationondition, and the ation omputation and seletion proedure. So far, we have im-plemented two ation omputation and seletion proedures, namely CHOOSEACTION(see setion 4.2.4) and CHOOSEACTIONALL (see appendix A).5 Afterwards, PPLANNERadds a strategy-start reord to the history and sets the algorithm variable ~Aaddto the empty list. In this variable PPLANNER stores the method ations, whih itintrodues suessively.Step 2 and step 3 in Figure 7.9 hek whether PPLANNER terminates suessfullyor interrupts. We postpone the detailed disussion of these two steps until the dis-ussion of step 7 in order to disuss together all three steps that stop PPLANNER andthe di�erenes among them. The next three steps | step 4, step 5, and step 6 | arethe ore yle of seleting the next task, omputing and seleting the next methodation, and introduing the seleted ation. Essentially, these steps orrespond tostep 2, step 3, and step 4 of PLAN in Figure 4.9 in setion 4.2.2, they are onlysligthly adapted toMulti. When PPLANNER selets the next task to takle in step 4,then it evaluates the ontrol rules of kind `Task' not on the whole agenda of the5Note that parts of these algorithms work slightly di�erently when used in Multi as opposedto the funtionality desribed in setion 4.2.4 and appendix A. All funtions used within thesealgorithms that math proof lines of a method with proof lines of a task (e.g., match-task-line ,
match-s+p see setion 4.2.4) apply �rst the bindings of the urrent binding store to the prooflines of the task. Then, they perform the respetive mathings with respet to this \up-to-date"proof lines instead of the original ones.



7.5. The Algorithms 131Input: (1) either a pair (S; T ) where S is a PPLANNER strategy and T is a line-task or a task tag�T , (2) the list of all alternative job o�ers J .Output: No output, only hanges of the blakboards.Algorithm: PPLANNER(arg1;Jrest))1. InitializationLet (�T ; S; T ):=extract-from-input(arg1).Let (M; C; term-ond; ation-pro):=parameters-of-strategy(S).
add-strategy-start-record-to-history(Jrest;�T ).Let ~Aadd:=[℄.2. Suessful Termination Chek(see Figure 7.10)3. Interruption Chek(see Figure 7.10)4. Task Seletion:Let urrent task Turr:= first (evalcrules-tasks (tasks-with-tag (�T ); C)).5. Ation SeletionLet (Aadd,A):=apply (ation-pro; Turr;M; C) where Aadd is an ationand A is the set of omputed alternative ations.6. Ation IntrodutionIf Aadd is giventhenPB:=�Multi(Aadd; PB).

add-action-intro-record(Aadd,A).~Aadd:= ~Aadd [ [Aadd℄.If extract-constraints (Aadd) 6= ;then
pass-constraints (extract-constraints (Aadd)).Goto step 2.7. Failure(see Figure 7.10)Figure 7.9: The PPLANNER algorithm.proof blakboard, but only on the tasks that arry the urrent task tag �T (the re-strited initial alternative list is omputed by the funtion tasks-with-tag ). Whereasin PLAN the appliation of the algorithm CHOOSEACTION is �x, PPLANNER appliesthe ation omputation proedure spei�ed as parameter of the urrent strategy instep 5. When an ation is found, then PPLANNER applies this ation in step 6 with thefuntion �Multi to the ation sequene, the agenda, the PDS , and the sequene ofbinding stores on the proof blakboard. We write this as \PB:=�Multi(Aadd; PB)"and do not refer to the hanged elements of the proof blakboard expliitly. Similarto PLAN, PPLANNER adds a history entry for the introdued ation and passes newonstraints to external onstraint solvers. Additionally, the introdued ation isadded to ~Aadd. Afterwards, PPLANNER ontinues with step 2.

PPLANNER an stop at three di�erent plaes, namely step 2, step 3 and step 7,



132 Chapter 7. Formal Desription of Multi2. Termination ChekIf no-tasks-with-tag (�T ) or apply (term-ond) = truethenLet message:=create-success-message(S; T ).Let ASadd:=create-strategic-action( ~Aadd).
replace-actions( ~Aadd; ASadd).
remove-tag (�T ).
add-strategy-stop-record-to-history(�T ; ASadd;message).Terminate.3. Interruption ChekLet I :=first (evalcrules-interrupt([Nil;True℄; C)).If I = TruethenLet message:=create-interrupt-message(S; T ).Let ASadd:=create-strategic-action( ~Aadd).
replace-actions( ~Aadd; ASadd).
write-to-demands(demands (I)).
write-to-memory(�T ; demands (I)).
add-strategy-stop-record-to-history(�T ; ASadd;message).Terminate.7. FailureIF Aadd is not giventhenLet message:=create-failure-message(S; T ).Let ASadd:=create-strategic-action( ~Aadd).
replace-actions( ~Aadd; ASadd).
write-to-demands(f?�ON � Tg).
write-to-memory(�T ; f?�ON � Tg).
add-strategy-stop-record-to-history(�T ; ASadd;message).Terminate.Figure 7.10: Leaving the PPLANNER algorithm.whih are given in detail in Figure 7.10. Step 2 heks whether the appliationof the strategy of PPLANNER was suessful suh that PPLANNER should stop. Thisis the ase either when the termination ondition of the strategy is satis�ed orwhen there are no further tasks whih arry the task tag of the strategy exeution.Step 3 employs the funtion evalcrules-interrupt to evaluate the ontrol rules of kind`Interrupt' on the alternative list [False,True℄, where False auses no interruptwhereas True auses an interrupt. The ontrol rules of kind `Interrupt' an alsoompute demands and attah the demands to the True element of the alternativelist. Finally, step 7 is performed, when step 5 does not provide a method ation tointrodue, that is, step 7 deals with a failure situation in PPLANNER.Some omputations are the same in all three steps. They all ompute an exeu-tion message message and employ the funtion create-strategic-action to ompute astrategi ation ASadd from the olleted sequene of method ations ~Aadd. Moreover,they all replae the sequene of method ations by a new strategi ation in the a-tion sequene on the proof blakboard (this is done by the funtion replace-actions).



7.5. The Algorithms 133Finally, they all add a strategy-stop entry to the history before they terminate.The three steps di�er in the reated exeution message and in whether and whihmemory entries and demands they reate. When the strategy knowledge soure ter-minates suessfully, then PPLANNER reates a suess message and does not writememory entries or demands onto the ontrol blakboard. Rather, it applies thefuntion remove-tag , whih removes its task tag from all tasks in the agenda onthe proof blakboard. If the exeution of the strategy interrupts, then it reatesan interruption message and plaes a memory entry and demands onto the ontrolblakboard. The demands stem from the evaluated ontrol rules of kind `Interrupt'and the memory entry onsists of the task tag and pointers to the added demands.If PPLANNER has to deal with a failure ouring with respet to the task Turr, thenit reates a failure message. Moreover, it writes a task-demand ?�ON � Turr anda memory entry onsisting of the task tag and a pointer to this task-demand ontothe ontrol blakboard. Sine a failure reates a memory entry and a demand, wean understand it as a speial kind of interrupt | the di�erene with respet tothe origin of the interruption is reorded in the exeution messages.The further interpretation of and reation to the termination is left to Multiand meta-reasoning at the strategy-level (this holds also for all other re�nementand modi�ation algorithms employed by Multi, whih an terminate in di�erentways). If the last strategy exeution terminated with a suess message, thenMultideletes all demands on the ontrol blakboard that are satis�ed by this strategy ex-eution (see previous setion). Moreover, strategi ontrol rules an make use ofthe information ontained in the exeution messages. For instane, the strategiontrol rule prefer-baktrak-if-failure (see setion 6.2.3) analyses the exeu-tion messages and prefers to perform some baktraking if the last strategy was a
PPLANNER strategy and terminated with a failure message. This ontrol rule (whihan be overwritten by more spei� ontrol rules) fores a systemati traversal ofthe searh spae given by a PPLANNER strategy.7.5.3 The CPLANNER AlgorithmStrategies of the algorithm CPLANNER re�ne a strategi proof plan by suessivelytransfering ations from a soure proof plan into the proof plan under onstrution.A strategy of CPLANNER spei�es three parameters: a list of ation transfer proe-dures, a list of ontrol rules, and a termination ondition. We disussed an examplestrategy of CPLANNER already in setion 6.2.4. More examples are disussed in [210℄.Figure 7.11 gives a pseudo-ode desription of CPLANNER. CPLANNER obtainstwo arguments. When a CPLANNER strategy S is intially invoked, then CPLANNER's�rst input is a pair (S; T ) onsisting of the strategy S and a line-task T . Whena strategy exeution is re-invoked, then the �rst argument is the task tag of thestrategy exeution. The seond argument for CPLANNER is the list of all alternativejob o�ers on the ontrol blakboard, when CPLANNER is invoked. CPLANNER returnsno spei� output but updates the ontent of the proof blakboard by introduingsuessively method ations.Several parts of the CPLANNER algorithm are equal or similar to the PPLANNERalgorithm. As PPLANNER CPLANNER starts with the extration of the strategy in-formation and the initial task in step 1. In partiular, step 1 extrats the ationtransfer proedures T P and sets the algorithm variable ~Aadd to the empty list.In this variable CPLANNER stores the ations, whih it introdues suessively. Af-terwards, step 2 and step 3 hek whether CPLANNER terminates suessfully orinterrupts. These two steps equal step 2 and step 3 of PPLANNER, respetively, givenin Figure 7.10.



134 Chapter 7. Formal Desription of MultiInput: (1) either a pair (S;T ) where S is a CPLANNER strategy and T is a task or a task tag �T ,(2) the list of all alternative job o�ers J .Output: No output, only hanges of the blakboards.Algorithm: CPLANNER(arg1;Jrest))1. InitializationLet (�T ; S; T ):=extract-from-input(arg1).Let (T P; C; term-ond):=parameters-of-strategy(S).
add-strategy-start-record-to-history(Jrest;�T ).Let ~Aadd:=[℄.2. Suessful Termination Chek(see PPLANNER Figure 7.10)3. Interruption Chek(see PPLANNER Figure 7.10)4. Selet and Evaluate Transfer ProeduresLet T Prest:=evalcrules-transferprocs(T P).Until (Obj is ation or demand) or (T Prest = [℄)Let TPurr:=first (T Prest).Let Obj:=evaluate (TPurr).T Prest:=rest (T Prest).5. Ation IntrodutionIf Obj is ation AaddthenPB:=�Multi(Aadd; PB).

add-action-intro-record(Aadd,A).~Aadd:= ~Aadd [ [Aadd℄.If extract-constraints (Aadd) 6= ;then
pass-constraints (extract-constraints (Aadd)).Goto step 2.6. Demand InterruptionIf Obj is demand DaddthenLet message:=create-interrupt-message(S; T ).Let ASadd:=create-strategic-action( ~Aadd).

replace-actions( ~Aadd; ASadd).
write-to-demands(Dadd).
write-to-memory(�T ; Dadd).
add-strategy-stop-record-to-history(�T ; ASadd;message).Terminate.7. Failure(see PPLANNER Figure 7.10)Figure 7.11: The CPLANNER algorithm.



7.5. The Algorithms 135Step 4 �rst evaluates the ontrol rules of kind `TransferProedure' on the al-ternative ation transfer proedures T P. This results in a hanged and re-orderedalternative list T Prest. Then, step 4 evaluates the ation transfer proedures in theorder of this list until either one proedure provides an ation or a demand, whih isstored in the algorithm variable Obj, or all proedures have been tried. That is, atthe end of step 4 Obj is either bound to an ation Aadd or to a demand Dadd or it isunbound. These three ases are overed by the following steps, respetively. Step 5desribes the proessing of an ation Aadd. In this ase, CPLANNER introdues Aaddinto the proof plan under onstrution employing the funtion �Multi. Moreover, itadds a history entry for the introdued ation and passes new onstraints to exter-nal onstraint solvers. Additionally, the introdued ation is added to ~Aadd. Then,
CPLANNER ontinues with step 2. Step 6 proesses a demand Dadd. It writes thedemand onto the ontrol blakboard and terminates then with an interrupt mes-sage. If the evaluation of the ation transfer proedure provides neither an ationnor a demand, then CPLANNER terminates in step 7 with a failure message. Thisstep equals step 7 of PPLANNER in Figure 7.10.
7.5.4 The INSTMETA AlgorithmStrategies of the algorithm INSTMETA takle an instantiation-task and ompute abinding for the meta-variable of the instantiation-task. With this new binding anew binding store is reated, whih is added to the sequene of binding stores onthe proof blakboard. A strategy of INSTMETA spei�es one parameter, namely afuntion that determines how the instantiation for a meta-variable is omputed.We disussed some strategies of INSTMETA in setion 6.2.1. More examples are givenin the following hapters, when we desribe the ase studies.Figure 7.12 ontains a pseudo-ode desription of INSTMETA. INSTMETA has twoarguments. First, a pair (S; T ), whih onsists of an INSTMETA strategy S and aninstantiation-task T . Seond, the list of all alternative job o�ers on the ontrolblakboard, when the INSTMETA strategy was invoked. INSTMETA returns no spei�output but updates the ontent of the proof blakboard.Step 1 in Figure 7.12 applies the instantiation omputation funtion of the strat-egy S to the task T . This funtion appliation an either sueed or fail. If thefuntion appliation sueeds, then the algorithm variable inst is bound to the re-turned value. Otherwise inst stays unbound. Step 2 omputes an instantiationation when inst is bound and applies this ation with �Multi to the strategiproof plan elements on the proof blakboard. Finally, step 3 adds a new strategy-appliation reord to the history on the proof blakboard. The exeution messageof this reord entry depends on whether inst is bound or not. When inst is bound
INSTMETA reates a suess message, otherwise INSTMETA reates a failure message.Currently, the omputation funtion of an INSTMETA strategy is provides eitherone (suess) or no (failure) solution. This was suÆient for the ase studies on-duted so far. When it turns out that a set of alternative instantiations and rea-soning on the seletion of one alternative is needed, then INSTMETA an easily beextended to over this funtionality: The variable inst has to store a list of alter-natives. Moreover, between step 1 and step 2 an additional step is needed, whihevaluates ontrol rules on the alternative instantiations and selets one. The ontrolrules would beome an additional parameter of INSTMETA.



136 Chapter 7. Formal Desription of MultiInput: (1) a pair (S; T ) where S is a INSTMETA strategy and T is an instantiation-task, (2) the listof all alternative job o�ers J .Output: No output, only hanges of the blakboards.Algorithm: INSTMETA((S; T );J )1. Compute InstantiationLet inst:=apply(compute-inst-function(S); T ).2. Compute and Apply AtionIf bound (inst)thenLet Aadd:=new-instmeta-action(S; T; inst).PB:=�Multi(Aadd; PB).3. Update HistoryIf bound (inst)thanLet message:=create-success-message(S; T ).
add-strategy-application-record-to-history(J ; Aadd; ;;message).elseLet message:=create-failure-message(S; T ).
add-strategy-application-record-to-history(J ; ;; ;;message).Terminate. Figure 7.12: The INSTMETA algorithm.7.5.5 The ATP AlgorithmStrategies of the algorithm ATP re�ne a strategi proof plan by solving a line-taskwith an ATP ation. They apply external automated theorem provers and hekwhether their output is a proof. A strategy of ATP spei�es two parameters for thesetwo funtionalities, namely an appliation funtion and an output hek funtion.We disussed a strategy of ATP in setion 6.2.4. More examples are given in thefollowing hapters, when we desribe the ase studies.Figure 7.13 ontains a pseudo-ode desription of the ATP algorithm. ATP hastwo arguments. First, a pair (S; T ), whih onsists of an ATP strategy S and aninstantiation-task T . Seond, the list of all alternative job o�ers on the ontrolblakboard, when the ATP strategy was invoked. ATP returns no spei� outputbut updates the ontent of the proof blakboard.Step 1 applies the appliation funtion of the strategy S to the task T . Thisfuntion appliation provides an output, whih is stored in the algorithm variableout. Step 2 applies the output hek funtion to out, whih returns either true ornil. If the result, whih is stored in the algorithm variable hek, is true, thenout is aepted as proof. In this ase, ATP omputes an ation and applies thisation with �Multi to the strategi proof plan elements on the proof blakboard(see step 3 in Figure 7.13). Finally, step 4 adds a new strategy-appliation reordto the history on the proof blakboard. The exeution message of this reord entrydepends on whether hek is true. If hek is true, then ATP reates a suessmessage, otherwise it reates a failure message.



7.5. The Algorithms 137Input: (1) a pair (S; T ) where S is an ATP and T is a line-task, (2) the list of all alternative jobo�ers J .Output: No output, only hanges of the blakboards.Algorithm: ATP((S; T );J )1. Apply ProversLet out:=apply(atp-apply-function(S); T ).2. Chek OutputLet hek:=apply(atp-output-check-function(S); out; T ).3. Compute and Apply AtionIf hek = truethenLet Aadd:=new-atp-action(S; T; out).PB:=�Multi(Aadd; PB).4. Update HistoryIf hek = truethenLet message:=create-success-message(S; T ).
add-strategy-application-record-to-history(J ; Aadd; ;;message).elseLet message:=create-failure-message(S; T ).
add-strategy-application-record-to-history(J ; ;; ;;message).Terminate. Figure 7.13: The ATP algorithm.7.5.6 The EXP AlgorithmThe algorithm EXP re�nes a strategi proof plan by expanding omplex steps. Whenapplied to a losed proof line L whose justi�ation is (J P1 : : : Pn), then EXP om-putes a proof segment that derives L from P1; : : : ; Pn at a lower level of abstration.

EXP has no parameters. The only strategy of EXP is ExpS.Figure 7.14 ontains a pseudo-ode desription of the EXP algorithm. EXP obtainstwo arguments. First, a pair (S; T ), whih onsists of a EXP strategy S (i.e., ExpS)and an expansion-task T . Seond, the list of all alternative job o�ers on the ontrolblakboard, when the EXP strategy was invoked. EXP returns no spei� output butupdates the ontent of the proof blakboard.Step 1 tests whether the justi�ation EXP should expand is a tati appliationor a method appliation. Depending on what kind of step it �nds EXP employseither the funtion expand-tactic or the funtion expand-method to ompute theexpansion proof segment. expand-tactic evaluates the expansion proedure of thefound tati whereas expand-method instantiates the proof shema of the foundmethod. When these funtion appliations sueed, then the algorithm variableexp-segment is bound to the omputed proof segment. Otherwise exp-segmentstays unbound. When exp-segment is bound, Step 2 reates an expansion ationand applies the ation with �Multi to the elements of the strategi proof plan onthe proof blakboard. Afterwards, step 3 adds a new strategy-appliation reord tothe history on the proof blakboard. The exeution message of this reord entrydepends on whether exp-segment is bound or not. When exp-segment is bound



138 Chapter 7. Formal Desription of MultiInput: (1) a pair (S;T ) where S is an EXP strategy and T = LjExp is an expansion-task, (2) thelist of all alternative job o�ers J .Output: No output, only hanges of the blakboards.Algorithm: EXP((S; T );J )1. Compute Expansion-SegmentLet (J P1 : : : Pn) be the justi�ation of L.If is-tactic (J)thenLet exp-segment:=expand-tactic(L).elseLet exp-segment:=expand-method(L).2. Compute and Apply AtionIf bound (exp-segment)thenLet Aadd:=new-expansion-action(S; T; exp-segment).PB:=�Multi(Aadd; PB).3. Update HistoryIf boundexp-segmentthenLet message:=create-success-message(S; T ).
add-strategy-application-record-to-history(J ; Aadd; ;;message).elseLet message:=create-failure-message(S; T ).
add-strategy-application-record-to-history(J ; ;; ;;message).Terminate. Figure 7.14: The EXP algorithm.

EXP reates a suess message, otherwise EXP reates a failure message.7.5.7 The BACKTRACK Algorithm
BACKTRACK is an algorithm that removes the ations introdued by other algorithmsof Multi from a strategi proof plan. BACKTRACK adds no own ations but onlyhistory entries. When to baktrak and whih ations to baktrak is not hard-wiredin the Multi algorithm but is subjet of the di�erent strategies of BACKTRACK andthe guidane by reasoning at the strategy-level. A strategy of BACKTRACK spei�esa funtion that selets the set of ations in the urrent strategi proof plan thatshould be deleted. When Multi invokes a BACKTRACK strategy, then BACKTRACKremoves all ations expliitly seleted by this funtion as well as all ations thatdepend from these ations. Thus, the baktraking inMulti is dependeny-diretedin the sense disussed in setion 4.2. We desribed a strategy of BACKTRACK insetion 6.2.1. More examples are given in the following hapters, when we desribethe ase studies.Before we give a pseudo-ode desription of the BACKTRACK algorithm we shallintrodue the notion of dependeny among ations and when an ation is deletable.



7.5. The Algorithms 139Both notions are extensions of the onepts introdued for PLAN in setion 4.2.3.When an ation is introdued into a strategi proof plan, then it modi�es theelements of the strategi proof plan. Other ations introdued later on may dependon these modi�ations. For instane, when a method ation introdues a new proofline, whih is used lateron by another ation, then the seond ation is not possiblewithout the �rst ation. In the following de�nition, we shall de�ne for the di�erentkinds of strategi ations and for method ations whih other ations in an ationsequene depend on them.Definition 7.17 (Dependent Ations): Let ~A be a sequene of ations with~A=[A1; : : : ; Ai�1; Ai; Ai+1; : : : ; An℄. The set of ations in ~A, whih depend on Ai isde�ned for the di�erent kinds of ations in Multi as follows.Method Ation: Let Ai be a method ation with the 	 onlusions 	Cons,the � onlusions �Cons, and the � premises �Prems. If Ai ontainssome binding onstraints, then fAi+1; : : : ; Ang depend on Ai. Otherwise,Aj 2 fAi+1; : : : ; Ang depends on Ai if:1. Aj is a method ation whose sets of onlusions or premises ontains aproof line of �Cons or �Prems (whih are the new proof lines intro-dued by Ai),2. Aj is an INSTMETA ation, whih takles an instantiation-task whose meta-variable is introdued by Ai,3. Aj is an EXP ation, whih takles an expansion-task whose proof line isin 	Cons or �Cons (the proof lines losed by Ai),4. Aj is an ATP ation, whih takles a line-task that ontains either assupport or as onlusion a proof line of �Cons or �Prems,5. Aj is a PPLANNER or CPLANNER ation, whih ontains an ation thatdepends on Ai.
INSTMETA Ation: Let Ai be an INSTMETA ation. Then fAi+1; : : : ; Ang depend onAi.
ATP Ation: Let Ai be an ATP ation. Aj 2 fAi+1; : : : ; Ang depends on Ai if Ajis an EXP ation, whih takles the expansion-task with the proof line losedby Ai.
EXP Ation: Let Ai be an EXP ation with the set Lnew of new proof lines in theproof-segment. Let T = LjExp be the task of Ai. Then Aj 2 fAi+1; : : : ; Angdepends on Ai if1. Aj is a method ation, whih ontains either as onlusion or as premisea proof line of Lnew, or whih ontains L as 	 onlusion,62. Aj is an INSTMETA ation, whih takles an instantiation-task whose meta-variable is introdued by Ai,3. Aj is an EXP ation, whih takles an expansion-task whose proof line isin Lnew ,4. Aj is an ATP ation, whih takles a line-task that ontains a proof lineof Lnew either as support or as goal, or whih takles a line-task whosegoal is L,65. Aj is a PPLANNER or CPLANNER ation, whih ontains an ations thatdepends on Ai.6 If Ai opens L again, then L an be losed again later on by another method ation.



140 Chapter 7. Formal Desription of Multi
CPLANNER or PPLANNER Ation: LetAi be a CPLANNER or a PPLANNER ation whosesequene of ations is [A01; : : : ; A0m℄. Then Aj 2 fAi+1; : : : ; Ang depends onAi if there is an ation A0k 2 [A01; : : : ; A0m℄ suh that Aj depends on A0k.Finally, we have to de�ne whih ations of an ation sequene depend on an ationthat is ontained within a CPLANNER or PPLANNER ation:Let Ai be a CPLANNER or PPLANNER ation whose ation sequene is [A01; : : : ; A0i�1;A0i; A0i+1; : : : ; A0n℄. Then the set of ations that depend on A0i with respet to ~A is theset of ations that depend on A0i with respet to the ation sequene [A1; : : : ; Ai�1℄[ [A01; : : : ; A0i�1; A0i; A0i+1; : : : ; A0n℄ [ [Ai+1; : : : ; An℄.Note that with this de�nition all ations sueeding an ation that introduesnew bindings (i.e., method ations with bindings and INSTMETA ations) depend onthis ation. We use now the notion of dependeny of ations to de�ne when anation is deletable with respet to an ation sequene.Definition 7.18 (Deletable Ations): Let ~A be a sequene of ations with~A=[A1; : : : ; Ai�1; Adel; Ai+1; : : : ; An℄. Adel is deletable with respet to ~A if the setof ations in ~A that depend on Adel is empty.Next, we de�ne the funtions ��1Multi and ~��1Multi, whih delete ations.7 We give�rst the general outline of ��1Multi and de�ne the reursive ~��1Multi. Afterwards, wede�ne ��1Multi for the di�erent kinds of ations.Definition 7.19 (Ation Deletion Funtions ��1Multi and ~�Multi�1): The a-tion deletion funtion ��1Multi is a partial funtion that maps a sequene of ations,an agenda, a PDS , a sequene of binding stores and an ation into a sequene ofations, an agenda, a PDS, and a sequene of binding stores, i.e.,��1Multi : ~A� Â�P � ~BS�Adel 7! ~A'� Â'�P '� ~BS'.The reursive ation deletion funtion ~��1Multi is a partial funtion that maps asequene of ations, an agenda, a PDS , a sequene of binding stores, and a sequeneof ations into a sequene of ations, an agenda, a PDS , and a sequene of bindingstores, i.e., ~��1Multi : ~A� Â�P � ~BS� ~Adel 7! ~A'� Â'�P '� ~BS'.~��1Multi is reursively de�ned as follows.Let ~A be a sequene of ations, Â an agenda, P a PDS , ~BS a sequene of bindingstores, and ~Adel a sequene of ations.1. If ~Adel is empty, then~��1Multi( ~A; Â;P ; ~BS; ~Adel) := ( ~A; Â;P ; ~BS).2. Otherwise let Adel := first ( ~Adel) and ~A'del := rest ( ~Adel). If Adel is in ~A orpart of a CPLANNER or PPLANNER ation in ~A and Adel is deletable with respetto ~A, then~��1Multi( ~A; Â;P ; ~BS; ~Adel) := ~��1Multi(��1Multi( ~A; Â;P; ~BS; Adel); ~A'del).7Sine ation deletion is oneptually the inverse operation of ation introdution we all thesefuntions ��1Multi and ~��1Multi although tehnially they are not the inverse funtions of �Multiand ~�Multi.



7.5. The Algorithms 141In the single de�nitions of the funtion ��1Multi for the di�erent kinds of ations wedesribe the modi�ations of the sequene of ations, the agenda, the PDS, and thesequene of binding stores aused by the deletion of a respetive ation. Althoughthe notion of deletability of an ation is only de�ned with respet to a sequene ofations, we assume that the agenda, the PDS , and the sequene of binding storesare not arbitrary, but reated by this sequene of ations (in partiular, by theation that should be deleted).We start with the de�nition of ��1Multi for method ations. Sine in Multi theation sequenes onsist only of strategi ations, a method ation an our onlywithin a PPLANNER or CPLANNER ation. Hene, the following de�nition desribesthe deletion of a method ation within a PPLANNER or CPLANNER ation.Definition 7.20 (��1Multi on Method Ations): Let ~A be a sequene of ationsand let Adel be a method ation, whih is in an PPLANNER or CPLANNER ationAplanner in ~A, i.e., ~A=[A1; : : : ; Ai�1; Aplanner ; Ai+1; : : : ; An℄. Let ~BS be a sequeneof bindings stores, P a PDS , and Â an agenda. Moreover, let �Cons be the �onlusions, 	Cons the 	 onlusions, �Prems the � premises, 	Prems the 	premises, and BPrems the blank premises of Adel. Let T = L J SUPPSL be thetask of Adel and let � be the binding onstraints of Adel.Prems:=�Prems [ 	Prems [BPrems,Cons:=�Cons [ 	ConsLines-To-Remove:=�Cons[ �PremsOld-Line-Tasks:=[L0 J SUPPSL0 j L0 2 �Prems℄.Old-Inst-Tasks:=[mvjInst j mv 2 New-Lines and nowhere else in P℄.Old-Exp-Tasks:=[CjExp j C in Cons℄.Tasks-To-Remove:= Old-Line-Tasks [ Old-Inst-Tasks [ Old-Exp-Tasks.New-Inst-Tasks:=[mvjInst j mv bound in�℄.New-Tasks:=[T ℄ [ New-Inst-Tasks.If Adel is deletable with respet to ~A and if Â, P , and ~BS resulted from the in-trodution of ~A (to some agenda, PDS , and sequene of binding stores), then theresult ( ~A'; Â';P '; ~BS') of ��1Multi( ~A; Â;P ; ~BS; Adel) is de�ned by:� ~A':= [A1; : : : ; Ai�1; A0planner ; Ai+1; : : : ; An℄where A0planner results from Aplanner by removing Adel from the sequene ofations of Aplanner .� Â':= New-Tasks [ (Â � Tasks-To-Remove).� P' results from P by1. removing the lines Lines-To-Remove and2. justifying the proof lines 	Cons with Open, respetively.� If � is empty, then ~BS':= ~BS, otherwise ~BS':= ~BS� last ( ~BS).8Definition 7.21 (��1Multi on INSTMETA Ations): Let ~A be a sequene of ationsand let Adel be an INSTMETA ation in ~A. Let ~BS be a sequene of bindings stores,P a PDS , and Â an agenda.8If � is not empty, then the last binding store in ~BS has to be the binding store resulting fromthe introdution of Adel sine otherwise Adel would not be deletable. Thus, when Adel is deleted,then the last binding store has to be removed.



142 Chapter 7. Formal Desription of MultiIf Adel is deletable with respet to ~A and if Â, P , and ~BS resulted from the in-trodution of ~A (to some agenda, PDS , and sequene of binding stores), then theresult ( ~A'; Â';P '; ~BS') of ��1Multi( ~A; Â;P ; ~BS; Adel) is de�ned by:� ~A':= ~A � Adel.� Â':=Â [ [T ℄ where T is the task of Adel.� P':=P.� ~BS':= ~BS� last ( ~BS).Definition 7.22 (��1Multi on ATP Ations): Let ~A be a sequene of ations andlet Adel be an ATP ation in ~A. Let ~BS be a sequene of bindings stores, P a PDS,and Â an agenda. Let T = L J SUPPSL be the task of Adel.If Adel is deletable with respet to ~A and if Â, P , and ~BS resulted from the in-trodution of ~A (to some agenda, PDS , and sequene of binding stores), then theresult ( ~A'; Â';P '; ~BS') of ��1Multi( ~A; Â;P ; ~BS; Adel) is de�ned by:� ~A':= ~A � Adel.� Â':=(Â [ [T ℄) � LjExp.� P' results from P by opening the line L.� ~BS':= ~BS.Definition 7.23 (��1Multi on EXP Ations): Let ~A be a sequene of ations andlet Adel be an EXP ation in ~A. Let ~BS be a sequene of bindings stores, P a PDS,and Â an agenda. Moreover, let T = LjExp be the task of Adel and (J P1 : : : Pn)the justi�ation of L at the next higher level of abstration (i.e., the justi�ation ofL before Adel was performed).Lines-To-Remove:=fL0jL0 2 expansion-segment of Adelg � fL; P1; : : : ; Png.New-Tasks:=[T ℄.Old-Open-Lines:=fL0jL0 2 open-lines ofAaddg.Old-Line-Tasks:=[L0 J SUPPSL0 j L0 in Old-Open-Lines℄.Old-Inst-Tasks:=[mvjInst j mv 2 Lines-To-Remove and nowhere else in PDS ℄.Old-Exp-Tasks:=[L0jExp j(L0 2 Lines-To-Remove or L0 = L) and L0 losed by tati℄.Tasks-To-Remove:= Old-Line-Tasks [ Old-Inst-Tasks [ Old-Exp-Tasks.If Adel is deletable with respet to ~A and if Â, P , and ~BS resulted from the in-trodution of ~A (to some agenda, PDS , and sequene of binding stores), then theresult ( ~A'; Â';P '; ~BS') of ��1Multi( ~A; Â;P ; ~BS; Adel) is de�ned by:� ~A':= ~A � Adel.� Â':= New-Tasks [ (Â � Tasks-To-Remove).� P' results from P by



7.5. The Algorithms 1431. removing the urrent justi�ation from L and setting (J P1 : : : Pn) asthe urrent one, and2. removing the proof lines in New-Lines.� ~BS':= ~BS.Definition 7.24 (��1Multi on CPLANNER or PPLANNER Ations): Let ~A be a se-quene of ations and let Adel be a CPLANNER or a PPLANNER ation in ~A. Let~BS be a sequene of bindings stores, P a PDS , and Â an agenda. Moreover, let[A1; : : : ; An℄ be the ation-sequene of Adel.( ~Are; Âre;Pre; ~BSre) := ~��1Multi( ~A; Â;P; ~BS; [An; : : : ; A1℄)If Adel is deletable with respet to ~A and if Â, P , and ~BS resulted from the in-trodution of ~A (to some agenda, PDS , and sequene of binding stores), then theresult ( ~A'; Â';P '; ~BS') of ��1Multi( ~A; Â;P ; ~BS; Adel) is de�ned by:� ~A':= ~Are � [Adel℄.9� Â':= Âre.� P':= Pre.� ~BS':= ~BSre.With these de�nitions at our disposal, we an now desribe the BACKTRACK al-gorithm. Figure 7.15 ontains a pseudo-ode desription of BACKTRACK. BACKTRACKobtains two arguments. First, a pair (S; T ), whih onsists of a BACKTRACK strategyS and a task T . Seond, the list of all alternative job o�ers on the ontrol blak-board, when the BACKTRACK strategy was invoked. BACKTRACK returns no spei�output but updates the ontent of the proof blakboard.Step 1 applies the omputation funtion of the strategy S to the task T . Thisreturns a sequene of ations that BACKTRACK should delete, and BACKTRACK bindsthe algorithm variable ~Adel to this ation sequene. Moreover, BACKTRACK writes abaktrak-start entry with this information to the history.The steps 2-5 are essentially a while-loop, whih is passed through until ~Adel isempty. First, Step 2 heks whether ~Adel is empty. If this is the ase, it reates asuess message,10 writes a baktrak-stop entry with this message to the history,and terminates. Otherwise, step 3 piks the �rst ation from ~Adel and stores it inthe algorithm variable Adel. Adel is then either deleted in step 5 or step 4 extends~Adel depending on Adel. Step 4 �rst heks whether Adel is deletable with respetto the sequene of ations on the proof blakboard. If this is not the ase, thenthere are ations whih depend on Adel and step 4 adds these ations, whih areomputed by the funtion dependend-actions, in front of ~Adel. If Adel is deletable,then step 4 heks next whether it is an ation of PPLANNER or CPLANNER whoseation-sequene is not empty. If this holds, then it adds the ation sequene of Adelin front of ~Adel. Otherwise, step 5 is reahed, whih uses ��1Multi to delete Adel and9When all ations in Adel are deleted, then Adel remains with an empty ation sequene. HereAdel itself is deleted from the ation sequene.10Note that BACKTRACK is not supposed to fail (exept of hopefully not ourring programmingerrors).



144 Chapter 7. Formal Desription of MultiInput: (1) a pair (S;T ) where S is a BACKTRACK strategy and T is a task, (2) the list of allalternative job o�ers J .Output: No output, only hanges of the blakboards.Algorithm: BACKTRACK((S; T );J )1. Compute Ations To Be DeletedLet ~Adel:=apply(compute-del-actions-function(S); T ).
add-backtrack-start-record-to-history(J ; ~Adel).2. TerminateIf ~Adel=;thenLet message:=create-success-message(S; T ).

add-backtrack-stop-record-to-history(message).Terminate.3. Selet AtionLet Adel:=first ( ~Adel).4. Extend AtionsIf Adel is not deletable wrt. the sequene of ations on PBthen~Adel:=dependend-actions(Adel) [ ~Adel.Goto step 3.If Adel is CPLANNER or PPLANNER ation, whose ation-sequene is notemptythen~Adel:=action-sequence(Adel) [ ~Adel.Goto step 3.5. Delete AtionPB:=��1Multi(Adel; PB).
add-action-del-record(Adel).Let ~Adel:= ~Adel � [Adel℄.If action-of-terminated-strategy(Adel)then

write-to-memory(get-tasktag (Adel); ;).Goto step 2. Figure 7.15: The BACKTRACK algorithm.to update the ation sequene, the agenda, the PDS , and the sequene of bindingstores on the proof blakboard. Moreover, it adds an ation-deletion entry to thehistory and removes Adel from ~Adel.If the deleted ation Adel belongs to a terminated PPLANNER or CPLANNER strat-egy exeution (this is heked by the funtion action-of-terminated-strategy), thena re-invokation of this strategy exeution should be enabled again. BACKTRACK re-ativates the strategy exeution by writing an entry to the memory onsisting of thetask tag of the strategy exeution (whih is omputed by the funtion get-tasktagfrom the history) and an empty set of demand pointers. From this memory entrythe terminated strategy exeution an be re-invoked.



7.6. Remarks 145Note that BACKTRACK ould apply ��1Multi diretly to ations of PPLANNER and
CPLANNER that are not empty (sine we did de�ne ��1Multi for suh ations in de�-nition 7.24). However, BACKTRACK �rst suessively deletes the ation sequene ofan ation of PPLANNER and CPLANNER before it deletes the \empty" PPLANNER or
CPLANNER ation. This guarantees that detailed history information for eah deletedation is reated (i.e, for eah ation, whih is in the ation-sequene of an ationof PPLANNER or CPLANNER as well as for the PPLANNER or CPLANNER ation itself).7.6 Remarks7.6.1 Representing the Searh with TreesThe hek for dependeny among ations as well as the hanges aused by bak-traking of an ation are omplex operations as desribed in the previous setion.The problem is that the PDS , whih is the entral data struture in the urrentimplementation of 
mega andMulti, is a omplex data struture diÆult to main-tain. In the ongoing re-implementation of the 
mega system on top of the COREsystem [9℄ we suggest an agenda as the (only) entral data struture. Moreover,we suggest additional data strutures to onsiderably simplify the baktraking ofations.The introdution of an ation into a strategi proof plan redues a task to a setof tasks, whih an be empty. The introdued ations and the resulting tasks ouldbe stored in a tree, a so-alled task-ation-tree, whose nodes are labeled with thetasks and whose edges are labeled with the ations.11 Figure 7.16 depits suh atask-ation-tree. The root node of the tree is labeled with the initial task. If thistree is onstruted during the strategi proof planning proess, then the urrentagenda onsists always of the tasks of the leave nodes of the tree.With a task-ation-tree the dependeny among ations ould be formulated asfollows: An ation Ai depends on another ation Aj if the path from the root nodeto Ai ontains Aj . The hanges aused by the baktraking of an ation ould alsobe stated simpler than urrently: If a deletable ation A is baktraked, then thehildren tasks of the ation A are removed and the parent task is introdued againinto the agenda.7.6.2 Creating Di�erent Kinds of Solution Proof PlansIn setion 7.3, we de�ned three di�erent notions of strategi solution proof plans,namely method-level solution proof plans, instantiated method-level solution proofplans, and full solution proof plans. In order to produe a method-level solutionproof plan Multi an ignore the instantiation tasks and the expansion-tasks; toprodue an instantiated method-level solution proof plans Multi an ignore onlythe expansion-tasks; to reate a full solution proof plan Multi has to takle allkinds of tasks.In three of the ase studies (see the subsequent hapters) we are interested ininstantiated method-level solution proof plans. The reason for this is that, in gen-eral, we separate in 
mega the searh for a solution proof plan from the expansionproess.12 In the ase study on proof planning permutation group problems (see11Atually, we use multi-edges that onnet one parent node with several hildren nodes.12An exeption is when the expansion of a omplex step will provide information needed to takleexisting tasks. For instane, when the expansion of a omplex step provides further onstraintson meta-variables, whih helps to solve existing line-tasks.
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Figure 7.16: A task-ation-tree.setion 10.1) we use hierarhial proof planning and expansion to hide proofs of sim-ple subproblems. This allows to ome up fast with abstrat proof plans for omplexproblems. Afterwards, the subproblems are opened again and takled themselveswith proof planning.The simplest possibility to make Multi searh for a partiular kind of solutionproof plan is to prohibit some strategies. For instane, if there are no strategies of
EXP, then expansion-tasks will be ignored andMulti will searh for an instantiatedmethod-level solution proof plan. In the ase studies it turned out that this approahhas the drawbak that expansion-tasks are reated although they are ignored lateron. Therefore, we avoid the reation of not desired expansion-tasks. The user andelare methods or tatis whose appliations he wants to be expanded by Multias not-reliable. Multi reates expansion-tasks only for suh proof lines L whosejusti�ation (J P1 : : : PN ) uses a not-reliable method or tati J .7.6.3 Cooperation with Constraint SolversSo far, the only onstraint solver onneted withMulti is CoSIE . Multi ommuni-ates diretly with CoSIE by interfaes in methods and strategies. When a methodation is introdued that ontains onstraints for CoSIE , then these onstraints arepassed to CoSIE . Moreover, the two strategies InstIfDetermined and ComputeInst-FromCS employ CoSIE to obtain new bindings. If several onstraint solvers shouldbe onneted with Multi, then a diret ommuniation is not suÆient anymore.First, onstraints should be passed to all onneted onstraint solvers for whih theyare relevant. Seond, several onstraint solvers should be able to diretly exhangeresults without involving Multi.As possible solution we suggest a onstraint solver oordination module, whihhandles all ommuniation and whih stores all onstraints and results. Eah on-



7.6. Remarks 147straint solver that should be onneted has to register by the oordination module.Multi passes new onstraints to this module. Then, the module asks the onnetedonstraints solvers whether this onstraint is relevant for them and passes it to therelevant onstraint solvers. The module performs the same distribution, if a on-straint solver produes an intermediate result (i.e., when CoSIE detets that theinstantiation of meta-variable mv is already determined by its urrent onstraints).When Multi baktraks and deletes some method ations with onstraints, thenthe oordination module has also to organize the deletion of the onstraints in thea�eted onstraint solvers and the deletion of intermediate that depend on theseonstraints.The module handles and distrubutes also queries of Multi. Multi passesqueries (e.g., is the instantiation of meta-variable mv already determined?) onlyto the oordination module. Either the oordination module an answer the querydiretly (e.g., if an result passed by a onneted onstraint solver was already aunique instantiation for mv) or it distributes the query to the onneted onstraintsolvers and passes the answer bak to Multi.
7.6.4 Dependenies in BaktrakingWhen the BACKTRACK algorithm removes an ation, then it also removes all ationsthat depend on this ation (see setion 7.5.7). The notion of dependeny for ationsused by BACKTRACK (see de�nition 7.17) is strit and therefore BACKTRACK mayremoves more ations than neessary. In partiular, the deletion of an INSTMETAation auses the deletion of all ations following this ation in the urrent ationsequene. We deided for this approah sine a more detailed analysis of whihfollowing ations atually depend on a new binding is diÆult and is still open.Nevertheless, there are also dependenies between ations that are not overedby the dependeny notion in de�nition 7.17. In partiular, there an be variousdependenies between ations that involve ooperation with onstraint solvers (e.g.,CoSIE). For instane, if the urrent onstraints (e.g., mv � t and mv � t) inCoSIE determine the instantiation t for a meta-variable mv, then the strategyInstIfDetermined is appliable with respet tomv and introdues the bindingmv:=b tinto the strategi proof plan. Other ations an rely on this binding. When a methodation that ontains onstraints for CoSIE is baktraked, thenmv may is not longerdetermined with respet to the resulting onstraint store (e.g., if the onstraintmv � t is removed). In this ase, the ation of InstIfDetermined, whih binds mv tot, has to be removed. Sine this is not a problem of strategies of INSTMETA in generalbut of ComputeInstFromCS in partiular, we did not implement suh a dependenyanalysis into the BACKTRACK algorithm (i.e., it is not ontained in the dependenynotion introdued in de�nition 7.17). Rather we suggest to hek suh partiulardependenies in strategi ontrol rules that ause further baktraking.The desribed problemati situation is handled by the strategi ontrol rulehek-det-insts. hek-det-insts heks whether the last strategy exeutionwas a BACKTRACK step and whether it removed some method ations with onstraintsfor CoSIE . If this is the ase, it heks whether all ations of InstIfDetermined inthe urrent sequene of ations are still valid in the sense that the meta-variablesthat they bind are still determined in CoSIE . Then, hek-det-insts prefersbaktraking for eah ation of InstIfDetermined that is no longer valid.



148 Chapter 7. Formal Desription of Multi7.6.5 Failure Information in Exeution MessagesWhen a strategy exeution fails, then its algorithm reates a failure message. Ifpossible the algorithm an attah information to a failure message, whih an also beused by the ontrol rules. For instane, PPLANNER an reate and attah informationwhy no appliable ation ould be found. This funtionality a�ets many single stepsin PPLANNER and in the proedures CHOOSEACTION and CHOOSEACTIONALL, whihompute and selet the next ation to be applied. Hene, for the sake of simpliityand larity, we did not desribe this funtionality in the algorithms themselves butgive an informal desription here.That the proedures CHOOSEACTION and CHOOSEACTIONALL fail to to provide anation for a line-task T and a method M an be aused by three reasons:Failed mathing of proof lines The 	 onlusions of M do not math with thetask line of T or the blank and 	 premises of M do not math with thesupports of T .Failed appliation onditions The evaluation of the appliation onditions ofMan fail with respet to the substitution resulting from a suessful mathingof the proof lines of M with the task line and the supports of T .Rejeted ations Ations an be rejeted by ontrol rules or beause they werealready applied and then baktraked later on.These tests are performed suessively in CHOOSEACTION and CHOOSEACTIONALLin this order. Eah time suh a test fails, the funtion that performs the test reatesan information reord. For instane, when the funtion eval-appl-conds �nds thatthe appliation ondition App of method M fails with respet to the inompleteation A (whih resulted from the suessful mathing of the proof lines of Mwith the proof lines of the given task), then eval-appl-conds reates the informationreord applondfailure(App;M;A). CHOOSEACTION and CHOOSEACTIONALL olletthese information reords and return them to PPLANNER. If there is no appliableation, then PPLANNER attahes the set of information reords to the reated failuremessage. An example where we make use of suh failure information is given insetion 8.2.2.



Part IIICase Studies





151Introdution to the Case StudiesIn the previous hapters we desribed the arhiteture and the algorithms ofMulti. In part III of the thesis we shall disuss the ase studies we onduted totest the approah. Before we start with the atual desription of the ase studies,we briey introdue eah ase study (without tehnial details).The Limit DomainIn hapter 8, we present the appliation of Multi to the limit domain. Origi-nally, this domain was takled with the previous proof planner PLAN (see [172℄).The problems we enountered, when takling the domain with PLAN, gave rise tothe development of Multi as disussed in setion 6.1. In this hapter we fous onexamples in the limit domain that illustrate the bene�ts of Multi and why Multian solve problems on whih PLAN fails.The main means to takle limit problems is the PPLANNER strategy SolveInequal-ity. This strategy ontains the domain-spei� knowledge (i.e., methods and on-trol rules) on how to perform �-Æ-proofs. We omplement this strategy with twostrategies that ontain domain-independent methods for the deomposition of om-plex logial formulas in goals and supports, respetively. The inorporation of theonstraint solver CoSIE via two INSTMETA strategies is also ruial to aomplish�-Æ-proofs with Multi. We integrated a CPLANNER strategy to reuse baktrakedproof parts. As an alternative to �-Æ-proofs we present another PPLANNER strategythat solves limit problems by the appliation of known theorems from 
mega'sdatabase.When disussing this ase study, we shall desribe how Multi supports1. the exible introdution of instantiations for meta-variables provided by theonstraint solver CoSIE ,2. the exible ooperation of several strategies driven by interrupts and demands,3. meta-reasoning on failed proof attempts to guide baktraking or plan modi�-ations (in partiular, we shall desribe how failures an be exploited to guidethe eureka steps ase-split introdution and lemma speulation).The Residue Class DomainChapter 9 presents the ase study on proof planning for the residue lass do-main. As opposed to the limit domain, the residue lass domain was never takledwith PLAN. We developed several PPLANNER strategies as the main strategies tosolve residue lass problems. They orrespond to mathematial proof tehniquesfor takling the residue lass problems. We omplement these strategies with two
INSTMETA strategies, and two ATP strategies. The two INSTMETA strategies interfaetwo omputer algebra systems (namely Maple [200℄ and GAP [93℄), a model gen-erator (namely SEM [253℄), and a system for theory formation (namely HR [58℄)to obtain instantiations for meta-variables. Moreover, we integrated the PPLANNERstrategies with di�erent baktrak tehniques.We use this ase study to illustrate how Multi supports1. the modeling of di�erent proof tehniques in di�erent strategies, whih anprodue di�erent proof plans for the same problem,2. the exible inorporation of instantiations provided by omputer algebra sys-tems, model generators, and systems for theory formation,



1523. the integration of di�erent baktrak tehniques guided by meta-reasoning,4. the failure-driven ooperation of strategies,5. the appliation of randomization and restart tehniques,6. the exible ooperation of several strategies.Permutation Group Domain and Homomorphism ProblemsIn hapter 10, we shall briey disuss two further ase studies onduted withMulti. In the �rst ase study we apply Multi to solve problems of permutationgroups. In the seond ase study we takle homomorphism theorems with Multi.We disuss these two ase studies sine they address hierarhial proof planningwith expansion and interative theorem proving, two issues that are not addressedin the ase studies on limit problems and residue lass problems.



Chapter 8The Limit DomainIn this hapter, we present the appliation ofMulti to the limit domain. Theoremsof the limit domain make statements about the limit limx!a f(x) of a funtion f ata point a, about the limit limseqX of a sequene X , about the ontinuity of afuntion f at a point a, and about the derivative of a funtion f at a point a (seesetion 5.1 for a formal introdution of the limit domain).The hapter is strutured as follows. First, we desribe how Multi reates�-Æ-proof plans with the PPLANNER strategy SolveInequality and some omplemen-tary strategies. Afterwards, we illustrate in setion 8.2 how meta-reasoning anexploit failures to guide baktraking and the subsequent proof planning proess.In the disussed situations meta-reasoning on the failures is neessary to solve theproblems sine the failures hold the key to the disovery of a solution proof plan.In setion 8.3, we desribe how Multi solves limit problems by the appliation ofknown theorems. We onlude this hapter with a disussion of the results of thease study, a disussion of related work, and an evaluation of the realized proofplanning approah. An aount of all limit problems that Multi an urrentlysolve is given in Appendix C.When illustrating the appliation of Multi with examples, we try to avoidthe tedious details. In partiular, we skip the tehnial details of the onstrutedstrategi proof plans. Rather, we use the PDS as a means to display and disuss theonstruted proof plans. In general, a PDS is a three-dimensional data struturethat an represent (partial) proof attempts at di�erent levels of abstration (seesetion 3.2.3). Sine the disussed examples exploit no expansion the onstrutedPDSs onsist only of one level of abstration and are presented in the linearizedform desribed in setion 3.1.3.8.1 �-Æ-Proof Plans with MultiTo aomplish �-Æ-proof plans Multi ombines the PPLANNER strategies Normalize-LineTask, UnwrapHyp, and SolveInequality and the INSTMETA strategies InstIfDeter-mined and ComputeInstFromCS (see setion 6.2.1), whih interfae CoSIE . In thefollowing, we illustrate how Multi employs these strategies with the LIM+ exam-ple (introdued in setion 5.1) and the �rst part of exerise 4:1:3 (introdued insetion 6.1.1). However, before we elaborate the examples we disuss the employedstrategies and their ooperation.



154 Chapter 8. The Limit Domain8.1.1 The Strategies and Their CooperationThe strategy SolveInequality (see Table 6.1 in setion 6.2.1) is entral for aom-plishing �-Æ-proofs with Multi. It is appliable to prove line-tasks whose goals areinequalities or whose goals an be redued to inequalities. A goal is reduible toinequalities if it ontains de�ned terms whose unfolding will result in inequalities,for instane, lim, limseq, ont, and deriv. SolveInequality unfolds ourrenes ofthese onepts both in the goal and in the supports of the task. The method forunfolding de�ned onepts in goals is DefnUnfold-B, whereas DefnUnfold-Funfolds de�ned onepts in supports.When faed with an inequality goal, SolveInequality �rst tries to apply the meth-ods TellCS-B and AskCS-B, whih both employ CoSIE . TellCS-B passes thegoal to CoSIE , whereas AskCS-B asks CoSIE whether the goal is entailed by itsurrent onstraints. If an inequality is too omplex to be handled by CoSIE , thenSolveInequality tries to apply methods that redue an inequality to simpler inequal-ities. So, SolveInequality suessively produes simpler inequalities, until it reahesinequalities that are aepted by CoSIE . This approah | handle with CoSIE orsimplify | is guided by the ontrol rule prove-inequality given in Figure 8.1,whih is the entral ontrol rule in SolveInequality.(ontrol-rule prove-inequality(kind methods)(IF (and (goal-mathes (REL A B))(in REL f<;>;�;�g)))(THEN (prefer (TellCS-B TellCS-F AskCS-B Simplify-BSimplify-F Solve*-B ComplexEstimate-BFatorialEstimate-B SetFous-B))))Figure 8.1: The ontrol rule prove-inequality.In its IF-part prove-inequality heks whether the urrent goal is an inequal-ity. If this is the ase, it prefers the methods TellCS-B, TellCS-F, AskCS-B,Simplify-B, Simplify-F, Solve*-B, ComplexEstimate-B, FatorialEsti-mate-B, and SetFous-B in this order. We disussed the methods TellCS-B,TellCS-F, AskCS-B, and ComplexEstimate-B already in setion 4.1.4. Themethod Solve*-B is desribed in setion 5.1. Simplify-B passes the formula of agiven goal to the omputer algebra system Maple and asks Maple to simplify it.If Maple sueeds, then the given goal is redued to a new goal with the simpli�edformula. The analogous method Simplify-F derives a support with a simpler for-mula from a given support by allingMaple. The method FatorialEstimate-Bdeals with frations in inequalities. It redues a goal of the form j tt0 j < t00 to thethree subgoals 0 < mvF , mvF < jt0j, and jtj < t00 � mvF , where mvF is a newmeta-variable. SetFous-B highlights a subformula in a support. SolveInequalityontains also some further methods whose appliation is not guided by the ontrolrule prove-inequality. We shall introdue and explain these methods as we goalong.SolveInequality omprises the knowledge of how to deal with inequalities andwith problems that an be redued to inequalities. As opposed thereto, the strate-gies NormalizeLineTask and UnwrapHyp omprise the domain-independent, generalknowledge of how to deompose omplex formulas with logial onnetives andquanti�ers. SolveInequality deides one for the deomposition of a omplex goal orthe unwrapping of a subformula from a omplex support. Then, it swithes to Nor-



8.1. �-Æ-Proof Plans with Multi 155malizeLineTask or UnwrapHyp, whih perform all single deomposition steps. Thissaves SolveInequality from reasoning permanently on the appliation of methods thatdeompose single logial onnetives and quanti�ers suh as ^I-B or ^E-F.Tehnially, the ooperation between SolveInequality and NormalizeLineTask andUnwrapHyp works as follows. For line-tasks whose goals are omplex formulas thatontain inequality subformulas (e.g., goals that arise from unfolding lim, limseq,ont, or deriv) SolveInequality interrupts and plaes a demand for the strategyNormalizeLineTask on the ontrol blakboard. Guided by this demand, Multi in-vokes NormalizeLineTask, whih deomposes the omplex goal. When re-invokedby Multi, SolveInequality an takle the inequalities in the resulting goals. Theswith from SolveInequality to UnwrapHyp is driven by missing support inequali-ties, whih are needed for the appliation of the methods ComplexEstimate-Band Solve*-B. If the other methods preferred by prove-inequality fail, thenthe appliation of SetFous-B highlights a subformula in an existing support.Afterwards, SolveInequality interrupts and plaes a demand for the invoation ofUnwrapHyp to unwrap the highlighted subformula. When the subformula is un-wrapped, SolveInequality an ontinue with a new support that may enable furthersteps. The appliation of SetFous-B (i.e., the seletion of the support and thesubformula to highlight) is guided by the ontrol rule hoose-unwrap-support forthe supports and parameters hoie point. hoose-unwrap-support analyzes thesupports of the task on whih the other methods are not appliable. It searhesfor inequality subformulas in the supports that are similar to the goal of thetask. The idea is that similar formulas are likely to unify with the goal suh thatComplexEstimate-B and Solve*-B beome appliable.To aomplish �-Æ-proofs plans also two INSTMETA strategies, namely ComputeIn-stFromCS and InstIfDetermined, are used that interfae the onstraint solver CoSIE .Whereas InstIfDetermined asks CoSIE for instantiations of meta-variables that arealready determined by the olleted onstraints, ComputeInstFromCS asks CoSIEto ompute instantiations for the ourring meta-variables that are onsistent withthe olleted onstraints.The invoation of ComputeInstFromCS is delayed by the strategi ontrol ruledelay-ComputeInstCosie until all line-tasks are losed. This delay of the ompu-tation of instantiations for meta-variables is sensible, sine the instantiations shouldnot be omputed before all onstraints are olleted, that is, not before all line-tasksare losed (see disussion in setion 6.1.1). However, when the urrent onstraintsalready determine a meta-variable, then a further delay of the orresponding in-stantiation is not neessary. Rather, immediate instantiations of determined meta-variables an simplify a problem as we shall see in setion 8.1.3.To enable the exible instantiation of determined meta-variables SolveInequalityooperates with the strategy InstIfDetermined. Tehnially, this works as follows.When CoSIE signals that a meta-variable is determined, then the ontrol ruleeager-instantiate in SolveInequality �res. It interrupts SolveInequality and plaesa demand for InstIfDetermined with respet to the determined meta-variable. Afterthe introdution of a binding for the meta-variable by InstIfDetermined Multi re-invokes SolveInequality.8.1.2 The LIM+ ExampleIn this setion, we shall disuss the appliation ofMulti to the LIM+ problem withthe strategies desribed in the previous setion. The LIM+ problem states that thelimit of the sum of two funtions f and g equals the sum of their limits. That is,the problem states that



156 Chapter 8. The Limit DomainLIM+: limx!a(f(x) + g(x)) = lf + lgfollows from Limf : limx!a f(x) = lfand Limg: limx!a g(x) = lg .Figure 8.2 and Figure 8.3 show the interesting parts, i.e., the parts reated bySolveInequality, of the resulting PDS. We indiate the ontributions of Normalize-LineTask and UnwrapHyp by justi�ations in the PDS suh as (UnwrapHyp L3) (inline L49) and (NormalizeLineTask L8 L12) (in line L1), whih abbreviate the proofsegments reated by these strategies. The omplete PDS is given in appendix B.Note that we desribe the proof planning proess in progress. Hene, we introduemeta-variables, when they arise. When there is a binding for a meta-variable duringthe proof planning proess, then the proof lines reated after the introdution of thebinding use the instantiation of the meta-variable in order to larify the followingomputations.Limf . Limf ` limx!a f(x) = lf (Hyp)Limg . Limg ` limx!a g(x) = lg (Hyp)L2. Limf `8�1 (0 < �1 ) 9Æ1 (0 < Æ1 ^8x1 (jx1 � aj < Æ1 ^ jx1 � aj > 0) jf(x1)� lf j < �1))) (DefnUnfold-F Limf )L3. Limg `8�2 (0 < �2 ) 9Æ2 (0 < Æ2 ^8x2 (jx2 � aj < Æ2 ^ jx2 � aj > 0) jg(x2)� lgj < �2))) (DefnUnfold-F Limg)L21. L21 ` 0 < Æ1 ^8x1 (jx1�aj < Æ1 ^jx1�aj > 0) jf(x1)� lf j < mv�1 ) (Hyp)L42. L42 ` 0 < Æ2 ^8x2 (jx2�aj < Æ2 ^jx2�aj > 0) jg(x2)� lg j < mv�2 ) (Hyp)L11. L11 ` jx � aj > 0 ^ jx � aj < mvÆ (Hyp)L5. L5 ` 0 < � (Hyp)L52. H2 `mvx2 :=x (TellCS-B)L53. H2 `mv�2 � 12 � � (TellCS-B)L49. H2 ` jg(mvx2 )� lgj < mv�2 (UnwrapHyp L3)L48. H2 ` jg(x)� lg j < 12 � � (Solve*-B L49 L52 L53)L37. H1 ` jg(x)� lg j < 12 � � (UnwrapHypL3 L48 L39 L50 L51)L31. H1 ` j1j � mv (TellCS-B)L32. H1 `mv�1 � �2�mv (TellCS-B)L33. H1 ` jg(x)� lg j < �2 (Simplify-B L37)L34. H1 ` 0 < mv (TellCS-B)L35. H1 `mvx1 :=x (TellCS-B)L28. H1 ` jf(mvx1 ) � lf j < mv�1 (UnwrapHyp L2)L27. H1 ` j((f(x) + g(x)) � lf )� lgj < � (ComplexEstimate-BL28 L31 L32 L33 L34 L35)L16. H3 ` j((f(x) + g(x)) � lf )� lgj < � (UnwrapHypL2 L27 L18 L29 L30)L12. H3 ` j(f(x) + g(x))� (lf + lg)j < � (Simplify-B L16)L8. H4 ` 0 < mvÆ (TellCS-B)L1. Limf ;Limg`8� (0 < �) 9Æ (0 < Æ ^8x (jx� aj < Æ ^ jx� aj > 0) j(f(x) + g(x)) � (lf + lg)j < �))) (NormalizeLineTask L8 L12)LIM+. Limf ;Limg` limx!a(f(x) + g(x)) = lf + lg (DefnUnfold-B L1)H1 = fLimf ; Limg; L5; L11; L21g; H2 = fLimf ; Limg; L5; L11; L21; L42gH3 = fLimf ; Limg; L5; L11g; H4 = fLimf ; Limg; L5gFigure 8.2: �-Æ-proof for LIM+ (part I).The proof planning proess starts with the invoation of SolveInequality on theinitial task LIM+ J fLimf ; Limgg. SolveInequality �rst unfolds the ourrenes oflim. Afterwards, it swithes to NormalizeLineTask, whih deomposes the resultingomplex goal in line L1 into the goals j(f(x) + g(x)) � (lf + lg)j < � in L12



8.1. �-Æ-Proof Plans with Multi 157and 0 < mvÆ in L8 where � and x are onstants introdued for the universallyquanti�ed variables � and x in L1 and mvÆ is a meta-variable introdued for theexistentially quanti�ed variable Æ.Both new goals are inequalities and SolveInequality takles them guided by theontrol rule prove-inequality. It loses 0 < mvÆ diretly by an appliation ofTellCS-B, whih passes the formula to CoSIE . j(f(x)+ g(x))� (lf + lg)j < � isnot aepted by CoSIE and therefore TellCS-B is not appliable. SolveInequalitysimpli�es this goal to j((f(x) + g(x)) � lf ) � lgj < � in line L16 but then failsto solve this goal with the given supports. hoose-unwrap-support detets thesubformula jf(x1) � lf j < �1 of L2 as a promising support and guides the appli-ation of the method SetFous-B to highlight the subformula. This triggers theinterruption of SolveInequality and the invoation of UnwrapHyp for this subformula.The appliation of UnwrapHyp yields the new support jf(mvx1)� lf j < mv�1 in lineL28, but also the three new goals 0 < mv�1 in line L18, jmvx1 � aj < Æ1 in L29,and jmvx1 � aj > 0 in L30. Here UnwrapHyp introdues the onstant Æ1 for theexistentially quanti�ed variable Æ1 and the meta-variables mv�1 and mvx1 for theuniversally quanti�ed variables �1 and x1 in L2.When SolveInequality is re-invoked, it an apply ComplexEstimate-B to thegoal j((f(x)+g(x))�lf )�lg j < � and the new support jf(mvx1)�lf j < mv�1 . Thisresults in the �ve new goals j1j � mv in L31, mv�1 � �2�mv in L32, jg(x)�lgj < �2 inL33, 0 < mv in L34, and mvx1 :=x in L35. Exept L33 all goals are losed by appli-ations of TellCS-B, whih pass the respetive formulas as onstraints to CoSIE .Sine mvx1 :=x determines mvx1 in CoSIE the ontrol rule eager-instantiate�res and interrupts SolveInequality. Its demand auses Multi to invoke InstIfDe-termined on the instantiation-task of mvx1 . InstIfDetermined introdues the bindingmvx1 :=b x into the strategi proof plan.The re-invoked SolveInequality simpli�es jg(x)�lgj < �2 to jg(x)�lgj < 12 �� inL37 but then fails on this goal with the existing supports. hoose-unwrap-supportdetets the subformula jg(x2)� lgj < �2 of L3 as a promising support and guides theorresponding appliation of the method SetFous-B to highlight this subformula.Afterwards, SolveInequality interrupts and Multi swithes to UnwrapHyp, whihunwraps the subformula and yields the new support jg(mvx2) � lgj < mv�2 in lineL49. The unwrapping yields also the three new goals 0 < mv�2 in line L39, jmvx2 �aj < Æ2 in L50, and jmvx2 � aj > 0 in L51. UnwrapHyp introdues the onstant Æ2for the existentially quanti�ed variable Æ2 and the meta-variables mv�2 and mvx2for the universally quanti�ed variables �2 and x2 in L3.When re-invoked, SolveInequality applies Solve*-B to the goal jg(x) � lgj <12 � � and the new support jg(mvx2) � lg j < mv�2 . This results in the newgoals mvx2 :=x in L52 and mv�2 � 12 � � in L53, whih SolveInequality loses byTellCS-B. mvx2 :=x determines the meta-variable mvx2 in CoSIE . Thus, theontrol rule eager-instantiate suggests a swith from SolveInequality to InstIfDe-termined, whih introdues the binding mvx2 :=b x into the strategi proof plan.Afterwards, SolveInequality has to deal with the remaining goals L18, L29, L30,and L39, L50, L51, whih resulted from the appliations of the UnwrapHyp strategy.Figure 8.3 gives the PDS segment reated by SolveInequality for these goals. It losesL18 and L39 diretly by TellCS-B. The inequalities in the other goals annot bepassed to CoSIE diretly beause TellCS-B is not appliable to them. Instead,SolveInequality applies Solve*-B to these goals with supports that stem from the de-omposition of the initial goal by NormalizeLineTask. The appliations of Solve*-Bresult in inequality goals, whih SolveInequality loses either with TellCS-B orAskCS-B.



158 Chapter 8. The Limit DomainL18. H3 ` 0 < mv�1 (TellCS-B)L39. H3 ` 0 < mv�2 (TellCS-B)L11. L11 ` jx � aj > 0 ^ jx � aj < mvÆ (Hyp)L14. L11 ` jx � aj > 0 (^E-F L11)L13. L11 ` jx � aj < mvÆ (^E-F L11)L61. H1 ` 0 � 0 (AskCS-B)L59. H1 `mvÆ � Æ1 (TellCS-B)L57. H2 ` 0 � 0 (AskCS-B)L55. H2 `mvÆ � Æ2 (TellCS-B)L29. H1 ` jmvx1 � aj < Æ1 (Solve*-B L13 L59)L30. H1 ` jmvx1 � aj > 0 (Solve*-B L14 L61)L50. H2 ` jmvx2 � aj < Æ2 (Solve*-B L13 L55)L51. H2 ` jmvx2 � aj > 0 (Solve*-B L14 L57)H1 = fLimf ; Limg; L5; L11; L21g; H2 = fLimf ; Limg; L5; L11; L21; L42gH3 = fLimf ; Limg; L5; L11g; H4 = fLimf ; Limg; L5gFigure 8.3: �-Æ-proof for LIM+ (part II).After losing all line-tasks, SolveInequality terminates. Next, Multi invokesComputeInstFromCS on the instantiation-tasks and CoSIE provides instantiationsfor the meta-variables that are onsistent with the olleted onstraints (see Fig-ure 5.1 in setion 5.1). ComputeInstFromCS inserts these instantiations as the bind-ings mv:=b 1, mv�1 :=b �2 , mv�2 :=b �2 , and mvÆ :=bmin(Æ1 ; Æ2)into the strategi proof plan.8.1.3 Eager InstantiationWe disussed already in setion 6.1.1 that PLAN fails to solve some limit problemsthat require the eager instantiation of meta-variables. In the following, we shall seehow Multi solves those problems sine it performs eager instantiation guided bythe ontrol rule eager-instantiate.We illustrate Multi's eager meta-variable instantiation with the �rst part ofexerise 4:1:3 in the analysis textbook [12℄, whih states thatThm: limx!0 f(x+ ) = l follows from Ass: limx1! f(x1) = l,Figure 8.4 and Figure 8.5 show the PDS segments reated by SolveInequality forthis problem. As in the previous setion, we indiate and abbreviate the proof partsgenerated by NormalizeLineTask and UnwrapHyp by justi�ations in the PDS .When invoked on the initial task Thm J fAssg, SolveInequality unfolds the o-urrenes of lim in the goal and the supports and then swithes to NormalizeLine-Task, whih deomposes the resulting omplex goal. This results in the two goals0 < mvÆ in L7 and jf(x+)�lj < � in L11 where � and x are onstants introduedfor the universally quanti�ed variables � and x in L1 and mvÆ is a meta-variableintrodued for the existentially quanti�ed variable Æ.SolveInequality loses 0 < mvÆ by TellCS-B but fails to takle jf(x+)�lj < �with the urrent supports. A promising support is the subformula jf(x1)� lj < �1of L2. Thus, after highlighting the subformula with SetFous-B, SolveInequalityswithes to UnwrapHyp. The appliation of UnwrapHyp yields the new supportjf(mvx1) � lj < mv�1 in L26 and the new goals 0 < mv�1 in L16, jmvx1 � j < Æ1in L27, and jmvx1 � j > 0 in L28. UnwrapHyp introdues the onstant Æ1 for the



8.1. �-Æ-Proof Plans with Multi 159Ass. Ass ` limx1! f(x1) = l (Hyp)L2. Ass `8�1 (0 < �1 ) 9Æ1 (0 < Æ1 ^8x1 (jx1 � j < Æ1 ^ jx1 � j > 0) jf(x1)� lj < �1))) (DefnUnfold-F Ass)L19. L19 ` 0 < Æ1 ^ 8x1 (jx1 � j < Æ1 ^ jx1 � j > 0) jf(x1)� lj < mv�1 ) (Hyp)L4. L4 ` 0 < � (Hyp)L29. H1 `mvx1 :=x +  (TellCS-B)L30. H1 `mv�1 � � (TellCS-B)L26. H1 ` jf(mvx1 )� lj < mv�1 (UnwrapHyp L2)L25. H1 ` jf(x + )� lj < � (Solve*-B L26 L29 L30)L11. H2 ` jf(x + )� lj < � (UnwrapHypL2 L25 L16 L27 L28)L7. Ass;L4 ` 0 < mvÆ (TellCS-B)L1. Ass `8� (0 < �) 9Æ (0 < Æ ^8x (jx� 0j < Æ ^ jx� 0j > 0) jf(x+ )� lj < �))) (NormalizeLineTask L7 L11)Thm. Ass ` limx!0 f(x+ ) = l (DefnUnfold-B L1)H1 = fAss;L4; L10; L19g; H2 = fAss; L4; L10gFigure 8.4: �-Æ-proof for �rst part of exerise 4:1:3 (part I).existentially quanti�ed variable Æ1 and the meta-variables mv�1 and mvx1 for theuniversally quanti�ed variables �1 and x1 in L2.When re-invoked, SolveInequality applies Solve*-B to jf(x + ) � lj < � andthe new support jf(mvx1)� lj < mv�1 . This results in the new goals mvx1 :=x+ inL29 and mv�1 � � in L30, whih SolveInequality both loses by TellCS-B. Sinemvx1 :=x+  determines the meta-variable mvx1 in CoSIE , SolveInequality swithesto InstIfDetermined, whih introdues the binding mvx1 :=b x +  into the strategiproof plan.L10. L10 ` jx � 0j > 0 ^ jx � 0j < mvÆ (Hyp)L13. L10 ` jx � 0j > 0 (^E-F L10)L12. L10 ` jx � 0j < mvÆ (^E-F L10)L36. L10 ` jxj > 0 (Simplify-F L13)L32. L10 ` jxj < mvÆ (Simplify-F L12)L34. H1 `mvÆ � Æ1 (TellCS-B)L31. H1 ` jxj < Æ1 (Solve*-B L32 L34)L35. H1 ` jxj > 0 (Weaken-B L36)L27. H1 ` jmvx1 � j < Æ1 (Simplify-B L31)L28. H1 ` jmvx1 � j > 0 (Simplify-B L35)L16. H2 ` 0 < mv�1 (TellCS-B)H1 = fAss; L4; L10; L19g; H2 = fAss; L4; L10gFigure 8.5: �-Æ-proof for �rst part of exerise 4:1:3 (part II).Afterwards, SolveInequality has to deal with the remaining goals L16, L27, andL28, whih resulted from the appliation of UnwrapHyp. Figure 8.5 gives the PDSsegment reated by SolveInequality for these goals. It loses L16 by TellCS-B. Thegoals in L27 and L28 beome j(x+)�j < Æ1 and j(x+)�j > 0 with respet tothe binding mvx1 :=b x+  in the strategi proof plan. Appliations of Simplify-Bredue these two goals to the jxj < Æ1 in L31 and jxj > 0 in L35. SolveInequalityloses these new goals with the supports jxj > 0 and jxj < mvÆ that are derivedfrom L10, whih was introdued during the appliation of NormalizeLineTask.CoSIE has the �nal onstraint store depited in Figure 8.6. It omputes instan-tiations for the meta-variables that are onsistent with these onstraints. Compute-InstFromCS inserts these instantiations as the bindings mvÆ :=b Æ1 and mv�1 :=b �



160 Chapter 8. The Limit Domaininto the strategi proof plan.mvx1 = x + 0 < Æ1 < +10 < � < +10 < mv�1 � �0 < mvÆ � Æ1Figure 8.6: The �nal onstraint store of CoSIE for the �rst part of exerise 4:1:3.Responsible for the suess of SolveInequality on L27 and L28 is the eager intro-dution of the binding mvx1 :=b x + . This binding hanges the formulas of L27and L28 and so Simplify-B beomes appliable.1Another problem from the limit domain that requires eager meta-variable in-stantiation is exerise 4:1:12 in [12℄, whih states thatThm: limx!0 f(a � x) = l follows from Ass: limx1!0 f(x1) = l for a > 0.First, Multi redues the initial goal limx!0 f(a�x) = l to jf(a� x)� lj < �. Then, itunwraps the support jf(mvx1)�lj < mv�1 . The appliation of Solve*-B to this goaland this support results in the goalmvx1 :=a�x, whih is passed to CoSIE . Sine thisformula determines mvx1 the binding mvx1 :=b a� x is introdued into the strategiproof plan. The remaining goals jmvx1�0j < Æ1 and jmvx1�0j > 0 that result fromthe unwrapping of the support beome ja� xj < Æ1 and ja� xj > 0 with respet tothis binding. They are then solved by appliations of ComplexEstimate-B withthe supports jxj > 0 and jxj < mvÆ.2 See also setion 8.2.2 for further examplesthat require eager meta-variable instantiation.8.2 Failure Reasoning in the Limit DomainIn this setion, we shall disuss three types of situations whose solution requiresmeta-reasoning on failures. In two situations the failures an be exploited to guidethe introdution of ase-splits and the speulation of lemmas, two eureka stepswhose neessity is diÆult to spot and whose introdution is diÆult to guide ingeneral. In the third situation we guide baktraking by meta-reasoning on desirablebut bloked strategies. All three types of situations have in ommon that failuresin the proof planning proess an be produtively used and hold the key to disovera solution proof plan.1PLAN, whih does not allows for eager meta-variable instantiation, would fail on the goalsL27 and L28 sine it annot lose jmvx1 � j < Æ1 and jmvx1 � j > 0 from jxj < mvÆ andjxj > 0 derivable from L10.2PLAN would fail on these goals sine without eager meta-variable instantiation it annotapply ComplexEstimate-B to solve jmvx1 j < Æ1 and jmvx1 j > 0 with jxj > 0 and jxj < mvÆ,respetively. Rather, it would apply Solve*-B to these goals and supports. This results inthe subgoal mvx1 :=x, whih CoSIE rejets sine it is not onsistent with the already olletedonstraint mvx1 :=a � x. Thus, TellCS-B is not appliable and PLAN fails.



8.2. Failure Reasoning in the Limit Domain 1618.2.1 Guiding Case-SplitsA well-known tehnique from mathematis to deal with omplex problems is to splitthe problem into ases and to solve the ases separately.3 But how should the eurekastep ase-split be ontrolled? That is, when should Multi deide for a ase-splitand whih ases should it onsider? We found a type of situations in whih theneed for a ase-split and its onstrution an be spoted by failure reasoning.As example onsider the Cont-If-Deriv problem. This problem states that afuntion f is ontinuous at point a if it has a derivative f 0 at point a. That is,Thm: ont(f; a) follows from Ass: deriv(f; a) = f 0.We give the PDS segment reated by SolveInequality before the failure ours inFigure 8.7. As in the previous setions we abbreviate the proof parts generated byNormalizeLineTask and UnwrapHyp by strategi justi�ations in the PDS.As usual, SolveInequality unfolds the de�ned onepts and then swithes to Nor-malizeLineTask for the deomposition of the omplex goal. The resulting main goalis jf(x) � f(a)j < �. SolveInequality fails to takle this goal with the urrentsupports. Sine the ontrol rule hoose-unwrap-support detets the subformulaj f(x1)�f(a)x1�a � f 0j < �1 in L3 as a promising support SolveInequality swithes toUnwrapHyp whose appliation yields the new support j f(mvx1 )�f(a)mvx1�x � f 0j < mv�1in line L25 and the three new goals 0 < mv�1 in L18, jmvx1 � aj < Æ1 in L26,and jmvx1 � aj > 0 in L27. With the new support SolveInequality loses the maingoal jf(x) � f(a)j < � in several steps as desribed in Figure 8.7 (in betweenSolveInequality interrupts one and swithes to InstIfDetermined to introdue thebinding mvx1 :=b x). Then, it takles the new goals from the appliation of Un-wrapHyp (see the region between the dashed lines in Figure 8.7). It sueeds tosolve L18 and L26 but fails to solve L27 whose formula beomes jx � aj > 0 withrespet to the binding mvx1 :=b x meanwhile introdued.Multi sueeded to solve the goal jf(x)� f(a)j < � with the derived supportj f(mvx1 )�f(a)mvx1�x � f 0j < mv�1 . However, it failed to prove jx � aj > 0, one of theonditions of the support j f(mvx1 )�f(a)mvx1�x � f 0j < mv�1 . The partial suess, i.e., thesolution of the initial goal, gives rise to onsider to path the proof attempt byintroduing a ase-split jx � aj > 0 _ :(jx � aj > 0) on the failing ondition.In general, the failure and its solution follow this pattern: there is a goal G,whih Multi an solve with a support G0 that has some onditions Conds. WhenMulti uses G0, then it introdues the onditions Conds as new goals. Afterwards,it fails to prove some of these new goals. We all suh a goal a failing ondition,whereas we all the initial goal G the main goal . The failure \failing onditionwhile main goal is solved" an be produtively used by introduing a ase-split onthe failing ondition. Then, the main goal G has to be proved several times underdi�erent ase-split hypotheses.We shall elaborate this idea with our example. If SolveInequality fails to prove aondition of a support that was used to prove the main goal, then a strategi ontrolrule triggers the baktraking of the unwrapping and the use of the support. In ourexample, this ontrol rule guides the baktraking of the appliation of UnwrapHypand all ations that depend on it suh that the resulting proof plan onsists only ofthe unfolding of the de�ned onepts and the appliation of NormalizeLineTask. Inpartiular, L12 beomes open again. WhenMulti re-invokes SolveInequality, then a3Shoenfeld mentions this tehnique as a frequently used heuristi: \Deompose the domainof the problem and work on it ase by ase." ([209℄ p. 109)



162 Chapter 8. The Limit DomainAss. Ass ` deriv(f; a) = f 0 (Hyp)L2. Ass ` limx1!a f(x1)�f(a)x1�a = f 0 (DefnUnfold-F Ass)L3. Ass `8�1 (0 < �1 ) 9Æ1 (0 < Æ1 ^8x1 (jx1 � aj < Æ1 ^ jx1 � aj > 0) j f(x1)�f(a)x1�a � f 0j < �1))) (DefnUnfold-F L2)L15. L15 ` 0 < Æ1 ^ 8x1 (jx1 � aj < Æ1 ^ jx1 � aj > 0) j f(x1)�f(a)x1�a � f 0j < mv�1 ) (Hyp)L11. L11 ` jx � aj < mvÆ (Hyp)L7. L7 ` 0 < � (Hyp)����������������������������������������L27. H1 ` jmvx1 � aj > 0 (Open)L44. H1 `mvÆ � Æ1 (TellCS-B)L26. H1 ` jmvx1 � aj < Æ1 (Solve*-B L11 L44)L18. H2 ` 0 < mv�1 (TellCS-B)����������������������������������������L42. H1 ` 0 < �22 (AskCS-B)L37. H1 ` jf 0j � mv0 (TellCS-B)L38. H1 `mvÆ � �22�mv0 (TellCS-B)L39. H1 ` j0j < �22 (Simplify-B L42)L40. H1 ` 0 < mv0 (TellCS-B)L36. H1 `mvÆ � mv (TellCS-B)L28. H1 ` jx� aj � mv (Solve*-B L11 L36)L29. H1 `mv�1 � �2�mv (TellCS-B)L30. H1 ` jf 0 � x � f 0 � aj < �2 (ComplexEstimate-BL11 L37 L38 L39 L40)L31. H1 ` 0 < mv (TellCS-B)L32. H1 `mvx1 :=x (TellCS-B)L25. H1 ` j f(mvx1 )�f(a)mvx1�x � f 0j < mv�1 (UnwrapHyp L3)L24. H1 ` jf(x)� f(a)j < � (ComplexEstimate-BL25 L28 L29 L30 L31 L32)L12. H2 ` jf(x)� f(a)j < � (UnwrapHypL3 L24 L18 L26 L27)L9. Ass;L7 ` 0 < mvÆ (TellCS-B)L1. Ass `8� (0 < �) 9Æ (0 < Æ ^8x (jx� aj < Æ) jf(x)� f(a)j < �))) (NormalizeLineTask L9 L12)Thm. Ass ` ont(f; a) (DefnUnfold-B L1)H1 = fAss;L7; L11; L15g; H2 = fAss; L7; L11gFigure 8.7: �-Æ-proof for CONT-IF-DERIV (part I).ontrol rule in SolveInequality �res that heks whether the last step was baktrak-ing triggered by a failing ondition. This ontrol rule then suggests the appliationof the method CaseSplit-B on the re-opened main goal L12 with respet to thefailing ondition jx � aj > 0 and its negation :(jx � aj > 0). This results in thePDS in Figure 8.8.Afterwards, SolveInequality has to prove jf(x) � f(a)j < � twie: one in L47with hypothesis jx � aj > 0 and one in L49 with hypothesis :(jx � aj > 0). Totakle L47 SolveInequality does not again perform proof searh from the srath.Rather, triggered by a ontrol rule, it swithes to the CPLANNER strategy TaskDi-retedAnalogy, whih transfers the baktraked proof segment to a proof plan forL47. The failing ondition jx� aj > 0 now follows from the hypothesis of the ase.The seond ase in L49 is solved di�erently by SolveInequality. First, it simpli�esthe hypothesis :(jx � aj > 0) to x :=a. Afterwards, it applies this equation with=Subst-B to jf(x) � f(a)j < � in L49. The resulting goal jf(a) � f(a)j < � anbe simpli�ed with Simplify-B to 0 < �, whih follows from L7.Cont-If-Lim=f and Lim-If-Both-Sides-Lim are other problems that require this



8.2. Failure Reasoning in the Limit Domain 163Ass. Ass ` deriv(f; a) = f 0 (Hyp)L2. Ass ` limx1!a f(x1)�f(a)x1�a = f 0 (DefnUnfold-F Ass)L3. Ass `8�1 (0 < �1 ) 9Æ1 (0 < Æ1 ^8x1 (jx1 � aj < Æ1 ^ jx1 � aj > 0) j f(x1)�f(a)x1�a � f 0j < �1))) (DefnUnfold-F L2)L11. L11 ` jx � aj < mvÆ (Hyp)L7. L7 ` 0 < � (Hyp)L45. L45 ` jx � aj > 0 _ :(jx � aj > 0) (TertiumNonDatur)L48. L48 `:(jx � aj > 0) (Hyp)L49. H4 ` jf(x)� f(a)j < � (Open)L46. L46 ` jx � aj > 0 (Hyp)L47. H3 ` jf(x)� f(a)j < � (Open)L12. H2 ` jf(x)� f(a)j < � (CaseSplit-B L45 L47 L49)L9. Ass;L7 ` 0 < mvÆ (TellCS-B)L1. Ass `8� (0 < �) 9Æ (0 < Æ ^8x (jx� aj < Æ) jf(x)� f(a)j < �))) (NormalizeLineTask L9 L12)Thm. Ass ` ont(f; a) (DefnUnfold-B L1)H3 = fAss;L7; L11; L45; L46g; H2 = fAss;L7; L11gH4 = fAss;L7; L11; L45; L46gFigure 8.8: �-Æ-proof for CONT-IF-DERIV (part II).kind of failure reasoning. Cont-If-Lim=f states that a funtion f is ontinuous atpoint a if the limit at point a is f(a). The unfolding of the de�nitions and theappliation of NormalizeLineTask result in the main goal jf(x)�f(a)j < � that anbe solved by unwrapping jf(mvx1)� f(a)j < mv�1 from the assumption. However,the subgoal jx � aj > 0 that is reated by UnwrapHyp annot be solved. Thisfailing ondition triggers the same ase-split and the same solution of the resultingtwo ases as in the Cont-If-Deriv problem. The Lim-If-Both-Sides-Lim problemstates that a funtion f has a limit l at point a, if both the right-hand and theleft-hand limit of f at a are l.4 Unfolding of the de�nitions and the appliation ofNormalizeLineTask result in the main goal jf(x) � lj < �. A support to solve themain goal an be unwrapped either from the right-hand limit assumption or from theleft-hand limit assumption. However, in both ases the appliation of UnwrapHypyields an ondition that annot be losed. For instane, when UnwrapHyp unwrapsthe right-hand limit assumption, then there is the failing ondition x�a > 0. Thisfailing ondition triggers the ase-split into the ases x�a > 0 and :(x�a > 0) forthe main goal jf(x)� lj < �. Whereas the �rst ase an be solved by unwrappingthe right-hand limit assumption, the seond ase requires to unwrap the left-handlimit.8.2.2 Lemma SpeulationIt is ommon mathematial pratie to speulate lemmas during a proof attemptand to prove the lemmas separately. Sine tehnially arbitrary formulas an beintrodued, lemma speulation introdues an in�nite branhing point into the searhspae that is diÆult to ontrol in automated theorem proving. We found a typeof situations in whih suitable (and neessary) lemmas an be speulated by failurereasoning.4Right-hand and left-hand limit are de�ned as follows:limR(��)��o � �f�� �a� �l� 8�� (0 < �)9Æ� (0 < Æ ^ 8x� (x� a > 0 ^ x� a < Æ ) jf(x)� lj < �)))limL(��)��o � �f�� �a� �l� 8�� (0 < �)9Æ� (0 < Æ ^ 8x� (a � x > 0 ^ a� x < Æ ) jf(x)� lj < �)))



164 Chapter 8. The Limit DomainAs example onsider the seond part of exerise 4:1:3 from the analysis textbook[12℄. This problem states thatThm: limx1! f(x1) = l follows from Ass: limx!0 f(x+ ) = l.Figure 8.9 depits the PDS segment reated by SolveInequality until the failureours. As in the previous setion, we indiate and abbreviate the proof partsgenerated by NormalizeLineTask and UnwrapHyp by strategi justi�ations.Ass. Ass ` limx!0 f(x+ ) = l (Hyp)L2. Ass `8� (0 < �) 9Æ (0 < Æ ^8x (jx� 0j < Æ ^ jx� 0j > 0) jf(x+ )� lj < �))) (DefnUnfold-F Ass)L19. L19 ` 0 < Æ ^ 8x (jx� 0j < Æ ^ jx� 0j > 0) jf(x+ )� lj < mv�) (Hyp)L4. L4 ` 0 < �1 (Hyp)L10. L10 ` jx1 � j > 0 ^ jx1 � j < mvÆ (Hyp)L27. H1 ` jmvx � j < Æ1 (Open)L28. H1 ` jmvx � j > 0 (Open)L16. H2 ` 0 < mv� (Open)L26. H1 ` jf(mvx + )� lj < mv� (UnwrapHyp L2)L25. H1 ` jf(x1 )� lj < �1 (Open)L11. H2 ` jf(x1 )� lj < �1 (UnwrapHypL2 L25 L16 L27 L28)L7. Ass;L4 ` 0 < mvÆ1 (TellCS-B)L1. Ass `8�1 (0 < �1 ) 9Æ1 (0 < Æ1 ^8x1 (jx1 � j < Æ1 ^ jx1 � j > 0) jf(x1)� lj < �1))) (NormalizeLineTask L7 L11)Thm. Ass ` limx1! f(x1) = l (DefnUnfold-B L1)H1 = fAss;L4; L10; L19g; H2 = fAss; L4; L10gFigure 8.9: �-Æ-proof for seond part of exerise 4:1:3 (part I).SolveInequality unfolds the de�ned onepts and then swithes to NormalizeLine-Task, whih deomposes the omplex goal. This results in the goal jf(x1)� lj < �1in L11, whih SolveInequality annot takle with the given supports. Hene, itswithes to UnwrapHyp in order to deompose the subformula jf(x + )� lj < � inL2. The appliation of UnwrapHyp yields the new support jf(mvx + ) � lj < mv�in line L26 and the three additional goals 0 < mv� in L16, jmvx � 0j < Æ in L27,and jmvx � 0j > 0 in L28.Next, SolveInequality should apply Solve*-B to takle jf(x1) � lj < �1 withthe new support jf(mvx + ) � lj < mv�. However, this fails sine the appliationondition unify of Solve*-B is not satis�ed, that is, the uni�ation algorithm failsto unify jf(mvx + )� lj and jf(x1)� lj. Sine no other method is appliable andthere is also no further promising subformula to unwrap, Multi would baktraknext. The analysis that jf(mvx + )� lj and jf(x1)� lj are quite similar and thatthe uni�ation is bloked only beause of the residue mvx +  = x1 give rise toonsider to path the proof attempt by speulating the residue mvx +  = x1 aslemma.In general, the failure and its solution follow this pattern: A method tests inits appliation onditions for a uni�er or a mathing of two terms t and t0. Theuni�ation or mathing of t and t0 fails beause of some residues. If these residueslook promising to be provable in the urrent ontext, then they are speulated aslemmas. The lemmas are used to rewrite the initial terms suh that afterwards theuni�ation or mathing sueeds and the method beomes appliable.The question is, when is a residue promising to be provable in the urrent on-



8.2. Failure Reasoning in the Limit Domain 165text? In the limit domain, we exploit the onstraint solver CoSIE to deide whetherresidues are promising lemmas. Whereas the employed uni�ation and mathing aredeidable proedures that depend on no domain-spei� knowledge, CoSIE employsdomain knowledge of inequalities and equations over the �eld of real numbers. Toexploit this domain knowledge as well as the ontext information passed to CoSIEso far we query CoSIE whether it aepts the residues before we speulate them aslemmas. In this way, we ombine the domain-independent uni�ation and mathingwith the domain knowledge ontained in CoSIE .5Tehnially, the desribed produtive use of failing uni�ations and mathingsfor lemma speulation is enoded in the ontrol rule hoose-equation-residuesin SolveInequality. hoose-equation-residues analyzes the residues of blokeduni�ations and mathings and queries CoSIE whether it aepts the residues. Ifthis is the ase, hoose-equation-residues �res and suggests the appliation ofthe method =Subst*-B. This method rewrites a goal by simultaneously applying aset of equations. The equations are given as parameters to =Subst*-B and beomenew goals, i.e., are speulated as lemmas.We shall elaborate this approah with our example. When SolveInequality failsto takle jf(x1)� lj < �1 with the new support jf(mvx+)� lj < mv�, thenMultireates the failure reordapplondfailure(unify (jf(mvx + )� lj; jf(x1)� lj);Solve*-B; A0)for the method Solve*-B. This failure reord states that the evaluation of theappliation ondition unify of the method Solve*-B failed for jf(mvx+ )� lj andjf(x1)�lj. The analysis of the failure reord by hoose-equation-residues yieldsthe residue mvx +  = x1 , whih is aepted by CoSIE . Hene, the ontrol rulehoose-equation-residues �res and guides the appliation of =Subst*-B withmvx +  :=x1 as new lemma.L30. H1 `mvx +  :=x1 (TellCS-B)L31. H1 `mv� � �1 (TellCS-B)L26. H1 ` jf(mvx + )� lj < mv� (UnwrapHyp L2)L29. H1 ` jf(mvx + )� lj < �1 (Solve*-B L26 L31)L25. H1 ` jf(x1)� lj < �1 (=Subst*-B L29 L30)Figure 8.10: �-Æ-proof for seond part of exerise 4:1:3 (part II).Figure 8.10 displays the appliation of =Subst*-B and the following PDS seg-ment omputed by SolveInequality for our example. The appliation of =Subst*-Bto the goal jf(x1)� lj < �1 in L25 results in the new goals jf(mvx+ )� lj < �1 inL29 and mvx +  :=x1 in L30. SolveInequality loses mvx +  :=x1 with TellCS-B,whih passes the onstraint to CoSIE . jf(mvx+)� lj < �1 is losed by Solve*-Bwith respet to the support jf(mvx + ) � lj < mv� in L26. This is now possi-ble sine the uni�ation beame unbloked. The resulting goal in L31 is losed byTellCS-B.CoSIE derivesmvx :=x1� from the given formulamvx+ :=x1 . This determinesmvx, so that SolveInequality swithes to InstIfDetermined, whih introdues the bind-ing mvx:=b x1 �  into the strategi proof plan. With respet to this binding theremaining goals in L27 and L28 beome j(x1 � )� 0j < Æ and j(x�1� )� 0j > 0.5An alternative to this ombination is theory uni�ation, whih inorporates domain-spei�equations into the uni�ation proedures. However, the deidability of theory uni�ation is diÆultto determine and depends on the onrete set of domain equations (e.g., see [25℄). We preferdeidable uni�ation and mathing proedure in order to avoid undeidable appliation onditionswhose evaluation an blok the omplete proof planning proess.



166 Chapter 8. The Limit DomainAppliations of Simplify-B redue these goals to jx1 � j < Æ and jx�1 � j > 0,whih SolveInequality loses with supports derived from line L10.Another problem from the limit domain, whih requires a similar speulation oflemmas is the reverse of exerise 4:1:12 from [12℄, whih states thatThm : limx1!0 f(x1) = l follows from Ass : limx!0 f(a � x) = l and a > 0.Unfolding of lim and normalization result in the goal jf(x1)�lj < �1 . The Unwrap-ping of the assumption yields jf(a �mvx)� lj < mv�. The appliation of Solve*-Bwith respet to these two terms is bloked sine the uni�ation has the residuea �mvx = x1 . Sine CoSIE aepts the onstraint a �mvx :=x1 SolveInequality anunblok the uni�ation and an apply Solve*-B. CoSIE yields x1a as instantiationfor mvx.68.2.3 Goal-Direted BaktrakingGoal-direted reasoning selets and applies steps in order to ahieve some givengoals. That is, a step is either hosen sine it diretly ahieves some of the urrentgoals or sine its e�ets enable some other desirable steps that are likely to helpto ahieve given goals. Typially, in searh proedures baktraking is not a goal-direted operation in its own right but only a neessary operation to traverse thesearh spae. Multi provides the freedom to baktrak any ations in the proof planunder onstrution. This allows for goal-direted baktraking , that is, baktrakingthat is not just part of the traversal of the searh spae but that aims to worktowards the urrent goals by enabling desirable steps. In this setion, we shalldisuss a type of situation in whih goal-direted baktraking is suggested by meta-reasoning on a highly desirable but bloked strategy.As example problem onsider the problem LIM-DIV-1-X, whih states thatThm: limx! 1x = 1 for  > 0.Figure 8.11 depits the PDS that is reated for this problem before the highlydesirable but bloked strategy ours.The unfolding of the de�ned symbol lim and the normalization of the result-ing omplex goal results in the two goals 0 < mvÆ in L6 and j 1x � 1 j < � in L9.SolveInequality loses the �rst goal by an appliation ofTellCS-B whereas it simpli-�es the seond goal to j �xx� j < � in L12. An appliation of FatorialEstimate-Bto this goal results in the three goals 0 < mvf in L13, jx � j > mvf in L14, andj� xj < mvf � � in L15. SolveInequality loses these three goals with TellCS-B.Sine then all line-tasks are losed CoSIE is supposed to provide instantiationsfor the meta-variables mvÆ and mvf that are onsistent with the olleted on-straints. That is, the strategy ComputeInstFromCS, whih asks CoSIE to omputethe instantiations, beomes a highly desirable strategy. However, CoSIE fails toompute instantiations in this situation and ComputeInstFromCS does not sueed.What is the problem? So far, CoSIE did ollet the onstraints6This is another example that needs eager meta-variable instantiation. Sine a � mvx :=x1determines mvx, the binding mvx:=b x1a is introdued into the proof plan. The unwrapping ofthe support also yields the two goals jmvx � 0j < Æ and jmvx � 0j > 0, whih are simpli�ed withrespet to the binding to j x1a j < Æ and j x1a j > 0. Whereas Multi an solve these two goalsfrom the supports jx1 j > 0 ^ jx1 j < mvÆ by appliations of ComplexEstimate-B, PLAN failsto prove the goals without the eager instantiation.



8.2. Failure Reasoning in the Limit Domain 167Ass. Ass ` 0 <  (Hyp)L8. L8 ` jx � j < mvÆ ^ jx � j > 0 (Hyp)L4. L7 ` 0 < � (Hyp)L10. L8 ` jx � j < mvÆ (^E-F L8)L11. L8 ` jx � j > 0 (^E-F L8)L13. H1 ` 0 < mvf (TellCS-B)L14. H1 ` jx � j > mvf (TellCS-B)L15. H1 ` j� xj < mvf � � (TellCS-B)L12. H1 ` j �xx� j < � (FatorialEstimate-BL13 L14 L15)L9. H1 ` j 1x � 1 j < � (Simplify-B L12)L6. Ass; L7 ` 0 < mvÆ (TellCS-B)L1. Ass `8� (0 < �) 9Æ (0 < Æ ^8x (jx� j < Æ ^ jx� j > 0) j 1x � 1 j < �))) (NormalizeLineTask L6 L9)Thm. Ass ` limx! 1x = 1 (DefnUnfold-B L1)H1 = fAss; L4; L8gFigure 8.11: �-Æ-proof for LIM-DIV-1-X before failure.jx�j� < mvf , 0 < mvf , mvf < jx � j, 0 < mvÆ , 0 < , and 0 < �.The ritial onstraints are the onstraints on mvf that state that jx�j� has to beless than mvf , whih has to be less than jx � j. These onstraints are onsistent,but a solution for mvf exists only, if jx�j� < jx � j holds. This, however, does notfollow from the onstraints olleted so far. In partiular, the onstraints olletedso far are not suÆient for an �-Æ-proof sine they do not establish a onnetionbetween the � and the Æ.A possibility to overome this problem is to re�ne the existing onstraints inorder to obtain an extended set of re�ned onstraints for whih a solution exists.That is, appliations ofTellCS-B have to be baktraked in a goal-direted mannerin order to enable further re�nement of some onstraints.We enoded the desribed idea in the strategi ontrol rule baktrak-to-unblok-osie. When all line-tasks are losed, but ComputeInstFromCS is not ap-pliable sine CoSIE fails to ompute instantiations, then this ontrol rule analyzesthe onstraints passed to CoSIE by TellCS-B. It triggers the baktraking ofations of TellCS-B that pass omplex inequalities to CoSIE that an be furtherre�ned.7 When SolveInequality takles the re-opened proof lines, it annot losethem again with TellCS-B but has to re�ne them. Afterwards, it an pass there�ned goals to CoSIE .We shall elaborate this idea with our example. Triggered by the strategiontrol rule baktrak-to-unblok-osie Multi baktraks the appliation ofTellCS-B that loses L15. SolveInequality redues the re-opened goal L15 withComplexEstimate-B. Afterwards, it passes the resulting inequality goals by ap-pliations of TellCS-B to CoSIE . Sine CoSIE also fails on this extended on-straint set Multi baktraks the appliation of TellCS-B that loses L14. Again,SolveInequality redues the re-opened goal with ComplexEstimate-B and passesthe resulting inequalities to CoSIE . The new PDS segments for L14 and L15 areshown in Figure 8.12.This results in the following onstraint store:7Currently, the ritial onstraints are hosen by some heuristis enoded inbaktrak-to-unblok-osie. It would be more onvenient, if CoSIE would diretly pointout what the ritial onstraints are. However, this kind of information is not provided by theurrent CoSIE system.



168 Chapter 8. The Limit DomainL10. L8 ` jx � j < mvÆ (^E-F L8)L11. L8 ` jx � j > 0 (^E-F L8)L22. H1 ` 0 < mv0 (TellCS-B)L23. H1 ` jj < mv0 (TellCS-B)L24. H1 ` j � j � mvf � 2 (TellCS-B)L25. H1 `mvÆ � mvfmv0 (TellCS-B)L14. H1 ` jx � j > mvf (ComplexEstimate-BL10 L22 L23 L24 L25)L17. H1 ` j � 1j � mv (TellCS-B)L18. H1 `mvÆ � ��mvf2�mv (TellCS-B)L19. H1 ` j0j < ��mvf2 (TellCS-B)L20. H1 ` 0 < mv (TellCS-B)L15. H1 ` j� xj < mvf � � (ComplexEstimate-BL10 L17 L18 L19 L20)Figure 8.12: Extended �-Æ-proof for LIM-DIV-1-X.� > 0  > 0 mvf � mv0 �mvÆ mv0 > mvf > 0 mv > 1 ��mvf2 > 0 mvÆ > 0mvÆ � ��mvf2�mv mvf � 2 � 2Bindings that are onsistent with these onstraints are: mv:=b 2, mv0:=b  +1, mvf :=b 22 , and mvÆ :=bmin( ��28 ; 22�(+1)). Unfortunately, the solution of theabove onstraint system is not in the sope of the urrent CoSIE system. That is,CoSIE fails to provide instantiations although a solution that is onsistent with allonstraints exists and establishes a onnetion between the � and the Æ of our �-Æ-proof.8 Sine baktrak-to-unblok-osie detets no further inequality goalsthat probably an be further re�ned Multi terminates without bindings for themeta-variables. Despite the suessful failure analysis that triggered goal-diretedbaktraking, the problem annot be solved ompletely beause of drawbaks of theurrent CoSIE system.All problems of the limit domain that result in absolute values of frations thatare takled with FatorialEstimate-B need the desribed failure reasoning. Forinstane, exerises 4:1:10(a)� (d) in [12℄:limx!2 11�x = �1, limx!1 xx+1 = 12 , limx!0 x2jxj = 0, limx!1 x2�x+1x+1 = 12 ,and problems on the derivative of funtions suh as theorem 6:1:3(a) and (b) in [12℄:deriv(f; a) = f 0 ) deriv(� � f; a) = � � f 0,deriv(f; a) = f 0 ^ deriv(g; a) = g0 ) deriv(f + g; a) = f 0 + g0.Note that the urrent CoSIE system fails for all these problems to ompute suitableinstantiations.8.3 Applying TheoremsSometimes, di�erent setions of mathematial textbooks introdue di�erent waysto takle the same problem based on di�erent theory ontexts. A typial struture8The reason for CoSIE failing to �nd this solution is the mutual dependeny of the variablesmvf and mvÆ . mvf ours in an upper bound of mvÆ , and in turn mvÆ ours in a lower boundof mvf . The searh proedure of the urrent CoSIE system is not omplete in a sense that it annot resolve all dependenies of this kind.



8.3. Applying Theorems 169is, for instane, to prove �rst some basi theorems with a basi tehnique and touse these theorems afterwards to prove further problems. In the textbook [12℄both the hapter on the limit of sequenes (hapter three) and the hapter on thelimit of funtions (hapter four) are strutured in this way. First �-Æ-proofs areused as a basi tehnique to takle limit problems (setion 1 of hapter three andhapter four, respetively), then these theorems are used to prove more problems(setion 2 of hapter three and hapter four, respetively). In the previous setionsof this hapter, we disussed how Multi solves limit problems with the basi �{Ætehnique. In the following, we shall disuss how Multi an solve limit problemsby using known theorems and how it ombines the appliation of theorems with the�{Æ tehnique.For the appliation of known theorems we enoded an extra strategy, Redue-ToSpeial. The entral method in RedueToSpeial is ApplyAss-B, whih appliestheorems from 
mega's theory database. ApplyAss-B an apply a theorem toa goal, if the onlusion of the theorem mathes the goal. The appliation of themethod results in the premises of the theorem to be the new open goals. Moreover,RedueToSpeial ontains several methods that lose partiular goals that are oftenreated by the appliation of theorems (e.g., the methods IntI-B and RealI-Bthat lose goals of the form n 2 ZZ or r 2 IR where n and r are onrete num-bers). RedueToSpeial also ontains the TellCS-B method, whih is used to passequations with meta-variables to CoSIE .RedueToSpeial reates shorter and more abstrat proofs for some problemsthat Multi ould also solve with �-Æ-proofs. Moreover, the strategy extends thesolvability horizon of Multi for the limit domain sine the ombination of Redue-ToSpeial and SolveInequality an solve problems on whih SolveInequality alone fails.We exemplify RedueToSpeial with the two problems limx!1(x+ 1) � (2 � x+3) = 10(exerise 4:2:1(a) in [12℄) and limx!0 sin(x) = 0 (example 4:2:8(b) in [12℄) that demon-strate both aspets of RedueToSpeial.The proof of limx!1(x + 1) � (2 � x + 3) = 10 with RedueToSpeial relies on thefollowing theorems in 
mega's database:LIM+ : 8f 8g 8 8l 8lf 8lg ( limx! f(x) = lf ^ limx! g(x) = lg^ lf + lg :=l)) limx! f(x) + g(x) = lLIM� : 8f 8g 8 8l 8lf 8lg ( limx! f(x) = lf ^ limx! g(x) = lg^ lf � lg :=l)) limx! f(x) � g(x) = lLIMV : 8 8l l :=) limx!x = lLIMC : 8a 8 8l l :=a) limx!a = lFigure 8.13 displays a part of the PDS that results from the appliation ofRedueToSpeial to the problem limx!1(x+1)� (2�x+3) = 10. First, RedueToSpeialdeomposes the funtions with +; � by appliations of the theorems LIM+ andLIM�. Then, appliations of LIMC and LIMV solve the remaining limit goals.All goals with equations on meta-variables are losed by TellCS-B and passed toCoSIE . When all line-tasks are losed, then CoSIE provides the suitable bindingsfor the meta-variables (i.e., mv4:=b 1, mv3:=b 1, mv1:=b 2, mv2:=b 5).Another interesting limit theorem in 
mega's database is the Squeeze-Theorem(see [12℄). The theorem states that if a funtion g is squeezed at point  betweenthe two funtions f and h and if f and h have the limit l at , then g has the limitl at .



170 Chapter 8. The Limit DomainL8. `mv3 :=1 (TellCS-B)L7. `mv4 :=1 (TellCS-B)L6. `mv4 +mv3 :=mv1 (TellCS-B)L5. ` limx!1 1 = mv4 (ApplyAss-B L7 (LIMC))L4. ` limx!1 x = mv3 (ApplyAss-B L8 (LIMV ))L3. `mv1 �mv2 :=10 (TellCS-B)L2. ` limx!1 2 � x+ 1 = mv2 (Open)L1. ` limx!1 x+ 1 = mv1 (ApplyAss-B L4 L5 L6 (LIM+))Thm. ` limx!1(x+ 1) � (2 � x+ 3) = 10 (ApplyAss-B L1 L2 L3 (LIM�))Figure 8.13: RedueToSpeial proof for limx!1(x+ 1) � (2 � x+ 3) = 10Squeeze-Theorem: 8 8l 8g(9f 9h (8x1 (x1 < )) (f(x1) < g(x1)))^ (8x2 (x2 > )) (g(x2) < h(x2)))^ limx! f(x) = l ^ limx!h(x) = l)) limx! g(x) = lWe exemplify the appliation of this theorem with the problem limx!0 sin(x) = 0.Figure 8.13 depits a part of the reated PDS. When invoked on the problem, thenRedueToSpeial applies the Squeeze-Theorem. This results in the omplex goal inL1, whih is the premise of the Squeeze-Theorem instantiated with the elements ofthe problem at hand. The deomposition of this goal by NormalizeLineTask resultsin the goals limx!0mvh(x) = 0 in L2, limx!0mvf (x) = 0 in L3, sin(x2) < mvh(x2) inL4, and mvf (x1) < sin(x1) in L5, where mvf is a meta-variable for the funtion fand mvh is a meta-variable for the funtion h, as well as in the hypotheses x1 < 0in L7 and x2 > 0 in L6.L7. L7 ` x1 < 0 (Hyp)L6. L6 ` x2 > 0 (Hyp)L5. L7 `mvf (x1) < sin(x1) (ApplyAss-Bfmvf :=b �jxjg)L4. L6 ` sin(x2) < mvh(x2) (ApplyAss-Bfmvh:=b jxjg)L3. ` limx!0mvf (x) = 0 (Open)L2. ` limx!0mvh(x) = 0 (Open)L1. `9f 9h(8x1 (x1 < 0)) (f(x1) < sin(x1)))^ (8x2 (x2 > 0)) (sin(x2) < h(x2)))^ limx!0 f(x) = 0 ^ limx!0h(x) = 0 (NormalizeLineTask L2 L3 L4 L5)Thm. ` limx!0 sin(x) = 0 (ApplyAss-B L1 (Squeeze))Figure 8.14: RedueToSpeial proof for limx!0 sin(x) = 0Cruial for the following proof planning proess is the detetion of suitable in-stantiations for mvf and mvh that satisfy the \onstraints" in L2; L3; L4; L5. Re-dueToSpeial introdues instantiations for mvf and mvh by applying further the-orems. It loses L5 and L4 by appliations of the theorems 8x sin(x) � jxj and8x � jxj � sin(x) from 
mega's database. These steps introdue the bindingsmvf :=b � jxj and mvh:=b jxj into the strategi proof plan.9 We indiate the intro-dution of these bindings in the justi�ations of the lines L4 and L5 in Figure 8.14.9These bindings are reated during the appliation of ApplyAss-B when the theorems8x sin(x) � jxj and 8x � jxj � sin(x) are mathed with the goals in L5 and L4. They arepart of the resulting method-ations of ApplyAss-B.



8.4. Results and Disussion 171With respet to these bindings the formulas of L2 and L3 beome limx!0 jxj = 0and limx!0�jxj = 0, respetively. RedueToSpeial fails to solve these problems, butSolveInequality an solve them by onstruting �-Æ-subproofs.The Squeeze-Theorem opens a Pandora's box sine it is appliable again to itsown premises (i.e., in the example in Figure 8.14 RedueToSpeial ould apply theSqueeze-Theorem again to the subgoals in L2 and L3 et.). Thus, the appliation ofthe Squeeze-Theorem has to be ontrolled. A ontrol rule in RedueToSpeial prefersthe two inequality goals resulting from the appliation of the Squeeze-Theorembefore the two limit subgoals. This ontrol rule guarantees that the limit subgoalsare takled only if the two inequality subgoals are losed by theorem appliationsthat instantiate the funtion meta-variables for f and h.The extration of relevant knowledge from the database is a general problem inautomated theorem proving. When RedueToSpeial would hek all theorems in
mega's database, then the hek for appliable theorems would overload the sys-tem. Hene, a ontrol rule restrits the set of andidate theorems in RedueToSpe-ial. Currently, this ontrol rule suggests only the theorems stated in the theory ofthe urrent problem. Beause of this very inexible restrition, whih enodes nomathematial knowledge or praxis, we had to add the theorems 8x sin(x) � jxj and8x � jxj � sin(x) temporarily to the limit theory in order to test RedueToSpeialon problems suh as limx!0 sin(x) = 0. That is, the suessful appliation of Redue-ToSpeial urrently depends on the loation of suitable theorems in the limit theory.We are examining the 
ants mehanism as a mediator between 
mega's knowl-edge base and proof planning (�rst results are reported in [20℄) to overome thetheorem retrieval problem. The mediator supports the idea of semantially guidedretrieval of mathematial knowledge (theorems, de�nitions) from the database.The ombination of RedueToSpeial and SolveInequality an solve several prob-lems from [12℄ that annot be solved by SolveInequality alone, for instane, example4:2:8() limx!0 os(x) = 1 and example 4:2:8(f) limx!0x � sin( 1x ) = 0 (when theorems ofsin and os are added into the limit theory).8.4 Results and DisussionThis hapter presented the appliation of Multi to the limit domain. Multi ansolve all problems that PLAN an solve10 and it suessfully plans various problemsthat are beyond the apabilities of PLAN. In partiular,Multi an solve problemsthat require eager meta-variable instantiations as well as problems that requiremeta-reasoning on failures to introdue ase-splits, to speulate lemmas, and toguide goal-direted baktraking.The disussed speulation of lemmas is not possible in PLAN sine it does notreate and maintain suitable information on failures suh as the failure reords ofMulti. All other problems are beyond the apabilities of PLAN sine it annotexibly ombine planning, baktraking, and meta-variable instantiation based onmeta-reasoning.We onlude the hapter with a disussion of related work and an evaluation ofthe realized proof planning approah.10In partiular, all hallenge problems that Bledsoe proposed in 1990 [28℄, among them the limittheorems LIM+, LIM-, LIM*, the theorems Continuous+, Continuous-, Continuous*, limx!ax = a,and limx!a  =  (see [172℄).



172 Chapter 8. The Limit Domain8.4.1 Related WorkRelated Work on Proving Limit TheoremsSome of the knowledge enoded in the methods of the SolveInequality strategyis similar to ideas implemented in the theorem prover Imply [29℄ (see also se-tion 2.1.3) developed by Bledsoe. For instane, ComplexEstimate-B is inspiredby Bledsoe's limit heuristi. Bledsoe and Hines developed a resolution-basedprover for inequalities [31℄, whih an prove, for instane, the Continuous+ problem.Beeson worked on �-Æ-proofs automatially reated by the systemsMathpert andWeierstrass [14℄. All these systems rely on speial-purpose routines that are im-plemented into the systems. As opposed thereto, only the strategies, methods, andontrol rules are domain-spei� in 
mega's knowledge-based proof planning, therepresentational tehniques and reasoning proedures are general-purpose.In [172℄, Melis and Siekmann desribe how to takle limit theorems withPLAN and ompare it with the appliation of the automated theorem prover Ot-ter to some limit problems. With a partiular ontrol setting Otter an solve asimple version of LIM+. However, this setting is tailored to LIM+ and does notwork for LIM* or other limit theorems. In auto-mode Otter is not able to provethe simple version of LIM+. In ontrast, our strategies, methods, and ontrol rulesover the mathematial knowledge in a form that is general enough to solve all limitproblems in Appendix C and many similar theorems that ould be formulated.The LIM+ problem was also proved in CLaM [230℄ with a speial heuristi alledolored rippling . But LIM* and other theorems of the limit domain turned out tobe too diÆult for CLaM.Related Work on Failure ReasoningFailure reasoning in the proof planner CLaM is losely related to the lemma spe-ulation and the introdution of ase-splits in Multi. Sine a detailed omparisonof the failure reasonings requires some tehnial details of CLaM we shall disuss itin the subsequent setion 8.4.2.The speulation of residue lemmas has something in ommon with Huets on-strained resolution [120℄. Sine uni�ation is undeidable in higher-order logis on-strained resolution intertwines resolution steps with uni�ation. Instead of solvingthe uni�ation problem t = t0 as a preondition of a resolution step, the resolutionstep is performed and t = t0 beomes part of the resolution problem. This proessis diÆult to ontrol sine the introdued uni�ation residue t = t0 an be as diÆ-ult to solve as the rest of the proof. We also intertwine uni�ation with the mainproof proess by speulating uni�ation residues as lemmas. But, as opposed toonstrained uni�ation, we stritly ontrol the speulation of the lemmas sine weallow only for suh lemmas that are diretly aepted by CoSIE .Related to goal-direted baktraking in Multi is the goal-direted reasoningin elaborate blakboard systems suh as Hearsay-III and BB1 (e.g., see [64, 126℄and disussion in setion 6.3.1). One approah to integrate goal-direted reason-ing in blakboard systems is the onstrution (and modi�ation) of meta-plans ofhighly desirable knowledge soure appliations that guide the following solutionproess [75℄. When a highly desirable knowledge soure is not appliable, then rea-soning on the failure an suggest the invoation of knowledge soures that unblokthe desired knowledge soure. When performing goal-direted baktraking, we donot onstrut meta-plans of strategy appliations but we also exploit knowledge ofwhen the appliation of partiular strategies is highly desirable and how to unbloka highly desirable but bloked strategy.



8.4. Results and Disussion 1738.4.2 Failure Reasoning in CLaMIn the following, we shall �rst desribe the use of ritis in CLaM and then omparefailure reasoning with ritis with our failure reasoning enoded in ontrol rules.Critis in CLaMBundy and Ireland propose ritis as a means to path failed proof attemptsby exploiting information on failures in [122℄ and [123℄. The motivation for theintrodution of ritis is similar to our motivation for failure reasoning: failures inthe proof planning proess, in partiular, failures ourring after partially suessfuloperations, often hold the key to disover a solution proof plan.Critis in CLaM extend the hierarhy of inferene rules, tatis, and methods.They are introdued in order to omplement proof methods. A riti is assoi-ated with one method and aptures pathable exeptions to the appliation of themethod. Sine the appliation of a method an fail in various ways, eah methodmay be assoiated with a number of ritis. Critis are expressed in terms of pre-onditions and pathes. The preonditions analyse the reasons why the methodhas failed to apply. The proposed path suggests a hange to the proof plan. Thishange an be a manipulation of the whole proof plan or the hange an be a loalmanipulation of goals.To desribe the failure reasoning in CLaM we have to onsider the onstrutionof indutive proofs in CLaM in some detail. Proof onstrution in CLaM relies onthe domain-independent rippling heuristi [43, 121℄. The rippling heuristi is basedupon the observation that the indution hypothesis is syntatially similar to theindution onlusion. In order to derive the indution onlusion from the indutionhypothesis the ripple method tries to rewrite the indution onlusion, suh thatthe indution hypothesis an be used. The ripple method iterates over the wavemethod, whih applies onditional rewrite rules of the form Conds ! (LHS )RHS), where LHS is the left hand side, RHS is the right hand side, and Condsare the onditions of the rewrite rule. When Hyps and Con denote the urrenthypotheses and the onlusion, respetively, then the preonditions of the wavemethod are:111. There is a subterm Sub of the onlusion Con, whih should be rewritten.2. There is a onditional rewrite rule Conds! (LHS ) RHS) suh that LHSmathes with Sub.3. The onditions Conds are satis�ed by the hypotheses Hyps (i.e., Hyps `Conds is a tautology).The appliation of the wave method fails, when one of its preonditions is notsatis�ed. Bundy and Ireland realized two pathes for the method, whih areimplemented as ritis assoiated with the method:1. A failure of preondition 2, i.e., there is no rewrite rule that an be applied,triggers the lemma-disovery riti. The preonditions for the appliationof this riti are: (1) preondition 1 of the wave method holds and (2) pre-onditions 2 and 3 fail. The path of the riti involves the speulation andproof of a rewrite rule to unblok this situation. This proess may involvebaktraking, when a speulated rewrite rule annot be proved.11Atually, there are di�erent wave methods for di�erent kinds of rippling (e.g., longitudinal-rippling and transverse-rippling), whih have some more preonditions that di�er slightly amongthe di�erent wave methods, see [43, 123℄ for details. For the sake of simpliity we disuss here onlythe relevant preonditions.



174 Chapter 8. The Limit Domain2. A failure of preondition 3, i.e., the ondition of a mathing rewrite rule is notsatis�ed in the urrent ontext, triggers the missing-ondition riti. Thepreonditions for the appliation of this riti are: (1) preondition 1 of thewave method holds, (2) preondition 2 of the wave method holds with respetto a rewrite rule Conds ! (LHS ) RHS), and (3) preondition 3 fails forConds. The path of the riti is to perform a ase analysis based upon theunprovable onditions Conds.These two ritis are tailored to the possible failures of the appliation of thewave method. The general ideas behind the ritis are:Lemma Speulation: When no methods are appliable with respet to the ur-rent ontext, the ontrolled speulation (and the proof) of new lemmas anunblok the proof planning proess.Case Analysis: Splitting a problem into di�erent ases an unblok the proofplanning proess, when no methods are appliable.Bundy and Ireland desribe also ritis of other methods that path the seletionof the indution shemata and generalize onjetures in order for an indutive proofto sueed (see [123℄).Comparison with Failure Reasoning in MultiThe situations that trigger lemma speulation and ase-splits in CLaM andMulti are very similar: missing premises in the urrent ontext (i.e., missing rewriterules in CLaM or missing supports in Multi) trigger lemma speulation; unprov-able premises of onditional fats from the ontext (i.e., onditional rewrite rulesin CLaM or onditional supports in Multi) ause ase-splits. However, the ritismehanism in CLaM and failure reasoning in Multi onsiderably di�er not only inminor tehnial issues but also in their oneptual design.Critis in CLaM are an extra onept introdued for failure reasoning. A ritireasons on failures of the one method it is diretly assoiated with, i.e., it reasonson failing preonditions of the method. Part of a riti is a path of the failure.Tehnially, this path is a speial proedure that an hange the omplete proofplan.In ontrast, failure reasoning inMulti is onduted by ontrol rules. The ontrolrules are not assoiated with a partiular method but rather test for partiularsituations that an our during the proof planning proess (independent from whihstrategy or method aused the situation). The ontrol rules reason on the urrentproof plan and on all other available information suh as the history. The path ofa failure is not implemented into speial proedures but is arried out by methodsand strategies whose appliation is suggested by the ontrol rules.The advantage of the Multi approah is that ontrol rules allow for method-and strategy-independent reasoning on failures. For instane, the ontrol rulehoose-equation-residues, whih guides the lemma speulation an deal withfailing unify and matching appliation onditions of any employed method. It isdomain-independent sine it ould be employed in ooperation with other onstraintsolvers similar to the ooperation with CoSIE desribed in setion 8.2.2.We deided to realize pathes in Multi by ontrol rules that guide the appli-ation of existing strategies and methods sine proedural pathes are diÆult tomaintain. Both the introdution and the deletion of a path for a desired manip-ulation requires the implementation of speial proedures. For omplex proof planmanipulations the ooperation of several methods and strategies an be neessary



8.4. Results and Disussion 175and has to be guided by several ontrol rules. For instane, when performing aseanalysis,Multi has to baktrak the appliation of the onditional support. After-wards, it has to introdue the ase-split and �nally it has to replay the baktrakedparts again (in order to avoid to prove again from the srath). The neessary failurereasoning and the knowledge of how to path this failure is distributed among threeontrol rules: one strategi ontrol rule that guides the baktraking, one ontrolrule that guides the ase split, and one ontrol rule that guides the replay of thebaktraked parts. Although the failure reasoning is distributed we see the threeinvolved ontrol rules as one meta-reasoning entity that is distributed for tehnialreasons.8.4.3 Evaluation of the Proof Planning ApproahKnowledge-based proof planning relies on the aquisition, formalization, and useof domain-spei� knowledge in methods, ontrol rules, and strategies. However,there is the onstant danger to aquire over-spei� knowledge as Bundy pointsout:A new method or riti may originally be inspired by only a handful of examples.There is a onstant danger of produing methods and ritis that are too �ndtuned to these initial examples. This an arise both from a lak of imaginationin generalizing from the spei� situation and from the temptation to get quikresults in automation. Suh over-spei�ity leads to a proliferation of methodsand ritis with limited appliability. Bundy, [42℄Bundy suggests in [42℄ and [39℄ the riteria generality and parsimony to evaluatethe appropriateness of proof planning methods and ritis. Generality means thateah method or riti should apply suessfully in a wide range of situations, whereasparsimony means that a few methods should generate a large number of proofs.These riteria of Bundy do not onsider mathematial ontent, whih is animportant issue in knowledge-based proof planning. The methods, ontrol rules,and strategies in knowledge-based proof planning should be rih in mathematialontent. Thus, the art of knowledge-based proof planning is to aquire domainknowledge that, on the one hand, omprises meaningful mathematial tehniquesand powerful heuristi guidane, and, on the other hand, is general enough to taklea broad lass of problems.In the following, we shall evaluate proof planning limit theorems with Multi.We disuss the amount of mathematial and domain-spei� knowledge in strategies,methods, and ontrol rules and disuss how general they are. We disuss generalitynot only in the sense of Bundy, that is, to how many problem lasses a onretestrategy, method, or ontrol rule applies. Rather, we disuss also how general theenoded priniple is and how it an be transfered to other domains.SolveInequalityThe approah to takle inequality problems with the SolveInequality strategy �tsinto a muh more general heuristi strategy desribed by Shoenfeld :In a problem `to �nd' or `to onstrut', it may be useful to assume that you havethe solution to the given problem. With the solution (hypothetially) in hand,determine the properties it must have. One you know what those propertiesare, you an �nd the objet you seek. Shoenfeld, [209℄ p. 23



176 Chapter 8. The Limit DomainWhen takling inequality problems, SolveInequality assumes that solutions forexistentially quanti�ed variables exist (e.g., for the Æ in �-Æ-proofs) and substitutesthe existentially quanti�ed variables by meta-variables. Afterwards, it ollets on-straints on the introdued meta-variables in CoSIE , whih at the end omputesinstantiations for the meta-variables.Now that we know that SolveInequality �ts into the general strategy \assume,ollet properties, then ompute", ould we enode a general version of this strategythat an takle various domains and subsumes SolveInequality? Probably not, sine,as Shoenfeld points out, suh a general heuristi strategy alone provides noadequate information on how to use this strategy in a onrete ase.[: : :℄ that a typial heuristi strategy is very broadly de�ned | too broadly,in fat, for the desription of the strategy to serve as a useful guide to itsimplementation. Shoenfeld,[209℄ pp. 70 and 72Rather, suh general strategies have to be �lled with domain-spei� knowledgesuh that the general strategy is only a summary label for a lass of substrategiesfor di�erent domains:[: : :℄ the suessful implementation of heuristi strategies in any partiular do-main often depends heavily on the possession of spei� subjet matter knowl-edge.[: : :℄ More often than not, a apsule desription of a strategy is a summary la-bel that inludes under it a lass of more preise substrategies that may be onlysuper�ially related. Shoenfeld,[209℄ pp. 92 and 95Thus, in the sense of Shoenfeld, SolveInequality is a substrategy of the generalstrategy \assume, ollet properties, then ompute". It instantiates this generalpriniple with the spei� knowledge on how to apply it to inequalities over thereals.The main ontrol rule of SolveInequality, prove-inequality, enodes the es-sential idea of how SolveInequality implements the general priniple for inequalitiesover the reals: redue omplex inequalities to simple inequalities and pass sim-ple inequalities to the onneted onstraint solver. To takle omplex inequal-ities prove-inequality suggests domain-spei� methods suh as Simplify-B,Solve*-B, ComplexEstimate-B, and FatorialEstimate-B. These meth-ods enode mathematial knowledge of inequalities, real numbers, and the oper-ations +;�; �; = on real numbers. This knowledge is partially ontained in theomputer algebra system Maple that is employed within ComplexEstimate-Band Simplify-B. Moreover, prove-inequality suggests the methods TellCS-B,TellCS-F, and AskCS-B that interfae the onstraint solver CoSIE . These meth-ods do not ontain domain-spei� mathematial knowledge but provide a domain-independent interfae to onstraint solvers.The domain-spei� methods of SolveInequality are hardly reusable in anothersubstrategy of \assume, ollet properties, then ompute" for other domains. How-ever, they ould be useful for other problem lasses dealing with inequalities overthe reals. Currently, the methods TellCS-B, TellCS-F, and AskCS-B inter-fae only CoSIE . However, they provide general funtionalities, namely addingonstraints and asking whether a onstraint is entailed, that are independent of aonrete onstraint solver. Thus, they an be used also in other domains with otheronstraint solvers (e.g., problems on sets with a onstraint solver on sets).



8.4. Results and Disussion 177The essene of the ontrol rule prove-inequality ould be reused in other sub-strategies of the \assume, ollet properties, then ompute" strategy for other do-mains with onstraint solvers. In suh a domain, the adaption of prove-inequalitywould suggest domain-spei� methods to takle omplex expressions of this domainuntil TellCS-B, TellCS-F, and AskCS-B involve a onstraint solver of the do-main to handle the simple expressions.SolveInequality also ontains some logi-level methods, for instane, Contra-Bto perform indiret proofs and DefnUnfold-B and DefnUnfold-F for unfoldingof de�ned onepts. These methods are domain-independent and ontain no par-tiular mathematial knowledge. The deision when to perform an indiret proofand whih de�nitions to unfold and whih not are diÆult problems in theoremproving in general (e.g., see [30, 249, 102℄ for disussions on unfolding of de�nedonepts). Their appliation within SolveInequality is guided by ontrol rules thatenode mathematial heuristis. For instane, sine the purpose of SolveInequalityis to takle inequalities it only unfolds de�ned onepts that result in inequalities.This knowledge is enoded in the ontrol rule selet-unfold-defined-onept,whih guides the appliation of DefnUnfold-B and DefnUnfold-F. The meta-reasoning to guide indiret proofs in the limit domain is disussed in [171℄.SolveInequality employs some further ontrol rules that do not enode mathemat-ially meaningful heuristis but deal with tehnial peuliarities that our duringthe searh proess. As example for suh a ontrol rule onsider blok-simplify,whih restrits appliations of the methods Simplify-F and Simplify-B. Bothmethods employ Maple to simplify arithmeti terms. Unfortunately, it turned outthat sometimes the appliation of Maple results in more omplex terms. To avoidunneessary omplexity and non-terminating yles of simpli�ation and omplia-tion blok-simplify rejets all appliations of Simplify-F and Simplify-B thatdo not simplify the terms.Altogether, SolveInequality is not restrited to limit problems. Rather, its ap-proah is general enough to takle also other inequality problems over the reals.However, sine we did fous on limit problems so far, the methods of SolveInequalityare foused on inequalities with absolute values. To extend the solvability horizonof the strategy some methods are needed that takle omplex inequalities withoutabsolute values, for instane, methods similar to ComplexEstimate-B or methodsthat isolate subterms in omplex inequalities (isolating x in (� x) + a < � resultsin x > (+ a)� �).12NormalizeLineTask, UnwrapHyp, and RedueToSpeialThe PPLANNER strategies NormalizeLineTask and UnwrapHyp ontain only logi-level methods to deompose omplex formulas in goals and supports. Thus, theyare very general in the sense of Bundy, but they do not enode any spei� math-ematial knowledge. However, they implement operations that are important inmathematial problem solving in general sine the deomposition of omplex goalsand the unwrapping of subformulas of omplex assumptions is neessary in all math-ematial domains where omplex statements are omposed from primitive ones bylogial onnetives and quanti�ers.RedueToSpeial uses only general methods, in partiular, a domain-independentmethod for the appliation of theorems. However, we had to add some domain-spei� ontrol to guide the appliation of the Squeeze-Theorem. The ontent of thisontrol is not of mathematial nature, rather it omprises tehnial knowledge on12An example theorem that requires the handling of omplex inequalities without absolute valuesis the Squeeze-Theorem. Although we employ this theorem when proving problems with theRedueToSpeial strategy it urrently annot be proved by Multi.



178 Chapter 8. The Limit Domainhow to prevent Multi from the repeated, never-ending appliation of the Squeeze-Theorem.
INSTMETA StrategiesSimilar to the methods TellCS-B, TellCS-F, and AskCS-B the INSTMETAstrategies InstIfDetermined and ComputeInstFromCS enode no partiular mathe-matial knowledge but provide interfae funtions to onstraint solvers. Although,urrently they interfae only CoSIE , they provide funtionalities, namely retrievingpartiular entailed onstraints and omputation of instantiations, that are indepen-dent of a onrete onstraint solver. Thus, they ould be employed also in otherdomains.Failure ReasoningThe desribed mathematial knowledge to speulate lemmas and to introduease-splits are general meta-reasoning patterns, promising also for other domains.As evidene for this statement onsider that the orresponding ritis in CLaMexploit very similar failures in a ompletely di�erent domain to guide similar proofmodi�ations.The domain-spei� part of the lemma speulation desribed in setion 8.2.2 isthe deision of whih lemmas are promising and whih not. To avoid the speulationof arbitrary lemmas that annot be proved in the urrent ontext, SolveInequalityasks CoSIE whether it aepts a potential lemma. This exploits the domain-spei�information enoded in CoSIE as well as the ontext information passed to CoSIEso far. The same approah ould be performed in other domains with onstraintsolvers that ontain partiular domain knowledge. Other domains maybe providedi�erent kinds of guidane to deide whether lemmas are promising.The domain-spei� part of the ase-split introdution disussed in setion 8.2.1is the deision of whih ases to onsider. In the limit domain, the general ase-split C _ :C was suÆient so far to deal with a failing ondition C. The ase-split C _ :C is domain-independent sine it relies only on the tertium-non-daturaxiom of 
mega's underlying logi. However, it an be neessary to onstrutdomain-spei� ase-splits. For instane, when C equals a < b, then the ase-splita < b_a = b_a > b ould be onsidered. Di�erent domains maybe provide di�erentkinds of domain-spei� ase-splits.The goal-direted baktraking disussed in setion 8.2.3 is just one partiularexample of goal-direted reasoning on failures. More generally stated the prinipleworks as follows: Suppose there is a meta-plan (either expliitly onstruted some-where or impliitly enoded in ontrol rules) of the desired solution proess, andsuppose that a step S of this meta-plan fails. Then, the failure an be analyzedand further steps an be onsidered in order to unblok S. The onrete pattern(unblok ComputeInstFromCS if there are no further goals) is restrited to the limitdomain (and maybe some other domains with onstraint solvers). The general prin-iple, however, is a domain-independent, promising meta-reasoning pattern for anydomain for whih a kind of meta-plan of the desired solution proess exists.SummaryTypial questions of referees of our papers on proof planning are, for instane:� How many new methods are typially needed when a new hapter in a bookis onsidered?� How many of the methods an typially be reused, when a new hapter in a



8.4. Results and Disussion 179book is onsidered?A general answer to those questions is not possible. When extending the domainof proof planning, the ruial question is whether the knowledge aquired so far issuÆient to takle the new problems.To illustrate this subtle point onsider the following experienes in the limitdomain. We started to develop proof planning in the limit domain with examplesfrom hapter 4 and hapter 5 in [12℄ on the limit of funtions and the ontinuityof funtions. On the one hand, we found that the aquired knowledge was notsuÆient to deal with several problems in hapter 4 and hapter 5. These problemsneed additional knowledge about partiular funtions involved. For instane,Multian solve some problems on trigonometri funtions only with spei� knowledge onthe funtions sin and os in some theorems (see setion 8.3). Currently, it annotsolve, for instane, problems involving the square-root funtion sine the methodsand theorems do not ontain appropriate knowledge of this funtion. On the otherhand, we found that with the knowledge aquired for hapter 4 and hapter 5Multian solve problems on the derivative of funtions without any extensions in form offurther methods, ontrol rules, or theorems although this is a new hapter (hapter6) in [12℄.These experienes demonstrate the suess and the limitation of the urrentproof planning for limit problems realized in Multi:1. The implemented methods, ontrol rules, and strategies are not too �ne tunedto our initial examples. In partiular, the ontrol rules ontain the neessaryontrol knowledge in a form that is general enough to deal also with newproblems for whih the domain knowledge in the methods and strategies issuÆient.2. The implemented methods, ontrol rules, and strategies are not suÆient todeal with any limit problems. They are mainly restrited to terms omposedof +;�; �; =; jj. To deal with further expressions suh as square-root requiresfurther spei� knowledge.





Chapter 9The Residue Class DomainThis hapter presents a ase study on proof planning for the residue lass domain(see setion 5.2 for a formal introdution of the residue lass domain). The residuelass domain onsists of the problems given in Table 9.1 for arbitrary residue lassstrutures. We all the problems 1|7 problems on simple properties of residue lassstrutures, whereas the problems 8 are alled isomorphism and non-isomorphismproblems .1. (a) Closed(RSn; Æ) (b) :Closed(RSn; Æ)2. (a) Asso(RSn; Æ) (b) :Asso(RSn; Æ)3. (a) 9e:RSn Unit(RSn; Æ; e) (b) :9e:RSn Unit(RSn; Æ; e)4. (a) Inverse(RSn; Æ; e) (b) :Inverse(RSn; Æ; e)5. (a) Divisors(RSn; Æ) (b) :Divisors(RSn; Æ)6. (a) Commu(RSn; Æ) (b) :Commu(RSn; Æ)7. (a) Distrib(RSn; Æ; ?) (b) :Distrib(RSn; Æ; ?)8. (a) Iso(RS1n; Æ1; RS2m; Æ2) (b) :Iso(RS1n; Æ1; RS2m; Æ2)Table 9.1: Problems from the residue lass domain.The hapter is strutured as follows. We start in setion 9.1 with a desriptionof how Multi reates proof plans for simple property problems. Afterwards, weexplain in setion 9.2 how the strategies for simple property problems are extendedto deal with isomorphism and non-isomorphism problems and introdue furthertehniques speialized on non-isomorphism problems. Both setions, 9.1 and 9.2,omprise the desription of automated exploration modules implemented in 
mega.The exploration module for simple property problems lassi�es a given residue lassstruture in terms of the algebrai entity it forms (i.e., is it a magma, a semi-group, a monoid : : :); the exploration module for isomorphism and non-isomorphismproblems lassi�es a set of strutures into lasses of isomorphi strutures. Weonlude the hapter with a report on onduted experiments and a disussion ofrelated work. Moreover, we shall evaluate the realized proof planning approahin the residue lass domain and ompare it with the appliation of an automatedtheorem prover to this domain. An overview of the proved theorems in the residuelass domain is given in the tehnial report [164℄.



182 Chapter 9. The Residue Class Domain9.1 Proof Plans of Simple Property ProblemsIn order to proof plan simple property problems of a residue lass struture we im-plemented three di�erent PPLANNER strategies. Eah strategy implements a di�erentmathematial proof tehnique, namely:1. exhaustive ase analysis, realized in the strategy TryAndError,2. equational reasoning, realized in the strategy EquSolve, and3. appliation of theorems, realized in the strategy RedueToSpeial.Not all strategies are appliable to all possibly ourring problems. The idea toontrol the appliation of these strategies is to employ fast but not always suessfulstrategies �rst, and if they fail to use slower but more reliable strategies. Sine thestrategy RedueToSpeial is generally the fastest to solve a problem and strategyTryAndError is the most reliable of the three strategies, the strategi ontrol rulefast-before-reliable orders job o�ers of these strategies in the order 3 to 1.Note that the three strategies either sueed to prove a simple property for aresidue lass struture or fail. Multi does not intertwine these three PPLANNERstrategies in the sense that ertain subgoals arising during the appliation of onestrategy an be proved with another tehnique. Intertwining of PPLANNER strategiesis used when heking whether two strutures are isomorphi or not, see setion 9.2.However, Multi has to intertwine these PPLANNER strategies with strategies of
BACKTRACK and INSTMETA, whih we shall introdue as we go along.In the sequel, we �rst elaborate eah strategy using examples for the type ofproofs they produe. We shall point out the major di�erenes while trying to avoidthe tedious details and mention advantages and weaknesses of eah strategy as wego along. Afterwards, we point out how strutures with diret produts of residuelass sets are formalized and how they are handled by the strategies. We onludewith a disussion of the exploration module, whih lassi�es a given residue lassstruture in terms of its algebrai ategory.9.1.1 Exhaustive Case AnalysisThe motivation for the �rst strategy, alled TryAndError, is to implement an exhaus-tive ase analysis, whih ideally should be able to solve all types of problems.1 Thistehnique is possible in our domain sine in residue lass problems the quanti�edvariables range always over �nite domains.When applied to a simple property problem, TryAndError �rst expands our-renes of the de�ned onepts losed, asso, unit, inverse, divisors, ommu, anddistrib with the method DefnUnfold-B. It proeeds by rewriting statements onresidue lasses into orresponding statements on integers, espeially by transform-ing the residue lass set into a set of orresponding integers. It then exhaustivelyheks all possible ombinations of these integers with respet to the property it hasto prove or to refute. The organization of the exhaustive ase analysis is guided bythe ontrol rule tryanderror-standard-selet (see Figure 4.4 in setion 4.1.3).TryAndError an proeed in two di�erent ways, depending on whether (1) auniversally or (2) an existentially quanti�ed formula has to be proved. Both asesare illustrated in the example proof of the theorem that ZZ2 has inverses with respetto the operation �xy x�+y and the unit element �02, displayed in Figure 9.1.1In our experiments it turned out that the strategy an indeed solve all smaller problems, butthat an exhaustive ase analysis is no longer feasible for large problems (see setion 9.3).



9.1. Proof Plans of Simple Property Problems 183L1. L1 ` l2() 2 ZZ2 (Hyp)L2. L1 `  2 f0; 1g (ConReslSet-F L1)L3. L3 `  :=0 (Hyp)...L12. L1; L3 `9y:ZZ2 (l2() �+y :=�02) ^ (y �+l2() :=�02) (9IReslass-B L11 L10)L13. L13 `  :=1 (Hyp)L14. L1; L13 `mv :=1 ( :=Reflex-Bfmv:=b 1g)L15. L1; L13 `mv 2 f0; 1g (_IR-B L14)L16. L1; L13 ` 0 :=0 ( :=Reflex-B)L17. L1; L13 ` 0 :=0 ( :=Reflex-B)L18. L1; L13 ` (1 + ) mod 2 :=0 mod 2 (SimplifyNum-BL13 L16)L19. L1; L13 ` (+ 1) mod 2 :=0 mod 2 (SimplifyNum-BL13 L17)L20. L1; L13 ` (+ 1) mod 2 :=0 mod 2 ^(1 + ) mod 2 :=0 mod 2 (^I-B L18 L19)L21. L1; L13 ` (l2() �+l2(mv) :=�02) ^ l2(mv) �+l2() :=�02) (ConCongCl-B L20)L22. L1; L13 `9y:ZZ2 (l2() �+y :=�02) ^ (y �+l2() :=�02) (9IReslass-B L21 L15)L23. L1 `9y:ZZ2 (l2() �+y :=�02) ^ (y �+l2() :=�02) (_E**-B L2 L12 L22)L24. `8x:ZZ2 9y:ZZ2 (x�+y :=�02) ^ (y �+x :=�02) (8IResalss-B L23)L25. ` inverse(ZZ2; �xy x�+y; �02) (DefnUnfold-B L24)Figure 9.1: Proof onstruted by the TryAndError strategy.In ase (1), TryAndError performs a split over all the elements in the set ZZ2and proves the property for every single element separately. We exemplify this inthe proof of the universally quanti�ed formula in line L24. An appliation of themethod 8IResalss-B to L24 yields the lines L23, L1, and L2. 8IResalss-B is amethod to deompose universally quanti�ed goals whose variables range over residuelass sets. It is dual to 9IReslass-B that has been explained in setion 4.1.1. Thedisjuntion ontained in L2 ( 2 f0; 1g an be viewed as  :=0_ :=1) triggers the �rstase-split with the appliation of the method _E**-B (explained in setion 4.1.3).Subsequently, Multi tries to prove the goal in line L23 twie: one in line L12assuming  :=0 (in line L3) and one in L22 assuming  :=1 (in line L13).In ase (2), the single elements of the set involved are examined until one isfound for whih the property in question holds. In our example proof this is, forinstane, done after the appliation of the method 9IReslass-B to L22, whihyields the lines L15 and L21 and introdues the meta-variable mv. The ase analy-sis is performed by suessively hoosing di�erent possible values for mv with the_IR-B and _IL-B methods that split disjuntive goals into the left or right dis-junt, respetively, and the :=Reflex-B method, whih loses goals of the formt1 :=t2. Appliations of :=Reflex-B introdue then the uni�er of t1 and t2 as newbindings. In our example the appliation of _IR-B redues mv 2 f0; 1g in L15 tomv :=1 in L14 (mv 2 f0; 1g an be viewed as mv :=0_mv :=1) and the appliation of:=Reflex-B to L14 introdues the binding mv:=b 1 into the strategi proof plan.We indiate the introdution of the binding by attahing it to the justi�ation ofline L14. For a seleted binding TryAndError an then either �nish the proof (i.e.,an lose the remaining open goals with respet to this binding) or | if the provingattempt fails | it has to test the next possible binding.After eliminating the quanti�ers and introduing the ase-splits the TryAndEr-ror strategy redues all remaining statements on residue and ongruene lassesto statements on integers using the ConCongCl-B method. These are solvedby numerial simpli�ation and basi equational reasoning through the methodsSimplifyNum-B and :=Reflex-B.Note that in our example we desribe the proof planning proess in progress.Hene, we introdue meta-variables, when they arise. When there is a binding for ameta-variable, we use in the proof lines reated after the introdution of the bindingthe instantiation of the meta-variable in order to larify the following omputations.



184 Chapter 9. The Residue Class DomainThus, in the proof plan in Figure 9.1 the lines L15, L14, and L21 ontain ourrenesof mv. From L20 on we use ourrenes of the instantiation 1 for mv instead.9.1.1.1 Meta-Reasoning on BaktrakingMeta-variables and their instantiations ause dependenies among goals that sharesome meta-variables. As a general example onsider two goalsG and G0 that ontainboth a meta-variablemv. Now assume thatMulti �rst reates a proof plan for G inwhih it binds mv in suh a way that it afterwards fails to solve G0. Without meta-reasoning on the failure Multi would employ the standard BACKTRACK strategyBakTrakAtionToTask and would remove G0. However, when there are di�erentpossibilities to instantiate mv in a subplan for G, then the atual problem may isnot G0 but the seletion of the right instantiation for mv. That is, Multi shoulddelete part of the subplan for G to introdue another subplan that instantiates mvdi�erently, rather than to delete G0.We formalized the meta-reasoning to deal with those situations in the strategiontrol rule prefer-binding-deletion. This ontrol rule analyzes a failure and,if it �nds that the failure was aused by a wrong binding, it prefers job o�ers of the
BACKTRACK strategy BakTrakLastBinding before job o�ers of BakTrakAtionTo-Task. Let T be the task for whih a failure ours and A the ation that introduedT . Then, BakTrakAtionToTask deletes A, whereas BakTrakLastBinding deletesations introdued after A that introdued new bindings.We illustrate the appliation of BakTrakLastBinding with the example in Fig-ure 9.1. TryAndError has to organize the suessive hek of eah possible binding forthe meta-variable mv introdued by the appliation of the method 9IReslass-Bto L22. This yields the open lines L15 and L21, whih both ontain mv. mv is either0 or 1 as given in line L15. Assume that TryAndError �rst redues L15 to mv :=0 byan appliation of _IL-B and then loses mv :=0 by :=Reflex-B. This introduesthe new binding mv:=b 0. TryAndError would fail to lose afterwards the goal L21with respet to this binding, sine mv is supposed to be the inverse of �12 in ZZ2,whih is again �12.When TryAndError fails on L21 in our example, then prefer-binding-deletionguides the appliation of BakTrakLastBinding whih deletes the subplan for L15inluding the binding for mv. Afterwards, TryAndError applies _IR-B instead of_IL-B, whih redues L15 to mv :=1 (L14 in Figure 9.1). The following appliationof :=Reflex-B yields the binding mv:=b 1 with respet to whih L21 an be losedas given in Figure 9.1.9.1.1.2 Meta-Variable InstantiationTo minimize the searh for a suitable instantiation of a meta-variable, whih anbeome very tedious for large residue lass sets or for nested meta-variables, TryAn-dError ooperates with the INSTMETA strategy ComputeInstbyCasAndMG. Compute-InstbyCasAndMG employs the omputer algebra systems Maple and GAP as wellas the model generator SEM to ompute instantiations.When applied to an instantiation-task, ComputeInstbyCasAndMG �rst analyzeswhat kind of instantiation is needed. To do so, it heks the proof lines that ontainourrenes of the meta-variable of the given instantiation-task for \onstraints"that determine the needed kind of instantiation. For instane, for the meta-variablemv in Figure 9.1 ComputeInstbyCasAndMG �nds the proof line L21 and analyzes thatmv has to be instantiated by the inverse of �12 in ZZ2. After analyzing the needed kind



9.1. Proof Plans of Simple Property Problems 185of instantiation, ComputeInstbyCasAndMG employs the omputer algebra systemsand the model generator to ompute the onrete instantiation.2To employ the omputer algebra systems ComputeInstbyCasAndMG onstruts amultipliation table with respet to the found residue lass set and operation. Itheks the losure property diretly with this multipliation table. If the omputedmultipliation table is losed under the respetive operation, then ComputeInstby-CasAndMG passes it to GAP to onstrut the appropriate magma in GAP. After-wards, ComputeInstbyCasAndMG an employ GAP to test for assoiativity and toompute the unit element and inverses for the single elements. Most test funtionsreturn useful results in both the positive and the negative ase: That is, for instane,if GAP an ompute a unit element for a given magma, this element is returned. Inase GAP fails to �nd a unit element, the multipliation table is used to determinea set of elements that suÆe to refute the existene of a unit element for the givenmagma. A speial ase is the failure of the test for assoiativity, sine thereMapleis employed to ompute a partiular solution for the assoiativity equation. If suha non-general solution exists, it is exploited to determine a triple of elements forwhih assoiativity does not hold.When employing SEM, ComputeInstbyCasAndMG also onstruts a multiplia-tion table with respet to the found residue lass set and operation. The atual allto SEM onsists of this multipliation table together with the problem at hand.The multipliation table for n elements is enoded as a set of n2 equations of theform a Æ b = . To obtain, for example, a unit element SEM is asked to ompute amodel for the equations x � e = x and e � x = x, where x is a free variable and e isan unspei�ed onstant funtion for whih a model is omputed.The ooperation between TryAndError and ComputeInstbyCasAndMG is guidedby the ontrol rule interrupt-if-inst-from-as-or-mg, whih is part of TryAn-dError. This ontrol rule interrupts TryAndError for ourring meta-variables andposes a demand to �rst invoke ComputeInstbyCasAndMG on the instantiation-taskof the meta-variable.The ooperation with ComputeInstbyCasAndMG is not neessary for the suessof TryAndError. However, if ComputeInstbyCasAndMG an provide suitable instan-tiations for meta-variables, then the problems are simpli�ed onsiderably. Even ifComputeInstbyCasAndMG sueeds, the strategy TryAndError has the major disad-vantage that it has to exhaustively onstrut subproofs for all ases resulting fromuniversal quanti�ations, whih an result in lengthy proofs for large residue lasssets.9.1.2 Equational ReasoningThe aim of the seond strategy, alled EquSolve, is to use equational reasoning asmuh as possible to prove properties of residue lasses. Its appliation onditionstates that EquSolve an takle only problems that an be redued to equations(i.e., it annot takle problems involving the losure property or refutations of aproperty).Similarly to the TryAndError strategy, EquSolve onverts statements on residuelasses into orresponding statements on integers. But instead of heking thevalidity of the statements for all possible ases, it tries to solve ourring equations2Beause of historial reasons (we did �rst implement the onnetion to the omputer algebrasystems), ComputeInstbyCasAndMG �rst employs the omputer algebra systems and afterwardsSEM only if the omputer algebra systems fail to provide a suitable solution. Currently, we areworking on a onurrent implementation that runs SEM and the omputer algebra systems in aompetitive manner.



186 Chapter 9. The Residue Class DomainL1. L1 ` 01 2 ZZ2 (Hyp)L2. L1 `  2 f0; 1g (ConReslSet-F L1)L15. L1 `mv 2 f0; 1g (Weaken-B L2)L18. L1 ` (mv + ) mod 2 :=0 mod 2 (SolveEquation-bfmv:=b g)L19. L1 ` (+mv) mod 2 :=0 mod 2 (SolveEquation-b)L20. L1 ` (+mv) mod 2 :=0 mod 2 ^(mv + ) mod 2 :=0 mod 2 (^I-B L19 L18)L21. L1 ` (l2() �+l2(mv) :=�02) ^ (l2(mv) �+l2() :=�02) (ConCongCl-B L20)L22. L1 `9y:ZZ2 ((l2() �+y :=�02) ^ (y �+l2() :=�02)) (9IReslass-B L21L15)L24. `8x:ZZ2 9y:ZZ2 ((x�+y :=�02) ^ (y �+x :=�02)) (8IResalss-B L23)L25. ` inverse(ZZ2; �xy x�+y; �02) (DefnUnfold-B L24)Figure 9.2: Proof onstruted by the EquSolve strategy.in a general way. We illustrate EquSolve's approah with a proof of the exampletheorem from setion 9.1.1 inverse(ZZ2; �xy x�+y; �02), displayed in Figure 9.2.In the beginning (lines L25 through L20), the onstrution of the proof is nearlyanalogous to the one in the preeding setion. The only exeption is that no ase-splits are arried out after the appliations of 8IResalss-B and 9IReslass-B.Instead EquSolve obtains two equations in the lines L18 and L19 whih it an gen-erally solve using the SolveEquation-b method. This method is appliable, ifMaple an ompute a solution of the given equation. In ase the equation inquestion ontains meta-variables, the solution Maple omputes an bind thesemeta-variables. In our example, the appliation of SolveEquation-b to L18 |the �rst appliation of SolveEquation-b | introdues a binding for mv, namelymv:=b , whih is indiated in the justi�ation of L18. The binding for mv hangesthe formulas in the remaining open goals L19 and L15 to (+) mod 2 :=0 mod 2 and 2 f0; 1g. EquSolve loses L19 by another appliation of SolveEquation-b. SineL15 equals meanwhile L2 it is losed from this line by an appliation ofWeaken-B.As opposed to the TryAndError strategy, the proofs EquSolve onstruts are in-dependent of the size of the residue lass set. But the strategy an be applied onlyto some of the ourring problems. Whether EquSolve sueeds to solve a givenproblem depends on whether the equations have solutions and whetherMaple ansolve them.9.1.3 Applying TheoremsIn order to inorporate the appliation of already proved theorems we use the strat-egy RedueToSpeial known from the limit domain also to takle residue lass prob-lems.To do so, we had to slightly extend RedueToSpeial with further methods toapply theorems besides the primary method ApplyAss-B. To ensure terminationApplyAss-B uses �rst-order mathing with �-equality on �-abstrations. For theappliation of some of the theorems of the residue lass domain we atually needhigher-order mathing. In order to stay deidable, we deided against using a gen-eral method that applies theorems with higher-order mathing. Instead, we addedsome methods that deide the appliability of ertain theorems with speializedalgorithms, for instane, the method RedueClosed-B.We illustrate the appliation of RedueToSpeial with the proof for the theoremlosed(ZZ5; �x; y (x��y) �+�35) given in Figure 9.3. The following are the theoremsinvolved:33Similarly, our database ontains theorems suitable for assoiativity, unit element, inverses, anddivisor problems.



9.1. Proof Plans of Simple Property Problems 187L3. ` �35 2 ZZ5 (InReslSet)L4. ` 5 2 ZZ (InInt)L5. ` losed(ZZ5; �xy x) (ApplyAss ClosedFV )L6. ` losed(ZZ5; �xy y) (ApplyAss ClosedSV )L7. ` 5 2 ZZ (InInt)L8. ` losed(ZZ5; �xy �35) (ApplyAss ClosedConst L3)L9. ` losed(ZZ5; �xy x��y) (RedueClosed ClComp�� L4 L5 L6)L10. ` losed(ZZ5; �xy (x��y) �+�35) (RedueClosed ClComp�+ L7 L8 L9)Figure 9.3: Proof onstruted by the RedueToSpeial strategy.1. Eah residue lass set RSn is losed with respet to the operations: �xy  if 2 RSn (orresponding to the theorem ClosedConst), �xy x (ClosedFV ),and �xy y (ClosedSV ).2. Eah omplete residue lass set ZZn, whih is losed under the binary op-erations op1 and op2, is also losed under the omposed binary operation�xy (x op1 y) Æ (x op2 y) where Æ 2 f�+; ��; ��g (orresponding to the theoremsClComp�+, ClComp��, ClComp��).While the theorems under 1. an be applied by ApplyAss-B, it fails for the the-orems under 2. This is due to the fat that the neessary instantiations for theoperations op1 and op2 annot be found by �rst-order mathing. However, thealgorithm of the RedueClosed-B method an deide whether the theorem isappliable. For instane, when applying the theorem ClComp�+8n : ZZ 8op1 8op2 (losed(ZZn; op1) ^ losed(ZZn; op2)))losed(ZZn; �x; y (x op1 y) �+(x op2 y))to line L10 in Figure 9.3, RedueClosed-B omputes the neessary instantiationsfor the operations op1 and op2, namely �xy x��y and �xy �35. Like appliationsof ApplyAss-B, also appliations of RedueClosed-B introdue the premisesof the applied theorem as new goals (here L7; L8; L9), whih have to be takledsubsequently.Like the EquSolve strategy, RedueToSpeial is independent of the size of theresidue lass set. Theoretially, it is appliable to all types of problems in ourdomain. Whether it sueeds on a given problem depends on whether suitabletheorems are available in the knowledge base.We have experimented with bookkeeping already solved problems and tryingto redue new problems to these. However, this is not feasible sine for large setsof problems the omparison of a new problem with those already solved is ratherexpensive.9.1.4 Treating Diret ProdutsSo far, we have explained the strategies with residue lass strutures with simplesets. The strategies are also able to handle diret produts of residue lass stru-tures. In the following, we �rst introdue the neessary notions used in 
mega toformalize diret produts of strutures. Afterwards, we explain with an examplehow the introdued strategies deal with diret produts of strutures.Formally, we de�ne diret produts of residue lass sets via iterated pairing ofarbitrary residue lass sets. Operations on diret produts are pairs of the operationson the omponents of the diret produts. First, we de�ne the notion of pairs ofelements with the following pairing funtion:Pair � �x� �y� �g��o g(x; y)



188 Chapter 9. The Residue Class DomainIn order to aess the elements of a pair we need to de�ne two projetions for theleft and the right element of the pair, respetively. The de�nitions of the projetionsand the pairing funtions are idential with those given in Andrews 's book [7℄ onpage 185 . LProj � �p(��o)o {ox� 9y� p :=Pair(x; y)RProj � �p(��o)o {oy� 9x� p :=Pair(x; y)Next, we de�ne the diret produt of two sets as the set of all pairs of elementsof the respetive sets; that is:
 � �U�o �V�o �p(��)((��o)o) [LProj(p) 2 U ℄ ^ [RProj(p) 2 V ℄.Finally, we de�ne operations on diret produts as pairs of the operations of theomponents of the diret produt:� � �U�o �V�o � Æ1��� � Æ2��� �p(��)((��o)o) �q(��)((��o)o)Pair(LProj(p) Æ1 LProj(q); RProj(p) Æ2 RProj(q)).Notation 9.1: In the remainder, we denote pairs of operations as (Æ1�Æ2). More-over, we write diret produts of sets as U1
U2.In ase the given set is a diret produt of residue lass sets and the given oper-ation is an operation on suh a diret produt of sets, then the proofs onstrutedby the EquSolve and the TryAndError strategy are only slightly di�erent. In fat,the only di�erenes are the treatment of quanti�ed variables that range over diretproduts and equations between tuples in proofs. They are transformed into a formthat is suitable for the methods for simple residue lass sets.As an example we onsider the set ZZ2
ZZ2 with the addition �+ and multiplia-tion �� as operations on the omponents. The proof works similar to the proofs givenfor the simple ase of ZZ2 in Setions 9.1.1 and 9.1.2. We do not repeat all the detailsof these proofs and just desribe the di�erenes. The existential quanti�ation9z:ZZ2
ZZ2 (l2(1); l2(2)) [ �+���℄ z :=(�02; �02)is rewritten to 9x:ZZ2 9y:ZZ2 (l2(1); l2(2)) [ �+���℄ (x; y) :=(�02; �02);to whih 9IReslass is applied twie. The resulting equation on tuples(l2(1); l2(2)) [ �+���℄ (l2(mv1); l2(mv2)) :=(�02; �02)is split into equations on the omponentsl2(1) �+l2(mv1) :=�02 ^ l2(2)��l2(mv2) :=�02:Universal quanti�ation is treated analogously to existential quanti�ation. In-equalities on tuples result in the disjuntion of inequalities on the elements of thetuples. These transformations are performed by methods that are inluded in thestrategies EquSolve and TryAndError.



9.1. Proof Plans of Simple Property Problems 1899.1.5 Automatially Classifying Residue Class StruturesFor a given residue lass struture we an stepwise prove properties in order tolassify the given struture in terms of the algebrai struture it forms. We lassifystrutures with one operation in terms of1. magma, semi-group, quasi-group, monoid, loop, or group, and2. whether a given struture is Abelian or not.Strutures with two operations are lassi�ed in terms of ring, ring-with-identity,division ring, or �eld.We implemented the automati exploration of properties in a module in 
mega,whih we all the exploration module. In the sequel, we explain how this moduleworks.9.1.5.1 Classifying Strutures with One Operation
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InversesFigure 9.4: Classi�ation shema for sets with one operation.The main idea of the lassi�ation of residue lass strutures is to stepwisehek properties of the struture in a shemati order. The results of these hekseventually gives an answer to the question what kind of algebrai entity the inputstruture forms. The lassi�ation shema for a residue lass set together with asingle operation is displayed in �gure 9.4.First, the module heks whether the given struture is losed under the oper-ation. In ase it an be proved that the struture is not losed the lassi�ationstops at this point. Otherwise, the struture in question forms a magma. Thelassi�ation proeeds along the right branh of the shema in Figure 9.4. Thisway we show whether the given struture is a semi-group, a monoid or a group.In ase it turns out that the given struture is not assoiative, the lassi�ationfollows the left branh of the shema. Here the �rst test is to hek whether theproperty of divisors holds. If the divisors property an be suessfully proved, thestruture forms at least a quasi-group. If the quasi-group ontains additionally aunit element, it is a loop. If the struture forms a loop, the module does not haveto hek any further sine the struture is not a group beause the module heked



190 Chapter 9. The Residue Class Domainalready that it is non-assoiative. One the lassi�ation with respet to the shemain Figure 9.4 is �nished and the struture is at least a magma, it is always hekedwhether it is Abelian.The hek and the proof of a single property are done in three steps: First thelikely answer to whether a ertain property holds or not is omputed using the om-puter algebra systems Maple and GAP or the model generator SEM. To performthe tests withMaple andGAP or SEM the exploration module uses funtionalitiessimilar to the funtionalities employed by the ComputeInstbyCasAndMG instantia-tion strategy. Depending on the result of this omputation a proof obligation isonstruted stating either that the property in question holds or that it does nothold. This proof obligation is passed to Multi, whih tries to disharge it immedi-ately by onstruting a proof plan as desribed in the previous setions. If the proofplanning proess fails, then the negated proof obligation is onstruted and passedto Multi to prove the obligation. If both proving attempts fail the lassi�ationproess stops and signals an error, otherwise the lassi�ation proeeds by hekingthe next property.9.1.5.2 Classifying Strutures with two OperationsSo far, we were only onerned with the lassi�ation of residue lass sets togetherwith one binary operation. We an also automatially lassify residue lass setstogether with two operations without muh additional mahinery.A given struture of the form (RSn; Æ; ?) is �rst lassi�ed with respet to the�rst operation as desribed in setion 9.1.5. If (RSn; Æ) is an Abelian group, we tryto establish distributivity of ? over Æ.If distributivity an be proved, the residue lass set is �rst redued by the unitelement of the �rst operation and the resulting set is then lassi�ed with respet tothe seond operation. More preisely, if e is the unit element in RSn with respetto Æ, (RSnnfeg; ?) is lassi�ed as desribed in the preeding setion. The result ofthis latter lassi�ation determines the exat nature of (RSn; Æ; ?), whether it is aring, ring-with-identity, division ring, or �eld.9.2 Proof Plans of Isomorphism ProblemsIn the last setion, we explained howMulti reates proof plans for simple propertiesof residue lasses and disussed the lassi�ation of residue lass strutures in termsof the algebrai entity they form. In this setion, we shall examine how Multireates proof plans for the problems that two given residue lass strutures areeither isomorphi or not isomorphi to eah other. We shall reuse the same, albeitslightly extended, strategies developed for simple properties and a new PPLANNERstrategy as well as new INSTMETA, ATP, and BACKTRACK strategies.For the simple properties, Multi did interleave PPLANNER strategies only with
BACKTRACK or INSTMETA strategies but not with eah other. For the onstrutionof isomorphism or non-isomorphism proof plans Multi relies on the ombinationand interleaving of di�erent PPLANNER strategies. This ooperation is not realizedvia interrupts of one PPLANNER strategy. Rather, when one PPLANNER strategyfails, strategi ontrol rules prefer the appliation of other PPLANNER strategies tothe failure subgoals instead of baktraking. We shall explain this failure-drivenooperation in more detail as we go along and illustrate it with examples.As for simple properties the strategi ontrol spei�es also for isomorphism ornon-isomorphism problems (as well as for subproblems suh as to show injetivity,



9.2. Proof Plans of Isomorphism Problems 191surjetivity, or homomorphy) that the strategies RedueToSpeial, EquSolve, andTryAndError are always tested in this order.The exploration presented in setion 9.1.5 returns sets of magmas, Abelian mag-mas, semi-groups, et. This, however, does not indiate whether these struturesare atually di�erent (i.e., not isomorphi to eah other) or just di�erent repre-sentations of the same struture. The proof tehniques we present in this hapterenable the further lassi�ation of residue lass strutures by dividing them intoisomorphism lasses.This setion is strutured as follows: We �rst desribe how both isomorphismand non-isomorphism proofs are planned. Afterwards, we point out the peuliaritieswhen residue lass strutures with diret produts are involved. Finally, we presentthe extensions of the exploration module to automatially lassify residue lassstrutures into isomorphism lasses.9.2.1 Isomorphism ProofsMulti employs the same strategies already desribed in setion 9.1 with the samemethods that were already needed to prove simple properties of residue lass sets.We added only two methods for the introdution of isomorphism mappings to theTryAndError and EquSolve strategies. Contrary to the proofs in setion 9.1 thatould be solved in most ases within one strategy, for isomorphism proofs di�erentstrategies have to ooperate to onstrut a proof plan. This means that Multiswithes from the strategy EquSolve to either TryAndError or RedueToSpeial.9.2.1.1 Using the TryAndError StrategyFor the proof that two given strutures are isomorphi, a mapping has to be on-struted that is a bijetive homomorphism from the one struture to the otherstruture. In the ontext of �nite sets eah possible mapping an be representedas a pointwise de�ned funtion, where the image of eah element of the domain isexpliitly spei�ed as an element of the odomain. Following the ideas desribedalready in setion 9.1.1, the strategy TryAndError performs a ase analysis for thedi�erent possibilities for de�ning the mapping. If TryAndError fails to prove bije-tivity or the homomorphism property for a mapping, then it onstruts | afterbaktraking | the next mapping and tries to prove bijetivity and the homomor-phism properties.We illustrate this with the problem that (ZZ2; �+) is isomorphi to (ZZ3nf�0g; ��).Figure 9.5 displays a part of the PDS for this problem.The topmost ase-split (i.e., the ase-split over the possible instantiations of theisomorphism mapping) is introdued with the appliation of the 9IReslFun-Bmethod in line L98. 9IReslFun-B introdues a onstant h0 for the existentiallyquanti�ed variable h, whih denotes a funtion from ZZ2 to ZZ3 n f0g. This funtionis also expliitly introdued in line L1 as the formalization of a pointwise funtionh0 : ZZ2 �! ZZ3 n f�03g with h0(x) :=�l3(mv1); if x :=�02l3(mv2); if x :=�12 ;where the mvi are meta-variables that an be instantiated by elements of the range,i.e., by 1 or 2 in our example (see L96). Then, TryAndError searhes in the usualway (see setion 9.1.1) for an appropriate ombination of mv1 and mv2 that yieldsa funtion h0, for whih TryAndError an show the homomorphism property andbijetivity of h0 in line L97.



192 Chapter 9. The Residue Class DomainL1. L1 `h0 :=�x (that y (x :=�02 ) y :=l3(mv1))^(x :=�12 ) y :=l3(mv2))) (Hyp)...L5. L5 ` l2(1) 2 ZZ2 (Hyp)L6. L6 ` l2(2) 2 ZZ2 (Hyp)...L10. L10 ` 1 :=0 (Hyp)L11. L11 ` 2 :=1 (Hyp)...L70. H3 ` 1 6= 2 (6=ReflexOnNum-B)L71. H3 ` 1 6= 2 _ 0 :=1 (_IL-B L70)L72. H3 ` l3(1) 6= l3(2) _ 0 :=1 (ConCongCl-B L71)L73. H3 `h0(�02) 6= h0(�12) _ 0 :=1 (ApplyFuntion-B L1 L72)L74. H3 `h0(l2(1)) 6= h0(l2(2)) _ 1 :=2 (SimplifyNum-BL10 L11 L73)L75. H2 `h0(l2(1)) 6= h0(l2(2)) _ 1 :=2 (_E**-B L5 L6L74 : : :)L76. H2 `h0(l2(1)) 6= h0(l2(2)) _ l2(1) :=l2(2) (ConCongCl-B L75)L77. H2 `h0(l2(1)) :=h0(l2(2))) l2(1) :=l2(2) (_2 )-B L76)L78. H1 `8y:ZZ2 h0(l2(1)) :=h0(y)) l2(1) :=y (8I-B L77)L79. L1 `8x:ZZ2; y:ZZ2 h0(x) :=h0(y) ) x :=y (8I-B L78)L80. L1 ` Inj(h0;ZZ2) (DefnUnfold-B L79)...L96. L1 `mv1 2 f1; 2g ^mv2 2 f1; 2g (^I-B : : :)L97. L1 ` (Inj(h0;ZZ2) ^ Surj(h0;ZZ2;ZZ3nf�03g)^Hom(h0;ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y)) (^I-B : : :)L98. `9h (Inj(h;ZZ2) ^ Surj(h;ZZ2;ZZ3nf�03g)^Hom(h;ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y)) (9IReslFun-B L96 L97)L99. ` Iso(ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y) (DefnUnfold-B L98)H1 = fL1; L5g; H2 = fL1; L5; L6g; H3 = fL1; L5; L6; L10; L11gFigure 9.5: Introdution of the pointwise de�ned funtion.In order to shortut the searh for the right funtion h0 we extended the INSTMETAstrategy ComputeInstbyCasAndMG suh that it an provide instantiations for meta-variables, whih are part of the pointwise funtion spei�ation. ComputeInstby-CasAndMG an either employ the omputer algebra system Maple or the modelgenerator SEM to obtain an isomorphism between the strutures (RS1n; Æ1) and(RS2m; Æ2). When employingMaple, ComputeInstbyCasAndMG asksMaple to givea solution for the system of equations xk = xiÆ2xj with respet to the modulo fatorm usingMaple's funtion msolve. The system of equations is generated by the in-stantiations of the homomorphism equation h(ln(k)) = h(ln(i))Æ2h(ln(j)), whereln(k) = ln(i) Æ1 ln(j) for all ln(i); ln(j) 2 RS1n. Thus, h(ln(l)) is substitutedby xl in our equation system. When Maple returns a solution for the equationsystem in whih the variables equal to elements of the integer set orresponding toRS2m, then the solution is a homomorphism between the strutures. When thereis a disjoint solution with xi 6= xj , for all i 6= j, then the solution is an isomor-phism. When employing SEM, ComputeInstbyCasAndMG passes the multipliationtables of (RS1n; Æ1) and (RS2m; Æ2) to SEM and asks SEM to ompute a model fora bijetive funtion h, whih satis�es the homomorphism equation.4In the example in Figure 9.5 ComputeInstbyCasAndMG asks Maple to give asolution for the equations x0 = x0 � x0, x1 = x0 � x1, x1 = x1 � x0, x0 = x1 � x1with modulo fator 3. Maple returns fx1 = 0; x0 = 0g, fx1 = 2; x0 = 1g, fx0 =1; x1 = 1g. ComputeInstbyCasAndMG analyzes the solutions and aepts the seondone beause it is a disjoint solution and all elements are in the odomain. Therefore,4The fat that h should be bijetive does not have to be formalized by logi formulas but anbe spei�ed as side ondition on h in the input language of SEM.



9.2. Proof Plans of Isomorphism Problems 193ComputeInstbyCasAndMG adds the bindings mv1:=b 1;mv2:=b 2. The introdutionof these bindings hanges the funtion h0 in line L1 to the funtion h0(�02) :=�13,h0(�12) :=�23.Beginning in line L80, Figure 9.5 shows how the funtion h0 is used during theproof planning proess in the subproof for injetivity. The proof up to L73 resultsfrom the standard proedure of the TryAndError strategy: de�ned onepts are ex-panded, quanti�ers are eliminated by introduing ase-splits and statements aboutresidue lasses are rewritten into statements about integers. The interesting partis the appliation of the ApplyFuntion-B method in line L73. This orrespondsto the substitution of the funtional expressions given on the righthand side of thedisjuntion in line L73 with the funtional values given in the de�nition of h0 in lineL1. The result is given in line L72.For a given funtion h0 Multi has to onstrut subproofs of n2 ases for theproperties injetivity, surjetivity, and homomorphy, respetively. Here, n is theardinality of the strutures. However, if no suitable instantiation an be omputed,there are nn pointwise de�ned funtions to hek, whih beomes infeasible alreadyfor relatively small n.9.2.1.2 Using the EquSolve StrategyDuring the isomorphism proof we have to show injetivity, surjetivity, and thehomomorphism property for the introdued mapping. To onstrut proofs for theseproperties by a omplete ase analysis as performed by TryAndError an beomequite lengthy. In order to takle isomorphism problems with the EquSolve strategywe need a more ompat form to represent the isomorphism funtion, namely apolynomial that interpolates the pointwise de�ned funtion. If we an omputesuh an interpolation polynomial, the EquSolve strategy has a hane of �ndingthe subproofs for surjetivity and the homomorphism property. The subproof forinjetivity has to show that for any two distint elements the images di�er; thisannot be done with the EquSolve strategy.We added the funtionality for the onstrution of the interpolation polynomialto the INSTMETA strategy ComputeInstbyCasAndMG. ComputeInstbyCasAndMG em-ploys either Maple or SEM to ompute a pointwise de�ned funtion as desribedin the previous setion. Then, it employs Maple to ompute a polynomial thatinterpolates the pointwise funtion. ComputeInstbyCasAndMG does not use a stan-dard algorithm for interpolating sparse polynomials (see for example [257, 258, 254℄)as these do not neessarily return the best possible interpolation polynomial for ourpurpose. Moreover, some of the algorithms, for instane inMaple, are not suÆientfor our purposes.5 This is espeially true for the ase of multi-variate polynomialinterpolation that is neessary for dealing with residue lass sets that are omposedof diret produts, whih we will desribe in more detail in setion 9.2.3. Thus, wehave deided to implement a simple searh algorithm in ComputeInstbyCasAndMGto �nd a suitable interpolation polynomial of minimal degree. This is feasible asComputeInstbyCasAndMG has to handle only relatively small mappings.In detail, the interpolation proeeds as follows: Given a pointwise de�ned iso-morphism funtion h:ln(xi)2RS1n ! lm(yi)2RS2m ComputeInstbyCasAndMG asksMaple to solve the system of equations (adxdi + � � �+a1xi+a0) mod m = yi mod mfor all xi; yi. When Maple returns a solution for ad; : : : ; a0, we have found aninterpolating polynomial. If there is no solution, a polynomial with degree d + 1will be sent to Maple. This proedure terminates latest when d = m� 1.5Maple's algorithms interp and Interp annot always handle the interpolation of funtionswhere a non-prime modulo fator is involved.



194 Chapter 9. The Residue Class Domain...L50. ` Inj(mvh ;ZZ2) (: : :)...L60. L60 ` l2() 2 ZZ2 (Hyp)...L75. L60 ` (mvy + 1) mod 2 := mod 2fmvy:=b �1g (SolveEquation-b)L76. L60 ` l2(mvy) �+�12 :=l2() (ConCongCl-B L75)L77. L60 `mvy 2 f0; 1g (Open)L78. L60 `9y:ZZ2 y �+�12 := (9IReslass L76 L77)L79. `8x:ZZ2 9y:ZZ2 y �+�12 :=x (8IResalss-B L78)L80. `Surj(�x x�+�12;ZZ2;ZZ2) (DefnUnfold-B L79)L81. ` Inj(mvh ;ZZ2) ^ Surj(mvh;ZZ2;ZZ3nf�03g) (^I-B L80 L50)...L96. `Hom(mvh;ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y)) (DefnUnfold-B L95)L97. ` (Inj(mvh;ZZ2) ^ Surj(mvh ;ZZ2;ZZ3nf�03g)^Hom(mvh;ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y)) (^I-B L96 L81)L98. `9h (Inj(h;ZZ2) ^ Surj(h;ZZ2;ZZ3nf�03g)^Hom(h;ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y)) (9I-B L97)L99. ` Iso(ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y) (DefnUnfold-B L98)Figure 9.6: Introdution of the interpolated funtion.We illustrate this for the proof that (ZZ2; �xy x�+y �+�12) is isomorphi to (ZZ2; �+)shown in Figure 9.6. First, EquSolve expands the de�ned onept Iso in L99 andthen introdues a meta-variable mvh in line L97 for the existentially quanti�edvariable h in L98. For this meta-variable ComputeInstbyCasAndMG is appliableand Multi swithes from EquSolve to ComputeInstbyCasAndMG. As in TryAndEr-ror (see setion 9.1.1) the swith from EquSolve to ComputeInstbyCasAndMG andbak is organized by the ontrol rule interrupt-if-inst-from-as-or-mg, whihinterrupts EquSolve and poses a demand for ComputeInstbyCasAndMG. ComputeIn-stbyCasAndMG �nds the interpolation polynomial x ! x + 1 mod 2 and adds thebinding mvh:=b �x x�+�12. This hanges the line L97 to(Inj(�x x�+�12;ZZ2) ^ Surj(�x x�+�12;ZZ2;ZZ3nf�03g)^Hom(�x x�+�12;ZZ2; �xy x�+y;ZZ3nf�03g; �xy x��y))Then, EquSolve has to show the properties of injetivity, homomorphy, and sur-jetivity for this interpolation polynomial. In Figure 9.6 we have arried out only thedetails for the subproof of surjetivity, in whih the problem is redued to an equa-tion over integers that an be solved by Maple employing the SolveEquation-bmethod similar to the proof in setion 9.1.2. The proof of the homomorphismproperty works analogously. The proof for injetivity in L50, however, annot beonstruted with the EquSolve strategy for the reasons explained above. Thus, whenEquSolve fails to onstrut a proof for L50, then Multi should not perform bak-traking with respet to the task with goal L50 but should prefer other strategies,whih an deal with this line-task, in partiular, TryAndError or RedueToSpeial.This is realized by the strategi ontrol rule preferotherjob-if-EquSolvefailure,whih states that if EquSolve fails on partiular line-tasks and there are job o�ersof TryAndError or RedueToSpeial for these line-tasks, then these job o�ers arepreferred before job o�ers of BACKTRACK strategies.6 When EquSolve fails to provethe surjetivity or homomorphy subgoals, then Multi has to deal with those sub-problems again at the strategi level. Guided by the desribed strategi ontrol6preferotherjob-if-EquSolvefailure has a higher priority as the strategi ontrolrule prefer-baktrak-if-failure introdued in setion 6.2.3. Hene, it \overwrites"prefer-baktrak-if-failure.



9.2. Proof Plans of Isomorphism Problems 195rule Multi would then prefer to try �rst TryAndError or RedueToSpeial on thesubgoals before baktraking. How the strategy RedueToSpeial is applied in thisontext is desribed in the next setion. In ase the TryAndError strategy is applied,the ase analysis is onduted with the interpolation polynomial instead with thepointwise funtion as in setion 9.2.1.As opposed to TryAndError, whih an �nd an isomorphism by searh, EquSolvean sueed only, if ComputeInstbyCasAndMG an provide an interpolation polynom.Thus, the suess of EquSolve depends on the apabilities of Maple.9.2.1.3 Using the RedueToSpeial StrategySine 
mega's database does not ontain theorems on isomorphism problems, Re-dueToSpeial is not appliable to the original theorem, but it omes into play,when a subgoal, in partiular an injetivity subgoal, has to be proved. Here, we anexploit the following simple mathematial fat:A surjetive mapping between two �nite sets with the same ardinalityis injetive.The proof of injetivity beomes simply a theorem appliation, if Multi anprove by other means (i.e., EquSolve) that a given mapping is surjetive. Hene,the idea for the most eÆient isomorphism proofs is to start with EquSolve on thewhole isomorphism problem, prove the surjetivity and homomorphy subproblem ifpossible with equational reasoning, and let RedueToSpeial �nish the proof.9.2.2 Non-Isomorphism ProblemsIn this setion, we shall disuss how Multi an onstrut proof plans for non-isomorphism problems. If the two strutures involved are of di�erent ardinalities,they are trivially not isomorphi. This ase is easily planned with the RedueToSpe-ial strategy and an appropriate theorem. We shall not give the implementation ofthis ase in detail but onentrate instead on the more interesting ases. For taklingnon-isomorphism problems we implemented the following three proof tehniques:1. Show that eah possible mapping between the two strutures is not isomor-phi. This is an exhaustive ase analysis for whih we employ the slightlyextended TryAndError strategy.2. Isomorphi strutures have all algebrai properties in ommon. Thus, in or-der to show that two strutures are not isomorphi it suÆes to show thatone partiular property holds for one struture but not for the other. Thistehnique is realized by interleaving the (slightly extended) EquSolve strategywith the ATP strategy CallTramp and the INSTMETA strategy ComputeInstbyHR,whih employs HR [58℄ a system for theory formation to obtain a propertythat holds for one struture but not for the other.3. We onstrut a ontradition by assuming there exists an isomorphism be-tween the two residue lass strutures and deriving that it is not injetive.For this tehnique we have implemented a new strategy, alled NotInjNotIso.Also on non-isomorphism problems the strategi ontrol among the strategiesRedueToSpeial, EquSolve, and TryAndError stays the same: they are tried in thisorder. The new strategy NotInjNotIso is tried after EquSolve and before TryAndError.



196 Chapter 9. The Residue Class Domain9.2.2.1 Using the TryAndError StrategyAs already stated in setion 9.1.1, the two basi priniples of the TryAndError strat-egy are to takle quanti�ed statements by heking all possible ases or alternativesand to rewrite statements on residue lasses into orresponding statements on inte-gers. When solving non-isomorphism problems, the top-most ase-split is to hekfor eah possible funtion from one residue lass set into the other that it is eithernot injetive, not surjetive, or not a homomorphism.L1. L1 `h0 :=�x (that y (x :=�04 ) y :=l4(1))^(x :=�14 ) y :=l4(2))^(x :=�24 ) y :=l4(3))^(x :=�34 ) y :=l4(4))) (Hyp)L2. L2 ` 1 2 f0; 1; 2; 4g (Hyp)L3. L3 ` 2 2 f0; 1; 2; 4g (Hyp)L4. L4 ` 3 2 f0; 1; 2; 4g (Hyp)L5. L5 ` 4 2 f0; 1; 2; 4g (Hyp)L6. L6 ` 1 :=0 (Hyp)L7. L7 ` 2 :=0 (Hyp)L8. L8 ` 3 :=0 (Hyp)L9. L9 ` 4 :=0 (Hyp)L10. L10 ` 1 :=1 (Hyp)...L75. H3 ` (:Inj(h0;ZZ4) _ :Surj(h0;ZZ4;ZZ4)_:Hom(h0;ZZ4; �xy x��y���24;ZZ4; �xy �24)) (_IR-B L74)...L95. H2 ` (:Inj(h0;ZZ4) _ :Surj(h0;ZZ4;ZZ4)_:Hom(h0;ZZ4; �xy x��y���24;ZZ4; �xy �24)) (_IL-B L94)L96. H1 ` (:Inj(h0;ZZ4) _ :Surj(h0;ZZ4;ZZ4)_:Hom(h0;ZZ4; �xy x��y���24;ZZ4; �xy �24)) (_E**-B L2 L3 L4 L5L95 L75 : : :)L97. `8h:F (ZZ4;ZZ4)(:Inj(h;ZZ4) _ :Surj(h;ZZ4;ZZ4)_:Hom(h;ZZ4; �xy x��y���24;ZZ4; �xy �24)) (8IReslFun-B L96)L98. `:9h:F (ZZ4;ZZ4)(Inj(h;ZZ4) ^ Surj(h;ZZ4;ZZ4)^Hom(h;ZZ4; �xy x��y���24;ZZ4; �xy �24)) (PullNeg-B L97)L99. `:Iso(ZZ4; �xy x��y���24;ZZ4; �xy �24) (DefnUnfold-B L98)H1 = fL1; L2; L3; L4; L5g; H2 = H1 [ fL6; L7; L8; L9g; H3 = H1 [ fL7; L8; L9; L10gFigure 9.7: Proof onstruted by the TryAndError strategy.Figure 9.7 displays a segment of the PDS for the non-isomorphism problemthat the two Abelian semi-groups (ZZ4; �xy x��y���24) and (ZZ4; �xy �24) are not iso-morphi onstruted by TryAndError.7 The proof works in the following way: afterunfolding the de�nition of isomorphism in line L99, the appliation of the methodPullNeg-B pushes the negation to the inner-most formulas. Next, TryAndErrorapplies 8IReslFun-B, a method for the elimination of universally quanti�edgoals that is the dual of the 9IReslFun-B method introdued in setion 9.2.1.8IReslFun-B instantiates the variable h for a mapping between the two givenresidue lass sets with a onstant h0 and introdues the hypotheses L1 through L5.L1 expliitly states the funtion h0 as a unary funtion mapping the elements ofthe domain to onstants l4(1) to l4(4) of the odomain. The lines L2 throughL5 ontain the possible instantiations for the onstants 1, 2, 3, and 4. The nextstep is the ase-split over all possible mappings between the residue lass sets, i.e.,all possible ombinations of onstants 1 to 4. It is introdued by the appliationof _E**-B to line L96 with respet to the lines L2 through L5. The ase-split leadsto 256 new open subgoals of whih we depit only two, i.e., lines L95 and L75, in7We have renumbered the lines in order to preserve spae.



9.2. Proof Plans of Isomorphism Problems 197Figure 9.7. Likewise, we depit only a subset of the newly introdued hypothesesontaining the di�erent ombinations of the onstants 1 to 4. Eah of the newsubgoals has a di�erent ombination of these onstants in its hypotheses. It remainsto show for eah ase that the funtion represented by L1 and the atual hypothe-ses is either not surjetive, not injetive, or not a homomorphism. For line L95,for example, TryAndError an show that the mapping is not injetive sine all theimages are �04.The appliation of this naive tehnique su�ers from ombinatorial explosion onthe possibilities for the funtion h. For two strutures whose sets have ardinalityn it has to onsider nn di�erent possible funtions. Thus, in pratie this strategyis not feasible for strutures of ardinality larger than four.9.2.2.2 Using DisriminantsIf two strutures are isomorphi, they have all algebrai properties in ommon.Thus, in order to show that two strutures are not isomorphi, it suÆes to showthat one property holds for one struture but not for the other. Suh a property isalled a disriminant for the two strutures.For example, onsider the pairwise non-isomorphi quasi-groups S1; S2; S3 de-pited with their respetive multipliation tables in Figure 9.8. When omparingthe tables of S1 and S2, one disriminant is fairly obvious: while S1 has only �05 onthe main diagonal, all elements on the main diagonal of S2 are distint. Thus, theproperty we an use is 9x 8y x :=y Æ y. Things beome less obvious for the multipli-ation tables of S2 and S3. Here, one property of S3, whih does not hold for S2,is 8x 8y (x Æ x :=y)) (y Æ y :=x).S1 :=(ZZ5; ��) S2 :=(ZZ5; �xy (�25��x) �+y) S3 :=(ZZ5; �xy (�35��x) �+y)S1 �05 �15 �25 �35 �45�05 �05 �45 �35 �25 �15�15 �15 �05 �45 �35 �25�25 �25 �15 �05 �45 �35�35 �35 �25 �15 �05 �45�45 �45 �35 �25 �15 �05 S2 �05 �15 �25 �35 �45�05 �05 �15 �25 �35 �45�15 �25 �35 �45 �05 �15�25 �45 �05 �15 �25 �35�35 �15 �25 �35 �45 �05�45 �35 �45 �05 �15 �25 S3 �05 �15 �25 �35 �45�05 �05 �15 �25 �35 �45�15 �35 �45 �05 �15 �25�25 �15 �25 �35 �45 �05�35 �45 �05 �15 �25 �35�45 �25 �35 �45 �05 �15Figure 9.8: Some quasi-group multipliation tables.The generalized proof proedure is as follows: given two strutures S1 and S2we have to:1. �nd a disriminant P ,2. show that P (S1) holds,3. show that :P (S2) holds, and4. show that 8X 8Y P (X) ^ :P (Y ) ) X 6� Y holds (where X and Y arevariables for strutures).8The single proof parts ombine to the following proof sketh:8While step 4 is fairly obvious for a human mathematiian, it is ruial for a formal proof.



198 Chapter 9. The Residue Class Domain?.... (2)P (S1) ?.... (3):P (S2)P (RS1) ^ :P (S2) ^I ?.... (4)8X 8Y P (X) ^ :P (Y )) X 6� YP (S1) ^ :P (S2)) S1 6� S2 8E(S1; S2)S1 6� S2 )EThe four problems 1 to 4 are solved by di�erent strategies and di�erent inte-grated systems. To ompute a suitable disriminant P , we employ HR, a system fortheory formation. The proofs that P is a disriminant for two given residue lassstrutures (i.e., that P (RS1n; Æ1) and :P (RS2m; Æ2) holds) are done by PPLANNERstrategies. To obtain a formal proof that P is a disriminant for two arbitrarystrutures X and Y (i.e., step 4) we use �rst-order automated theorem provers.We realized this tehnique as follows: we formalized the proof shema de-sribed above in the method IsoToDisriminant-B, whih we added to Equ-Solve.9 The appliation of IsoToDisriminant-B by EquSolve redues the initialgoal :Iso(RS1n; Æ1; RS2m; Æ2) to three line-tasks with the goals(1) mvP (RS1n; Æ1),(2) :mvP (RS2m; Æ2), and(3) 8Set1; Op1; Set2; Op2 mvP (Set1; Op1) ^ :mvP (Set2; Op2))[:Iso(Set1; Op1; Set2; Op2)℄and an instantiation-task for the meta-variable mvP , whih substitutes the disrim-inant P .Afterwards, EquSolve interrupts and poses demands to �rst apply the instanti-ation strategy ComputeInstbyHR to mvP and then to apply the ATP strategy Call-Tramp (see setion 6.2.4) to the goal (3). When both strategies sueed and EquSolveis re-invoked, then it takles the remaining goals P (RS1n; Æ1) and :P (RS2m; Æ2),where the meta-variable mvP is meanwhile bound to property P . P (RS1n; Æ1)and :P (RS2m; Æ2) are �rst takled by EquSolve. If EquSolve fails to prove thesesubgoals10, TryAndError is applied to them guided by the strategi ontrol rulepreferotherjob-if-EquSolvefailure that prefers job o�ers of other strategies forgoals on whih EquSolve fails (see setion 9.2.1).In the following, we illustrate the appliation of HR and the automated the-orem provers with the problem that :Iso(ZZ5; ��;ZZ5; �xy (�25��x) �+y). HR o�ersas disriminant �Set �Op 9x:Set 8y:Set x :=Op(y; y), whih redues the two goalsfor the PPLANNER strategies to 9x:ZZ5 8y:ZZ5 x :=y ��y and :9x:ZZ5 8y:ZZ5 x :=�25��y) �+y.Sine these two goals are solved by the strategies EquSolve and TryAndError as usualwe omit to further disuss them.ComputeInstbyHR works similar to ComputeInstbyCasAndMG. When applied toan instantiation-task, it analyzes whih kind of instantiation is needed and thenapplies HR to ompute the atual instantiation. To obtain a disriminant Com-puteInstbyHR uses HR's onept formation, whih is ahieved by using produtionrules that take one (or two) old onepts as input and output a new onept. Theinput for HR are the two strutures for whih a disriminant is needed and a set ofprodution rules. In partiular, we use the following four prodution rules of HR:� Compose: omposes funtions using onjugation.9We added IsoToDisriminant-B to EquSolve sine EquSolve is supposed to solve the goalP (RS1n; Æ1).10Typially, EquSolve sueeds for P (RS1n; Æ1) and fails for :P (RS2m; Æ2).



9.2. Proof Plans of Isomorphism Problems 199� Math: equates variables in prediate de�nitions.� Forall: introdues existential quanti�ation.� Exists: introdues universal quanti�ation.
[a, b, c, d] : b*c=d

[a, b, c] : b*b=c

match

[a, b] : (all c ((c*c=b)))

forall

[a, b] : b in a

forall

[a] : (exists b ((all c ((c*c=b)))))

exists

Figure 9.9: Example onstrution of HR.As an example onsider the onept of there being a single element on thediagonal of the multipliation table of an algebra, as is the ase for (ZZ5; ��) butnot for (ZZ5; �xy (�25��x) �+y). This onept is onstruted by HR using the math,forall and exists prodution rules, as depited in Figure 9.9 from the basi onepts`element of the algebra' and `multipliation of two elements to give a third'. Usingthe math prodution rule with the multipliation onept, HR invents the notionof multiplying an element by itself. By using this in the forall prodution rule, itinvents the onept of elements, whih all other elements multiply by themselvesto give. Then, using the exists prodution rule, HR invents the notion of algebraswhere there is suh an element. The resulting property is expressed as an �-term,whih yields: �Set �Op 9x:Set 8y:Set x :=Op(y; y). A more detailed disussion ofthe usage of HR by ComputeInstbyHR an be found in [167℄.With respet to the binding mvP :=b �Set �Op 9x:Set 8y:Set x :=Op(y; y) in-trodued by ComputeInstbyHR the goal (3) beomes:8Set1; Op1; Set2; Op2[9x:Set1 8y:Set1 x :=Op1(y; y)℄ ^ :[9x:Set2 8y:Set2 x :=Op2(y; y)℄) [(Set1; Op1) 6� (Set2; Op2)℄.CallTramp sueeds to solve the goal, if one of the automated theorem proversinterfaed by Tramp sueeds.11 Tramp returns the orresponding ND-proof,whih is stored for a potential expansion (see setion 6.2.4). For our example,Tramp produes ND-proofs ontaining between 71 (ND-proof transformed fromSpass proof) and 104 steps (from Bliksem proof).We point out that the interfae between Multi and HR is urrently not auto-mated. Thus, urrently the desribed tehnique does not work fully automatially.Rather, the instantiation strategy ComputeInstbyHR asks the user to supply HR'sresults interatively.11The formula passed to Tramp is a higher-order theorem sine it ontains quanti�ations onsets, operations, and the funtions h and j. However, when Tramp alls the onneted automatedtheorem provers it reates a lause normal form of the problem and all the higher-order variablesbeome onstants (the theorem is negated for lause normalization).



200 Chapter 9. The Residue Class Domain9.2.2.3 Proof by ContraditionIn this setion, we introdue the new strategy NotInjNotIso to takle non-isomor-phism problems. For the development of NotInjNotIso experiments with random-ization and restarts tehniques known from Arti�ial Intelligene were neessary,from whih we aquired the ontrol knowledge to guide the appliation of NotIn-jNotIso. Sine these experiments were related only to the NotInjNotIso strategy andsine their results are neessary to disuss the NotInjNotIso strategy, we shall de-sribe them here and do not delay them to the general disussion of the ondutedexperiments in setion 9.3.2.The idea of NotInjNotIso is to onstrut an indiret proof that shows that twostrutures (RS1n1 ; Æ1) and (RS2n2 ; Æ2) are not isomorphi. The strategy �rst assumesthat the two strutures are isomorphi and that h is a bijetive homomorphism from(RS1n1 ; Æ1) to (RS2n2 ; Æ2). If h is bijetive, then it is also injetive. The strategy thentries to �nd two elements 1; 2 2 RS1n1 with 1 6= 2 suh that it an derive theequation h(1) :=h(2). This ontradits the assumption of injetivity of h whihimplies that h(1) 6= h(2) has to hold, if 1 6= 2. Note that the proof works withrespet to all possible homomorphisms h.L1. L1 ` Iso(ZZ5; �xy x��y;ZZ5; �xy x�+y) (Hyp)...L6. L1 ` Inj(h;ZZ5) (^E-F : : :)L7. L1 `Hom(h;ZZ5; �xy x��y;ZZ5; �xy x�+y) (^E-F : : :)L8. L1 `h(�05) :=h(�05) �+h(�05) (InstHomEqus-F L7)L9. L1 `h(�05) :=h(�05) �+h(�15) (InstHomEqus-F L7)...L88. L1 ` ((((h(�05) �+h(�05)) �+h(�05)) �+h(�05)) �+h(�05)) �+h(�15) :=h(�15) (SolveEquation-b)L89. L1 ` (((h(�05) �+h(�05)) �+h(�05)) �+h(�05)) �+h(�15) :=h(�15) (=Subst-B L88 L8)L90. L1 ` ((h(�05) �+h(�05)) �+h(�05)) �+h(�15) :=h(�15) (=Subst-B L89 L8)L91. L1 ` (h(�05) �+h(�05)) �+h(�15) :=h(�15) (=Subst-B L90 L8)L92. L1 `h(�05) �+h(�15) :=h(�15) (=Subst-B L91 L8)L93. L1 `h(�05) :=h(�15) (=Subst-B L92 L9)...L97. L1 `:Inj(h;ZZ5) (: : :)L98. L1 `? (:E L97 L6)L99. `:Iso(ZZ5; �xy x��y;ZZ5; �xy x�+y) (Contra-B L98)Figure 9.10: Proof with the NotInjNotIso strategy.Figure 9.10 shows a part of the proof with the NotInjNotIso strategy for theexample problem :Iso(ZZ5; �xy x��y;ZZ5; �xy x�+y). The idea is to derive the on-tradition in line L98 by assuming that there exists an isomorphism in line L1. Not-InjNotIso derives in the lines L6 and L7 the properties that all possible isomorphismsh have to be injetive homomorphisms. Then, it derives from the homomorpshimproperty in L7 the ompletely instantiated homomorphism equation system. In ourexample, this system onsists of 25 single equations. In Figure 9.10 we show onlytwo of these equations in the lines L8 and L9. The appliation of InstHomEqus-Fintrodues the simpli�ed versions of the equations, whih are of the general formh(x Æ1 y) :=h(x) Æ2 h(y). The instantiation of the proper operations and the applia-tion to the arguments x = �05 and y = �05 results in the equation of line L8 (similarly,the equation of line L9 results from x = �05 and y = �15).From the system of equations the NotInjNotIso strategy tries to derive that h isnot injetive. To prove this, it has to �nd two witnesses 1 and 2 for whih 1 6= 2and h(1) :=h(2) hold. In the proof in Figure 9.10 NotInjNotIso hooses �05 and �15



9.2. Proof Plans of Isomorphism Problems 201for 1 and 2, respetively. We omit the part of the proof that derives �05 6= �15 andonentrate on the more diÆult part to show h(�05) :=h(�15) in line L93. This goalis redued to line L88 by suessively applying equations from the equation systemwith the method=Subst-B. The formula of L88 is aepted byMaple as a generallyvalid equation (with respet to the modulo fator 5), and NotInjNotIso loses L88by the method SolveEquation-b. Sine line L97 ontradits the assumption ofinjetivity of h, Multi an onlude the proof.The essential part of an appliation of the NotInjNotIso strategy is the searhfor a sequene of appliations of the =Subst-B method, whih redues h(1) :=h(2)to an equation that an be shown by Maple. During this proess NotInjNotIsohas to make deisions about whih instantiated homomorphism equation to applynext with the =Subst-B method. Sine all instantiated homomorphism equationshave the form h() :=h(1) Æ h(2) the deision is, whih subterm h(: : :) of the ur-rent goal to replae by a orresponding instantiated homomorphism equation. Theidea to guide the seletion is to prefer instantiated homomorphism equations whoseappliation results in equations that ontain as few as possible di�erent h(: : :) ex-pressions. Then, several ourrenes of the same h(: : :) expression an be aneled(whih is done by Maple) with respet to the modulo fator. For instane, in the�nal equation in line L88 in Figure 9.10 5 ourrenes of h(�0) onneted by �+ areaneled sine 5 � h(�05) modulo 5 equals �05.This idea is realized in the ontrol rule hoose-next-equation, whih guidesthe deision for the next instantiated homomorphism equation by adopting thefollowing heuristis:(1) Prefer the appliation of an instantiated homomorphism equation that replaesin the urrent goal an ourrene of h() suh that h() is the h(: : :) expressionwith the least ourrenes in the goal.(2) Among the remaining instantiated homomorphism equations prefer an equationthat introdues the least number of h(: : :) expressions that are new in the goal.We applied NotInjNotIso with this heuristi guidane to a testbed of 160 non-isomorphism problems over the residue lass set ZZ5. Some example instanes are:1. :Iso(ZZ5; �xy x��y;ZZ5; �xy x�+y),2. :Iso(ZZ5; �xy x��y;ZZ5; �xy x��y),3. :Iso(ZZ5; �xy x�+y;ZZ5; �xy x��y),4. :Iso(ZZ5; �xy x��y;ZZ5; �xy �25��(x��y)).The problem instanes are onstruted by ombining strutures of di�erent algebraiategories (102 problems) and problems ombining two quasi-group strutures fromdi�erent isomorphism lasses (58 problems). For instane, problem 1 onsists ofa monoid struture and a group struture, problem 2 of a monoid struture anda quasi-group struture, problem 3 of a group and a quasi-group struture, andproblem 4 of two quasi-group strutures.The appliation of NotInjNotIso to all problems of the testbed (we used a 2 hourtime limit per proof attempt) revealed a surprisingly high variane in the perfor-mane of the strategy. On some of the problems it sueeded very fast (in the orderof seonds) and produed short proof plans onsisting only of a few appliations of=Subst-B, whereas on other problems the planning proess took muh longer (inthe order of several hundreds of seonds) and resulted in proof plans with many



202 Chapter 9. The Residue Class Domainappliations of =Subst-B. Furthermore, for over 30% of the instanes no proof wasfound in 2 hours. Table 9.2 displays the performane extrema for these runs aswell as the mean values over all suessful runs. The values in brakets give thedeviation from the mean.12Figure 9.11 shows the underlying distribution of the run time for these experi-ments. We observe a large variane in run times for the various instanes. In fat,the distribution exhibits heavy-tailed behavior [103, 105, 104℄, whih is manifestedin the long tail of the distribution strething for several orders of magnitude.Costs Mean Min. Max.Proof length 55 45 (18.2%) 83 (50.9%)Run Time 483 8(98%) 7145(1380%)Table 9.2: Statistis for suessful runs (108 out of 160) on testbed using determin-isti strategy.
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9.2. Proof Plans of Isomorphism Problems 203
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1000 2000 3000 4000 5000

C
um

m
ul

at
iv

e 
fr

ac
tio

n 
of

 s
uc

ce
ss

fu
l r

un
s

Run timeFigure 9.12: Run time distribution for single problem.the at asend after 300 seonds provides evidene that the probability of �nding aproof plan dereases onsiderably. Hene, it is advantageous to perform a sequeneof restarts on a single instane (with a prede�ned uto�) until reahing a suessfulrun or the total time limit, instead of performing a single long run.The uto� and restart approah is aptured in Multi in two ontrol rules.The interrupt ontrol rule interrupt-if-utoff in NotInjNotIso heks how muhtime NotInjNotIso did spend in a run so far. It interrupts NotInjNotIso, when therun time exeeds the prede�ned uto�, and then poses a demand to baktrak thewhole appliation of NotInjNotIso with the BACKTRACK strategy BakTrakPPlanner-Strategy. This strategy deletes omplete PPLANNER ations omprising the deletionof all method-ations of the PPLANNER ation as well as all ations that dependon these method-ations. When Multi baktraks the appliation of NotInjNotIso,then the strategi ontrol rule rejet-applied-offers (see setion 6.2.3) forbidsto apply NotInjNotIso again to the same task (apturing the non-isomorphism prob-lem). However, rejet-applied-offers is overwritten by the strategi ontrol rulerestart-NotInjNotIso, whih has a higher priority and allows to apply NotInjNotIsoup to a prede�ned number of times.Based on an analysis of the underlying distributions of the experiments for thefull testbed and for the single problem we onsidered several uto� and restartvalues, using a binary searh strategy. The uto� value of 80 seonds with 90restarts provided the best results (see [158℄). NotInjNotIso found proof plans for156 of the 160 problems (97.5%) in an average time of 291.4 seonds (mean timeof solved problems). Figure 9.13 plots the run time distribution of the resultingrestart approah with uto� 80 (log-log sale) on the problems of the testbed. Therestart data is given by the urve that drops rapidly. The �gure also shows the runtime distribution of the deterministi strategy. The heavy-tailed nature of the runtime distribution of the deterministi strategy is evident from the approximatelylinear behavior over several orders of magnitude of the tail of the distribution inthe log-log plot. The sharp drop of the run time distribution of the restart strategylearly indiates that this strategy does not exhibit heavy tailed behavior.With respet to our results the uto� value for non-isomorphism problems withZZ5 in interrupt-if-utoff is 80 seonds and restart-NotInjNotIso allows 90restarts of NotInjNotIso on a non-isomorphism problem with ZZ5. We obtained anal-ogous results on non-isomorphism problems of the residue lass sets ZZ2, ZZ3, ZZ4,and ZZ6. The experiments onduted on these problem lasses are desribed in [158℄.There we report also experiments with randomization and restart approahes withthe TryAndError strategy. The analysis of the underlying distributions did not ex-hibit heavy-tailed behavior.
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Figure 9.13: Log-Log plots of run time distribution over testbed with and withoutrandomization.9.2.3 Treating Diret ProdutsWith minor extensions to our strategies the proving tehniques for isomorphismproblems and non-isomorphism problems in the residue lass domain are also appli-able to problems where the strutures involved ontain diret produts of residuelass sets. Apart from those methods already illustrated in setion 9.1.4 that de-ompose quanti�ations and equations on tuples into the omponents, a few addi-tions had to be made for takling both isomorphism problems and non-isomorphismproblems.The pointwise de�ned funtion introdued by the TryAndError strategy for iso-morphism problems maps in the ase of diret produts in the domain or odomainof the mapping, tuples of residue lasses to tuples of meta variables. For example, inan isomorphism proof the pointwise funtion for the mapping h from RS1n1 
RS2n2to RS3n3 
RS4n4 , has the formh(x; y) :=8><>: (mv1;mv2), if (x; y) :=(1; 1) 2 RS1n1 
RS2n2(mv3;mv4), if (x; y) :=(1; 2) 2 RS1n1 
RS2n2... ;with mv1;mv3; : : : 2 RS3n3 and mv2;mv4; : : : 2 RS4n4 . For non-isomorphism prob-lems the odomain of the mapping ontains onstants instead of meta-variables.Similarly, the interpolation polynom for the pointwise isomorphism funtionbetween diret produts is a tuple of multivariate polynomials. We have one poly-nomial for eah omponent of the diret produt in the odomain. The number ofvariables of eah of these polynomials orresponds to the number of omponentsof the diret produt in the domain. For the example above, an interpolation forthe funtion h is the pair (P1(x; y); P2(x; y)) onsisting of two polynomials in twovariables P1 and P2.For the NotInjNotIso strategy there is one separate equation system for eah om-ponent of the diret produt in the odomain. Eah equation system is of the formhi(xÆ1 y) :=hi(x)Æ2 hi(y), with 1 � i � n and n is the number of omponents. Then,NotInjNotIso has to show for eah equation system separately that hi(1) :=hi(2)with 1 6= 2. Here x; y; 1; 2 are elements of the residue lass struture in thedomain of the mapping and an also be tuples.



9.3. Results and Disussion 2059.2.4 Automatially Classifying Isomorphi StruturesSimilar to the exploration module for simple properties of residue lass strutures(see setion 9.1.5) we implemented an exploration module in 
mega that dividesa given set of residue lass strutures into disjunt lasses of isomorphi strutures.The module takes the �rst given struture and reates an isomorphism lass thatontains only this struture. Then, it starts to perform the following lassi�ationyle, whih is repeated for eah struture S in the input set:1. Chek whether there exists already an isomorphism lass C suh that S isisomorphi to the strutures in C. This is tested by heking suessively forall present isomorphism lasses whether one of its strutures is isomorphi toS or not. Sine the relation isomorphi is transitive it is suÆient to performthis hek with only one struture S0 in C, respetively.2. If we an prove that S is isomorphi to a struture S0 of an isomorphism lassC then S is added to C.3. If we an prove for eah urrently existing isomorphism lass that S is notisomorphi to one of its strutures, then we reate a new isomorphism lassinitially ontaining S.The test in step 1 is in turn performed in three steps: The exploration module�rst performs a omputation whose result gives the likely answer to the questionwhether the two strutures S and S0 are isomorphi or not. This omputation on-sist of onstruting a pointwise isomorphi mapping between the two strutures.Thereby the exploration module employs the same funtionality as the ontrol ruleComputeInstbyCasAndMG when it onstruts a pointwise de�ned funtion (see se-tion 9.2.1).As opposed to the lassi�ation desribed in setion 9.1.5, the exploration mod-ule does not onstrut and disharge a proof obligation of eah hek. Instead, it�rst onduts all possible heks and then onstrut proof obligations. If the explo-ration module �nds an S0 to whih S is supposedly isomorphi, then it onstrutsthis proof obligation. Otherwise, it onstruts for eah isomorphism lass C a proofobligation that S is not isomorphi to a S0 2 C. This way the exploration modulepostpones and even avoids superuous non-isomorphism proofs. The proof obliga-tions are then disharged by onstruting a proof plan with Multi. In ase Multiannot prove the proof obligation suggested by Maple's or SEM's result the algo-rithm proeeds by onstruting the negated proof obligation and passes it again toMulti to disharge it. In ase this proving attempt fails, too, the algorithm signalsan error.9.3 Results and DisussionWe onlude this hapter with a disussion of the onduted ase study and itsresults. The setion is strutured as follows. First, we disuss related work. Af-terwards, we give in setion 9.3.2 an aount of the experiments onduted in theresidue lass domain. In setion 9.3.3, we evaluate the realized proof planning ap-proah. Finally, we ompare our multiple strategy proof planning approah in theresidue lass domain with the appliation of an automated theorem prover to thesame problems in setion 9.3.4.



206 Chapter 9. The Residue Class Domain9.3.1 Related WorkCombining Computer Algebra and Theorem ProvingThere are various aounts on experiments of ombining omputer algebra andtheorem proving in the literature, see [131℄ for just a few. We an distinguish be-tween two major paradigms for these integrations: (1) The integration of dedutioninto omputer algebra and, onversely, (2) the use of omputer algebra during the-orem proving. Most of this existing work deals with the tehnial and arhiteturalaspets of those integrations as well as with orretness issues.In this ase study we use two omputer algebra systems in proof planning.Previous work in this area is reported in [135℄ and [222℄. Both papers presentthe integration of omputations of omputer algebra systems within methods (e.g.,ComplexEstimate-B in [222℄) and explain how the orretness of ertain limitedomputations of a omputer algebra system suh as Maple an be guaranteedwithin the proof planning framework. We did make use of this previous work whenimplementing methods suh as SolveEquation-b, whih alls Maple to hekequations. But in this ase study we mainly fous on the integration of omputeralgebra systems to provide instantiations for meta-variables.Theorem Proving in Abstrat AlgebraFor the partiular domain of abstrat algebra [124℄ skethes a possible oopera-tion between the dedution system Nuprl and the omputer algebra systemWeyl.Other work in theorem proving in this domain onentrates mainly on the equa-tional reasoning aspet in abstrat algebra. As examples we refer to term rewritesystems for �nite groups as presented for instane in [36℄ and to the speializedsuperposition aluli for groups in [226℄ and for monoids in [92℄.Exploration in Finite AlgebraWork on exploration and automated disovery in �nite algebra is reported in[90, 150, 219, 252℄ where model generation tehniques are used to takle quasi-groupexistene problems. In partiular, systems suh as Finder [218℄ and Sato [251℄were suessfully employed to solve some open problems in quasi-group theory.[153℄ gives an aount of the use of the automated theorem prover Otter to assistthe onstrution of non-assoiative algebras in every day mathematial pratie.Other work [103℄ employs onstraint solving tehniques to omplete quasi-groupmultipliation tables. The motivation for all this work is roughly to speify ertainproperties of an algebra and then to try to automatially onstrut a struture thatsatis�es the required properties. Thus, the onstruted algebra might atually bea new disovery. Our work is diametrial in the sense that we start out with givenstrutures and lassify them with respet to their algebrai properties and whetherthey are isomorphi.Construting Disriminants with HRThere are several other appliations to perform ategorization tasks with HR.In [60℄ a heuristi searh is performed within HR, whih measures the onepts invarious ways and builds new onepts from the most interesting old ones �rst. [61℄disusses the usage of a forward look ahead mehanism, whih an tell in advanewhether the appliation of up to three onept formation steps will lead to a oneptwhih ahieves a partiular ategorization task (e.g., a disriminant).The problem of identifying a disriminant for two objets is a mahine learningproblem and ould, in theory, be solved by a program suh as Progol [177℄. Progoluses Indutive Logi Programming to identify a onept whih orretly ategorizes



9.3. Results and Disussion 207Simple Properties Iso-ClassesAll ZZ5 ZZ6 ZZ10 ZZ5 ZZ6 ZZ10Magmas 8567 3049 4152 743 36 7 14Abelian Magmas 244 53 73 24 26 5 6Semi-groups 2102 161 1114 35 3 8 1Abelian Semi-groups 2100 592 1025 62 1 12 2Quasi-groups 1891 971 738 70 9 2 10Abelian Quasi-groups 536 207 257 11 3 2 1Abelian Monoids 211 97 50 6 1 1 1Abelian Groups 1001 276 419 49 1 1 1Total 18963 5406 8128 1000 80 38 36Table 9.3: Results of the experiments.a set of positive and negative examples. However, as mentioned in [59℄, this maybe diÆult in pratie in our setting sine we supply only a single positive and asingle negative example, whih would suggest that the amount of ompression in aonept would not be high enough to be suggested as a viable solution.Randomization and Restart TehniquesReent work in Arti�ial Intelligene demonstrates that several hard ombina-torial searh proedures show heavy-tailed behavior and that randomization andrestart tehniques an help to boost the searh as well as to solve formerly un-solved problem lasses. [105℄ desribes the appliation of the tehnique on shedul-ing problems in a onstraint satisfation formulation (CSP); [104℄ demonstratesthe e�etiveness of the tehnique on propositional satis�ability (SAT) and CSP al-gorithms in the domains of logistis planning, iruit synthesis, and round-robinsheduling; �nally, [103℄ desribes additional results in the domain of the so-alledquasi-group ompletion problem (in a CSP formulation), shool time tabling (in aSAT formulation), and problems from the Dimas Challenge benhmark (in a SATformulation). As opposed to these heavy-tailed searh problems, the bloks-worldplanning domain does not show heavy-tailed behavior (see [104℄).To the best of our knowledge, randomization and restart tehniques were em-ployed in dedution systems only in propositional SAT provers (see [104℄). Er-tel desribes in [80℄ the ompetitive appliation of randomized strategies of theSETHEO theorem prover (see also setion 6.4.2). However, this approah is notbased on the analysis of underlying ost distributions.9.3.2 TestsTo test the realized strategies we onstruted a large testbed of automatially gen-erated problems about residue lasses modulo n, where n ranges from 2 to 10,together with operations that are systematially onstruted from the basi opera-tions �+; ��; ��. Altogether, we have lassi�ed 18:963 strutures with respet to theiralgebrai properties so far, inluding a large set of strutures onerning the setsZZ5, ZZ6, and ZZ10. The results for all explorations as well as for eah of ZZ5, ZZ6,and ZZ10 are given on the left hand side of Table 9.3. The table shows the num-ber of strutures we have found in eah algebrai ategory; the table omits thosealgebrai ategories for whih we have not found any representative (i.e., loops,non-Abelian monoids and groups). Note that the total number of explored stru-tures also inludes some that were not losed, whih are not displayed as a separateategory.To show the validity of the tehniques for isomorphism and non-isomorphism



208 Chapter 9. The Residue Class Domainproofs we applied our lassi�ation proess to the strutures involving ZZ5, ZZ6, andZZ10. We only lassi�ed those strutures belonging to the same algebrai ategory;that is, a priori we exluded the omparison of magmas and semi-groups et. Thedi�erent isomorphism lasses we have found so far for the strutures of eah ategoryare given on the right hand side of Table 9.3.In the experiments, we were interested to prefer the appliation of the strategiesRedueToSpeial and EquSolve before TryAndError sine they produe shorter andmore elaborate proofs. For the simple properties, Multi ould suessfully em-ploy RedueToSpeial to a sample of 20%, EquSolve for 23% of the proofs, and theremaining 57% of the examples ould only be solved by the TryAndError strategy.These �gures are not as disappointing as they seem at �rst glane if we onsiderthat nearly all proofs involving the losure property of non-omplete residue lasssets (i.e., sets suh as ZZ3nf�13g) and the refutation of properties ould only besolved with the TryAndError strategy. From the neessary isomorphism proofs 88%were onstruted with the EquSolve strategy, the other 12% were onstruted withTryAndError. During the automati lassi�ation 1276 non-isomorphism proofs wereonstruted. Here 18% of the proofs were done by �nding a disriminant13; the re-maining 82% with the NotInjNotIso strategy.Although from a theoretial point of view all proof plans an be onstruted byexhaustive searh without employing strategies of INSTMETA, in pratie the om-binatorial explosion makes this infeasible. Thus, reliable and robust instantiationstrategies are ruial for the suess of Multi in this domain. Indeed, we have notfound a single ase where the instantiations provided by GAP, Maple, or SEMhave failed or were inorret for the proofs of simple properties. The situation issomewhat di�erent for the isomorphism problems. The lassi�ation proess as wellas the instantiation of meta-variables in the strategy ComputeInstbyCasAndMG de-pend on the quality ofMaple's and SEM's solutions for the system of instantiatedhomomorphism equations. It turned out that Maple sometimes does not returnall possible solutions even though it was asked to do so. For instane, the twostrutures (ZZ6; �xy �26��x��y) and (ZZ6; �xy �46��x��y) are isomorphi (a possible iso-morphism is h(x) :=�56��x). When alled to give the solutions for the orrespondingset of instantiated homomorphism equations,Maple returns the mapping h(x) :=�06as sole solution. Although this is a orret solution, it is not the only one. Inpartiular, it is not suitable to onstrut an isomorphism neessary for testing inthe lassi�ation proess and for providing a pointwise funtion as instantiation ofmeta-variables. Atually, during our experiments, Maple failed to ompute all so-lutions and hene to give suitable pointwise funtions for about 2% of the queries.Unfortunately, we ould not �nd a lear haraterization of these ases in orderto work around the problem. SEM never failed to provide suitable and orretpointwise funtions during our experiments. The drawbak of SEM is that it an-not produe losed polynomial representations of isomorphisms as needed to applythe EquSolve strategy. Maple and SEM an ooperate by passing the pointwiseisomorphisms provided by SEM to Maple to reate a orresponding polynomialrepresentation.
13The tehnique for �nding a disriminant with HR desribed in setion 9.2.2 was implementedafter these experiments were already �nished. In the setting of the experiments we used only twopre-de�ned disriminants whih were ontained in theorems that are applied by RedueToSpeial(see [162℄ for a detailed desription of this tehnique). We assume that with the fully implementeddisriminants tehnique a onsiderably larger part of the non-isomorphism problems an be solvedby this tehnique.



9.3. Results and Disussion 2099.3.3 Evaluation of the Proof Planning ApproahTo avoid that the proof planning approah is too �ne tuned to initial examples(see Bundy's ritique quoted in setion 8.4.3) we developed the proof planningapproah to takle residue lass problems on the basis of a relatively small numberof examples. Afterwards, we tested the realized approah against a large numberof examples that di�er from the initial examples used during the design proess.In detail, we used 21 examples to design the basi versions for the simple prop-erty problems of the RedueToSpeial, TryAndError, EquSolve, and ComputeInstby-CasAndMG strategies. For the extensions to handle diret produts we used 3 ad-ditional examples; for the extensions to lassify strutures with two operations weneeded 2 examples, whih were ombinations of already used examples. We used15 examples to develop the additions to the RedueToSpeial, TryAndError, Equ-Solve, and ComputeInstbyCasAndMG to handle isomorphism and non-isomorphismproblems and another 4 examples to build the NotInjNotIso strategy.Our tests (see setion 9.3.2) provide evidene that� our tehniques realized in the strategies provide a robust mahinery suitableto prove a large variety of problems about residue lasses,� the integration of omputer algebra, model heking, and theory formationsystems enhanes indeed the proof planning proess,� elaborate tehniques suh as the onstrution and proof of disriminants re-sult in proof objets that are very similar to human proofs for residue lassproblems.In the following, we shall disuss the strategies, methods, and ontrol rulesdeveloped for the residue lass domain with respet to their amount of mathematialand domain-spei� ontent. Moreover, we shall disuss the generality of the singlestrategies, methods, and ontrol rules, i.e., to whih domains they an be applied,as well as the generality of the enoded priniples.TryAndErrorThe TryAndError strategy �ts into the more general heuristi strategy \split intoan exhaustive set of ases, then solve single ases".14 It instantiates this mathe-matial priniple with the spei� knowledge on how to apply it to residue lassproblems. This priniple is suitable for our domain sine the quanti�ed variablesrange only over �nite domains. The same tehnique may be used to takle otherdomains of �nite group theory or �nite algebra. The seond basi priniple ofTryAndError is to solve the single ases by reduing statements on residue lassesinto statements on integers and to solve the statements on integers by numerialreasoning. This is a domain-spei� priniple that resembles human approahes tosolve residue lass problems.The method _E**-B, whih performs a ase-split with respet to a set of dis-juntive supports, is a general, logi-level method without partiular mathematialontent. The mathematial knowledge of how to organize the exhaustive ase anal-ysis is enoded in the ontrol rule tryanderror-standard-selet (see Figure 4.4in setion 4.1.3) that guides the appliation of _E**-B and some domain-spei�methods for residue lass theorems. Control rules guiding exhaustive ase analysis14Shoenfeld mentions ase analysis as a frequently used heuristi: \Deompose the domainof the problem and work on it ase by ase." ([209℄ p. 109)



210 Chapter 9. The Residue Class Domainin other domains ould be similar to tryanderror-standard-selet. That is, theyould use also _E**-B but ombine it with di�erent domain-spei� methods.The methods 8IResalss-B, 9IReslass-B, and ConCongCl-B enode themathematial knowledge on how to redue statements on residue lasses to state-ments on integers; ConCongCl-B redues equations and other quanti�er-freestatements whereas 8IResalss-B and 9IReslass-B redue quanti�ed state-ments. All three methods are domain-spei� for residue lass problems and anhardly be used to takle other problem lasses.8IResalss-B and 9IReslass-B ombine the deomposition of the quanti�erwith a representation-shift. We illustrate this with the example depited in Fig-ure 9.1 in setion 9.1.1. A domain-independent method for the deomposition ofa universal quanti�er would redue the goal 8x:ZZ2 9y:ZZ2 (x�+y :=�02) ^ (y �+x :=�02) inL24 to 9y:ZZ2 (0 �+y :=�02) ^ (y �+0 :=�02) with a new hypothesis 0 2 ZZ2. As opposedthereto, 8IResalss-B represents the 0 of the general method as l2() in both,the new goal and the new hypothesis (see L23 and L1 in Figure 9.1). As result,8IResalss-B and 9IReslass-B are over-spei� in the sense that their fun-tionalities ould be realized by the ombination of two more general methods, i.e.,a general method for quanti�er deomposition and a method for representation-shifts. We deided for the integrated representation-shift in 8IResalss-B and9IReslass-B sine the separated representation-shift turned out to be tediousand results in unintuitive proof plans.15 There is an ongoing PhD by Martin Polletthat addresses (among others) the question of the inorporation and use of di�erentrepresentations of mathematial objets in proof planning. Hopefully, operationslike representation-shifts will beome better supported by the tehniques developedin this PhD.Similarly, also the methods 8IReslFun-B and 9IReslFun-B for deom-posing quanti�er that range over funtions of residue lass sets are over-spei�.They also ombine the domain-independent deomposition of the quanti�er withdomain-spei� representation-shifts.As result, the deomposition of quanti�ers and onnetives in TryAndError isdomain-spei� and part of the domain knowledge (in partiular, the deompositionof disjuntive supports by _E**-B). Therefore, TryAndError (as well as EquSolveand NotInjNotIso) does not employ the general strategies UnwrapHyp and Normal-izeLineTask known from the limit domain for the deomposition of quanti�ers andonnetives, but rather employs domain-spei� methods and a domain-spei�ontrol.Altogether, TryAndError is not restrited to the lassi�ation problems disussedin this hapter. Its priniple \split into an exhaustive set of ases, then solvesingle ases" an takle any statements on residue lasses whose quanti�ers rangeover �nite residue lass sets. For instane, it an prove the disriminant propertiesintrodued by HR.EquSolveSimilar to TryAndError, EquSolve relies on the priniple \redue statements onresidue lasses to statements on integers". It ombines this domain-spei� prini-ple with the more general priniple \solve the resulting statements on integers by15Tehnially, the representation-shift from 0 to l2() uses the theorem8x:ZZn 9y:f0;:::;n�1g x = ln(y) from the residue lass domain. Eah appliation of thistheorem for the same 0 2 ZZn introdues a new onstant for the y. Beause of our ND-alulusbiased framework we would have to apply the theorem to eah proof branh separately. Thiswould result in several l2(1), l2(2), : : : representations for the same initial 0 2 ZZ2. Toomplete the representation-shift TryAndError would have to prove that all resulting 1; 2; : : : areequal and would have to replae all ourrenes of 1; 2; : : : by one onstant.



9.3. Results and Disussion 211equational reasoning". This seond priniple is appliable also to other domainsthat rely on equations.The ombination of the two priniples was suessful for the residue lass domainsine we ould employ the omputer algebra system Maple to solve equations onintegers. We enoded the knowledge on how to exploit (the knowledge in) Mapleinto the method SolveEquation-b. SolveEquation-b is not restrited to theresidue lass domain but an be employed in any domain with equations on integers.Also the method IsoToDisriminant-B in EquSolve is not restrited to theresidue lass domain. Rather, it overs the general mathematial knowledge onhow to aomplish non-isomorphism proofs with disriminants.Altogether, EquSolve is not as general as TryAndError sine it an handle onlysuh problems of the residue lass domain that an be redued to equations. How-ever, similar to TryAndError, it is not restrited to the lassi�ation problems dis-ussed in this hapter. For instane, it an also solve subproblems on disriminantproperties resulting from the appliation of HR.NotInjNotIsoNotInjNotIso is speialized to one type of problems of the residue lass domain,namely non-isomorphism problems. Its basi priniple \assume negation of theo-rem, then reate ontradition" of onstruting indiret proofs is a general proofparadigm known from mathematis.NotInjNotIso implements this general priniple by equational reasoning withthe set of instantiated homomorphism equations in order to derive the ontradi-tion. This equational reasoning by applying instantiated homomorphism equationswith the general, logi-level method =Subst-B ould also be used to takle non-isomorphism problems in other domains. The seletion of the next equation toapply in the ontrol rule hoose-next-equation and the guidane of the uto�sand restarts in the ontrol rules interrupt-if-utoff and restart-NotInjNotIsoare domain-spei�. Whereas hoose-next-equation exploits the mathematialknowledge of whih equations support aneling (see setion 9.2.2), interrupt-if-utoff and restart-NotInjNotIso enode stohasti knowledge, whih we a-quired by extensive experiments, of when NotInjNotIso should be interrupted andrestarted.The uto� and restart knowledge itself (i.e., the onrete values for uto�s andrestarts) annot be diretly transfered to other domains. However, the approah weused to aquire this knowledge is domain-independent and was applied already toseveral hard Arti�ial Intelligene searh problems (see disussion of related workin setion 9.3.1).RedueToSpeialWe used the domain-independent strategy RedueToSpeial already to taklelimit problems. There it turned out that some domain-spei� ontrol was neededto guide the appliations of some theorems of the limit domain (see setion 8.3).When we applied RedueToSpeial to the residue lass domain, we found thatthe general theorem appliation method ApplyAss-B was not suÆient to applyall theorems of the residue lass domain. To overome these problems we im-plemented further methods to deide the appliability of di�erent theorem lasses(see setion 9.1.3). These new methods ontain no partiular mathematial ordomain-spei� knowledge but rather employ di�erent speialized algorithms de-iding partiular higher-order uni�ation problems. It is not yet lear how generalthese methods and algorithms are, i.e., whether they an be used to takle other



212 Chapter 9. The Residue Class Domaindomains. However, it is lear that speialized algorithms deiding partiular higher-order uni�ation problems will be helpful in other domains as well.ComputeInstbyCasAndMG and ComputeInstbyHRThe INSTMETA strategies ComputeInstbyCasAndMG and ComputeInstbyHR inter-fae omputer algebra systems, a model heker, and a theory formation system.These strategies ontain the knowledge of how to exploit the spei� knowledgein the onneted external systems in order to ompute instantiations for meta-variables.The implemented funtionalities of ComputeInstbyCasAndMG are urrently fo-used on the residue lass ase study (i.e., what kinds of meta-variables are reog-nized and what kind of omputations are requested from the onneted systems).However, the priniple of ComputeInstbyCasAndMG to searh for fats in the proofplan that determine the needed kind of instantiation for a meta-variable and toemploy then suitable experts to ompute a onrete instantiation is a general prin-iple that an be easily extended to takle also other domains and other problems.For instane, when another kind of meta-variable instantiation is needed, then fur-ther omputations using the urrent external systems ould be added. Moreover,ComputeInstbyCasAndMG ould interfae further external systems.As opposed thereto, the funtionality of ComputeInstbyHR is urrently very re-strited. It reognizes only one kind of problems. We ould have implementedthe funtionality of ComputeInstbyHR as a part of ComputeInstbyCasAndMG (thenComputeInstbyCasAndMG would have to interfae HR). We deided, however, tofurther examine the integration of theory formation systems suh as HR into proofplanning with further kinds of examples before we determine the priniple of howthey are onneted.9.3.4 Comparison with ATPsThe suessful appliation of proof planning to problems of a mathematial do-main depends on the aquisition of mathematial knowledge of the domain andits formalization in methods, ontrol rules, and strategies. If suitable knowledgeis available, proof planning an solve problems that are beyond the means of tra-ditional ATPs based on general-purpose mahine-oriented logial aluli suh asthe resolution alulus [205℄. If the number of problems of a domain is suÆientlylarge, the aquisition of the knowledge and its formalization an prove fruitful butis nevertheless a tedious task.This poses the question of whether there are other means than proof planning totakle the problems of a ertain domain. The problems generated during the explo-ration of residue lass strutures are in the range of traditional automated theoremproving sine all ourring quanti�ers range over �nite sets. To ompare the resultsof our ombined proof planning, Maple, GAP, HR approah with the results of atraditional automated theorem prover we applied the �rst order equational proverWaldMeister [114℄ to the same problems. In order to guarantee a fair ompari-son we were interested to exploit expert knowledge about suitable ontrol settingsfor automated theorem provers and suitable formalizations of the problems.16 Wedeided forWaldMeister sine we got help from one of its implementors in tuningthe system for our problems.16Indeed, some experiments showed that, without expert knowledge about suitable ontrol set-tings for the systems and suitable formalizations of the problems, we were hardly able to solve anyof our problems.



9.3. Results and Disussion 2139.3.4.1 Proving Residue Class Problems with WaldMeisterWe employ WaldMeister in an ATP strategy, WaldOnResidueClass, whih appliesWaldMeister to a line-task. The strategy an be applied to all problems o-urring during the automati exploration exept to show that two strutures areisomorphi. The appliation funtion of WaldOnResidueClass reates input �les forWaldMeister that onsist of three parts: A general axiomatization of the residuelass struture and the operations +;�; �, a spei� formalization of the propertyto be proved, and a suitable ontrol setting for WaldMeister, for instane, anorder of symbols. The strategy WaldOnResidueClass alls WaldMeister with twodi�erent ontrol settings depending on whether the goal to be proved is a simpleproperty or a non-isomorphism problem. The output of WaldMeister when em-ployed by WaldOnResidueClass annot be translated into an ND-proof by Trampsine the input for WaldMeister (and hene also its output) omprises fats forwhih we have no orresponding fats in 
mega's database. Thus, the output hekfuntion of WaldOnResidueClass just heks whether WaldMeister delares in itsoutput the problem as proved.a0 = 0a1 = s(a0)equal(x; x) = trueequal(x; s(x)) = falses(s(x))) = xZ2 = ons(a0; ons(a1; nil))
9>>>>>>=>>>>>>; (1) Spei�ation of ZZ2 aslist of two elements.+(x; 0) = x+(x; s(y)) = s(+(x; y))...�(x; 0) = 0�(x; s(y)) = +(x; �(x; y))...
9>>>>>>>>=>>>>>>>>; (2) Spei�ation of thebasi operations +; �;�.+(+(x; y); z) = +(x;+(y; z))+(x; y) = +(y; x)...�(�(x)) = x�(x;�(x)) = 0...�(�(x; y); z) = �(x; �(y; z))�(x;+(y; z)) = +(�(x; y); �(x; z))...
9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>; (3) Additional theoremsand lemmas aboutthe basi operations.

op(x; y) = �(+(x; s(0)); y) o (4) Spei�ation of the operationof the residue lass struture.Figure 9.14: Spei�ation for WaldMeister.Figure 9.14 depits the general part of the input spei�ation for the example(ZZ2; �xy (x�+�12)��y). The general part onsists of fats that (1) model the residuelass set ZZ2 as a list of elements, (2) model the basi operations +;�; �, and (3)add useful known lemmas and theorems about the basi operations suh as the



214 Chapter 9. The Residue Class DomainZZ5 ZZ10Explorations wrt. to simple prop. 1100 316Failed Explorations 49 247Single simple property problems 4694 1260Failed simple properties problems 53 314Non-isomorphism problems 2400 400Failed non-isomorphism problems 167 65Table 9.4: Results of applying WaldMeister to problems of ZZ5 and ZZ10.ring properties.17 The operation �xy ((x�+�12)��y) an then be expressed diretly bythese funtions (part (4) in Figure 9.14). In this spei�ation, the multipliationtable of the struture does not need to be formalized. We experimented also withan expliit spei�ation of the multipliation table of the strutures, similar to theproblem spei�ations for SEM. However, WaldMeister performed better whenthe operation of the residue lass struture was de�ned as a omposition of basi op-erations. The reason is that the knowledge of the basi operations given as lemmasin part (3) of the spei�ation are ruial for suess. If the operation is spei�edvia its multipliation table, then it is not possible to provide WaldMeister withlemmas on the operation.To prove simple properties, we have to de�ne the property in question reursivelyover the list speifying the struture of the atual problem. This an only bedone by introduing several auxiliary prediates. The theorem to be proved byWaldMeister is an equation stating that the simple property does or does nothold.To show that two strutures are not isomorphiWaldOnResidueClass usesWald-Meister to onstrut an indiret proof. That is, to the spei�ation of the twostrutures (RS1n; Æ1) and (RS2m; Æ2), the de�nition of two homomorphismsh : RS1n ! RS2m and j : RS2m ! RS1nand the properties h(j(x)) = x and j(h(x)) = x are added. The theorem to beproved by WaldMeister onsists of all possible equations between two distintelements of RS2m, suh as 0=s(0), et. IfWaldMeister sueeds to prove that oneof these equations holds, then we have a ontradition to the assumption that thetwo strutures are isomorphi.9.3.4.2 ExperimentsTo ompare the proof planning approah (ombined with Maple, GAP, SEM,HR) with the appliation of WaldMeister we used WaldMeister to explorestrutures with the sets ZZ5 and ZZ10, whih we already lassi�ed with respet to theirsimple algebrai properties in our experiments reported in setion 9.3.2. Moreover,we takled non-isomorphism problems with the sets ZZ5 and ZZ10. The results ofour experiments are summarized in Table 9.4. All experiments were onduted ona Sun Spar Ultra with four proessors and 2 GB Ram; the maximum time boundfor WaldMeister was 1500 seonds.Our experiments show that WaldMeister is generally able to solve all onsid-ered problems in the residue lass domain. However, it turned out that on a largetestbed WaldMeister is less robust than our proof planning approah. Wald-Meister failed on 4% of the ZZ5 and 78% of the ZZ10 explorations. The most brittleategories are the non-assoiative problems for ZZ5, for whihWaldMeister failed17In the spei�ations for WaldMeister '�' is a unary funtion. Thus, our binary minusoperation is translated as +(x;�(y)).



9.3. Results and Disussion 215on 49 of 888 problems, and divisors and non-divisors problems for ZZ10, for whihWaldMeister failed on 39 of 39 problems and 197 of 223 problems. Note that thisdoes not neessarily mean that WaldMeister might not be able to prove theseproblems at all if it were given a more speialized and �ne tuned ontrol setting.In our experiments, however, we use only two ontrol settings, one suitable for allsimple properties and one for non-isomorphism problems. Aording to our experi-ments, the overall performane of WaldMeister (i.e., whether it sueeds or failson a problem) depends on the ardinality of the set involved: higher ardinalityimplies a higher likelihood of failure.9.3.4.3 DisussionWaldMeister has a lear advantage over the proof planning approah with respetto runtime behavior. When it sueeds, it sueeds very fast independently of theardinality of the residue lass struture (30% of all proofs were produed in less than1 seond, 70% of all proofs were produed in less than 10). The runtime performaneof proof planning depends on whih strategy an be applied suessfully. Problemssolved with the RedueToSpeial or the EquSolve strategy usually take about 10 to20 seonds independently of the ardinality of the given set. If TryAndError hasto be applied, it an take onsiderably longer, depending on the ardinality of thestrutures.In our ontext, a disadvantage ofWaldMeister is its output format. AlthoughWaldMeister has a proof presentation tool that tries to struture the found proofby lemmas, in our experiments this tool failed to suessfully present many foundproofs (e.g., on almost all assoiativity problems). And even proofs displayed bythe presentation tool are relatively hard to read: on the one hand, the proofs arevery long, usually between 150 and 300 equational reasoning steps, strutured with10 to 30 lemmas. On the other hand, the lemmas are rather ounterintuitive forhumans. In ontrast, the proof planning approah an produe very short PDSswhen RedueToSpeial (� 10 proof lines) or EquSolve (� 20 proof lines) are applied.Although proof plans with TryAndError an be very long, these proofs are struturedin a lear way by the ase-splits. For instane, a divisors proof for a struture withardinality 10 onsist of about 3000 nodes omprised of 100 learly separate aseseah onsisting of about 30 steps.It is a ommon ritiism on proof planning (e.g., see [42℄) that it depends onspeially prepared domain knowledge. This ritiism assumes that automated the-orem provers suh as WaldMeister do not depend on partiular knowledge sinethey are based on general-purpose mahine-oriented aluli. However, our experi-ene with WaldMeister is that its appliation to our domain was suessful onlywith a onsiderable amount of very spei� knowledge. The WaldMeister strat-egy WaldOnResidueClass omprises, for instane, the tehnial knowledge of how tosuitably represent residue lass strutures for WaldMeister, knowledge of whihlemmas for the basi operations to add, and knowledge of whih partiular order ofthe symbols to hoose. This knowledge is absolutely ruial for a suessful applia-tion ofWaldMeister in our domain. Instead of enoding mathematial knowledgefor the residue lass domain, we had to enode knowledge spei� to the theoremprover employed, whih we ould only do with the help of an expert.18 We failed tosuessfully apply the �rst-order resolution proverOtter [150℄ in our domain sinewe laked the expert knowledge to �nd a suitable representation for our problems.18In the �eld of term rewriting systems there is knowledge of orders and representations forfragments of Peano Arithmeti (e.g., see [11, 10℄) that provides a starting point for developingontrol settings for new appliations. The seletion of lemmas requires experiene with the onretesystem and its underlying algorithm.





Chapter 10Further Appliations ofMultiIn this hapter, we shall briey disuss two further ase studies onduted withMulti. In the �rst ase study we apply Multi to solve problems of permutationgroups. Here Multi performs hierarhial proof planning with unreliable methodswhose appliations have to be expanded with the expansion strategy ExpS. In theseond ase study we takle homomorphism theorems with Multi. Although thesetheorems an be solved automatially with Multi, the fous in this ase study isto use Multi for interative theorem proving.1We shall briey disuss these two ase studies in the following two setions,respetively, sine they address expansion and interative theorem proving withMulti, two issues that are not addressed by the two large ase studies desribedso far.10.1 Proof Planning Permutation Group ProblemsThe permutation group domain onsists of di�erent kinds of problems onernedwith properties of permutations and permutation groups. Essential for the suessofMulti in this domain is the inorporation of the omputer algebra system GAP.As in the residue lass domain, GAP an provide suitable instantiations of our-ring meta-variables that simplify the problems at hand onsiderably. The mainstrategy to takle permutation group problems is the PPLANNER strategy PermStrat.The ooperation of PermStrat with GAP works analog to the inorporation of om-puter algebra systems in the residue lass domain: for ourring meta-variablesPermStrat interrupts and plaes demands for the INSTMETA strategy InstPermTH-FromGap, whih queries GAP to provide suitable instantiations.2We start with a brief introdution into omputational permutation group theoryand its formalization in 
mega. Afterwards, we illustrate with an example how1The ase study on permutation groups was onduted by Martin Pollet and Volker Sorge fromthe 
mega group together with Arjeh Cohen and Sott Murray from the Tehnishe UniversiteitEindhoven, Netherlands. The ontribution of the author of the thesis to this ase study onsistedonly of providing funtionalities in Multi and tehnial support for the appliation of Multi.2Tehnially, InstPermTHFromGap onsiderably di�ers from ComputeInstbyCasAndMG. The rea-son is that, as opposed to the residue lass domain where we use only funtionalities diretly o�eredby Maple and GAP, InstPermTHFromGap has to provide GAP with new funtions for the per-mutation group domain. Only with these new funtions GAP an provide erti�ates for queriesfrom whih InstPermTHFromGap an then ompute the needed instantiations.



218 Chapter 10. Further Appliations of MultiMulti performs hierarhial proof planning in this domain. Thereby, we fous onthe expansion issue. A more detailed desription of the permutation group domainand how it is takled with Multi and GAP an be found in [57℄.Computational Permutation Group TheoryIn omputational permutation group theory, a group G is spei�ed by a listof generating permutations A = fa1; : : : ; akg where ai is a permutation on thepoints 
 := f1; 2; : : : ng. We also write G = hAi to denote that G is generatedby A. While there are di�erent notations in mathematis to express permutations,the yle notation is usually preferred. In this notation a permutation onsist ofdupliate-free disjoint yles, that is, lists (n1; : : : ; nk) of points with ni 6= nj fori 6= j. A yle maps the point ni to ni+1 for i = 1; : : : ; k � 1 and nk to n1. Apermutation is then either a set ontaining disjoint yles or the omposition ofpermutations. For instane, the so-alled Mathieu group on 11 points, denoted byM , is generated by the list A = fa1; a2g, where: a1 = (1; 10)(2; 8)(3; 11)(5; 7),a2 = (1; 4; 7; 6)(2; 11; 10; 9).A permutation g belongs to the group G = hAi where A = fa1; : : : ; akg, ifthere is a word of the form g = ae1i1 ae2i2 � � �aemim where the indies ij are in the range1; : : : ; k and the exponents ej are integers. For instane, for the group M andg = (1; 3; 8; 9)(4; 10; 6; 5) the word that erti�ates that g 2M is a1a23a1.Formalization and ProblemsObjets in the permutation group domain are formalized as follows. A yle hasthe basi type y. A permutation is a set of yles and has thus the type y! o.3A permutation group G that is onstruted by a set of generating permutations hastype (y! o)! o. The generator h i has type ((y! o)! o)! (y! o)! o.The operation of a permutation group, Æ, is the omposition of permutations. Æhas the type (y ! o) ! (y ! o) ! y ! o. We have a speial operator forthe appliation of a permutation to an element of the underlying set 
, namely #.Sine 
 is a set of elements of type �, # has the type (y! o)! � ! �.The permutation group domain onsists of di�erent kinds of problems (see [57℄for a omplete desription of the domain) among them are:Membership Given a permutation g and a permutation group G = hAi, showthat g 2 G.Orbit-Exists Given a permutation group G = hAi and a point x 2 
, determinethe orbit of G with respet to x (i.e., �nd Gx � 
 with Gx = fg#x : g 2 Gg).Orbit-Membership Given an orbit Gx and y 2 
, show that y 2 Gx.Points-Closed Given a permutation g and a subset S of the point set 
, showthat S is losed with respet to g, that is, show that for all y 2 S g#y 2 S.The onept Orbit is formalized in 
mega's database with two type variables� and �: Orbit(�o)(���)��o � �G�o �f��� �x� �y� 9g�:G y :=f(g; x)Here � is the type of the elements of G and � is the type of the points in 
.In the permutation group domain � is y ! o and � is �. Thus, the termOrbit(hfa1; a2gi(y!o)!o;#(y!o)!�!� ; 1�) has the type �o.3To avoid onfusion we write omposed types ontaining y with arrows, e.g., y! o insteadof yo.



10.1. Proof Planning Permutation Group Problems 219We distinguish in the permutation group domain simple problems and om-plex problems. Simple problems are suh problems that our as subproblems ofother problems. For instane, in the example we shall disuss below membership,orbit-membership, and points-losed problems are simple subproblems whereas themain problem is an orbit-exists problem. We use hierarhial proof planning inthe permutation group domain to hide proofs of the simple problems when theyour as subproblems of omplex problems. This allows to ome up fast with ab-strat proof plans for omplex problems. The tedious details whose onstrutionan nevertheless be very time onsuming are delayed until the expansion.The PermStrat StrategyTehnially, this is realized by unreliable methods in the strategy PermStrat thatlose a simple problem immediately. For instane, PermStrat ontains the methodsPermInGroup-B, OrbitMember-B, and PointsClosed-B, whih lose prooflines that state membership, orbit-membership, or points-losed problems. A strate-gi ontrol rule delays the expansion-tasks arising from the appliation of an unre-liable method until all line-tasks are losed. Then, Multi applies the EXP strategyExpS to expand these steps. The expansion re-opens the simple subproblems andMulti applies again PermStrat to them. PermStrat ontains a ontrol rule that for-bids to apply a method to a goal if there is already an justi�ation of this methodfor the goal at a higher level of abstration (i.e., if the goal was already justi�ed byan appliation of this method and this justi�ation was already expanded). Thisontrol rule forbids the appliation of the same unreliable methods to the re-openedsubproblems, and PermStrat has to onstrut a proof plan with other methods forthe re-opened subproblems.L22. `8y:f1;:::;11g (a2#y) 2 f1; : : : ; 11g (PointsClosed-B)L21. `8y:f1;:::;11g (a1#y) 2 f1; : : : ; 11g (PointsClosed-B)L20. `8y:f1;:::;11g (a2#y) 2 f1; : : : ; 11g ^8y:f1;:::;11g (a1#y) 2 f1; : : : ; 11g (^I-B L21 L22)L18. ` 1 2 f1; : : : ; 11g (InSet-B)L19. `8z:fa1;a2g 8y:f1;:::;11g (z#y) 2 f1; : : : ; 11g (8I-FiniteSort-B L20)L17. `8z:Orbit(hfa1;a2gi;#;1) x 2 f1; : : : ; 11g (FixPoint-B L18 L19)L3. `Orbit(hfa1 ; a2gi;#; 1) � f1; : : : ; 11g (DefnUnfold-B L17)����������������������������������������L6. ` 1 2 Orbit(hfa1; a2gi;#; 1) (OrbitMember-B)` � � �L14. ` 9 2 Orbit(hfa1; a2gi;#; 1) (OrbitMember-B)L15. ` 10 2 Orbit(hfa1 ; a2gi;#; 1) (OrbitMember-B)L16. ` 11 2 Orbit(hfa1 ; a2gi;#; 1) (OrbitMember-B)L5. ` 1 2 Orbit(hfa1; a2gi;#; 1) ^ : : :^ 11 2 Orbit(hfa1 ; a2gi;#; 1) (^I-B L6 : : : L16)L4. `8x:f1;:::;11g x 2 Orbit(hfa1; a2gi;#; 1) (8I-FiniteSort-B L5)L2. ` f1; : : : ; 11g � Orbit(hfa1; a2gi;#; 1) (DefnUnfold-B L4)����������������������������������������L1. `mvO :=Orbit(hfa1 ; a2gi;#; 1) (SubSetEqual-B L2 L3)Thm. `9O O :=Orbit(hfa1 ; a2gi;#; 1) (9I-B L1)a1 = f(1; 10); (2; 8); (11; 3); (5; 7)g, a2 = f(1; 4; 7; 6); (10; 9; 2; 11)gFigure 10.1: Orbit proof.An ExampleWe exemplify the approah for the problem to determine (and prove) the orbit of1 under the permutation groupM=h(1; 10)(2; 8)(3; 11)(5; 7); (1; 4; 7; 6)(2; 11; 10; 9)i.Figure 10.1 ontains the PDS that is reated at the highest level of abstration.The problem of omputing the onrete set, whih is the orbit, is formalized viaexistential quanti�ation given in line Thm. The �rst method applied introdues



220 Chapter 10. Further Appliations of Multia meta-variable mvO . InstPermTHFromGap introdues for this meta-variable thebinding mvO :=b f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11g into the strategi proof plan. The restof the proof is then to show that f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11g equals the orbit bydouble inlusion. The �rst diretion, given in line L2, is to show that all the pointsof the omputed set are inluded in the orbit. The reverse inlusion in L3 is losedby a �xed-point argument. It suÆes to show that 1 is in the set, and the set isinvariant for the generators of G.L25. `mvp 2 hfa1; a2gi (PermInGroup-B)L27. ` 9 :=9 ( :=Reflex-B)L26. ` 9 :=mvp#1 (EvalPermutation-B L27)L24. `9p:hfa1;a2gi 9 :=p#1 (9ISort-B L25 L26)L14. ` 9 2 Orbit(hfa1 ; a2gi;#; 1) (DefnUnfold-B L24)Figure 10.2: Expansion of OrbitMember-B.L14 is justi�ed by the unreliable method OrbitMember-B. Figure 10.2 givesthe PDS segment that is onstruted from PermStrat when this step beomes ex-panded and L14 beomes open again. The witness permutation, whih maps 1to 9 is introdued as meta-variable mvp and bound by InstPermTHFromGap tof(1; 9; 2; 8; 11; 3; 10; 4; 7; 5; 6)g.L31. ` a1 2 hfa1 ; a2gi (InSet-B)L30. ` a2 2 hfa1 ; a2gi (InSet-B)L29. ` a2 Æ a1 2 hfa1; a2gi (ProdutOfGenerators-B L31 L30)L28. ` f(1; 9; 2; 8; 11; 3; 10; 4; 7; 5; 6)g :=a2 Æ a1 (EqualWithGap-B)L25. ` f(1; 9; 2; 8; 11; 3; 10; 4; 7; 5; 6)g 2 hfa1; a2gi (RePresentWithGenerators-BL28 L29)a1 = f(1; 10); (2; 8); (11; 3); (5; 7)g, a2 = f(1; 4; 7; 6); (10; 9; 2; 11)gFigure 10.3: Expansion of PermInGroup-B.This proof segment ontains again an unreliable method appliation, namelyL25 is justi�ed by the unreliable method PermInGroup-B. The expansion of thisstep is given in Figure 10.3. PermStrat rewrites the permutation as a produt ofthe generators. Then, the method EqualWithGap-B alls GAP to justify theequality of the permutations.Whereas the PDS for the example has 22 lines on the most abstrat level, theexpansion of all unreliable method appliations leads to a proof with 166 lines.10.2 Interative Theorem Proving with MultiThe homomorphism domain onsists of problems involving the homomorphismproperty. Proof plans for homomorphism problems are onstruted with the strat-egy HomStrategy. Although HomStrategy an solve homomorphism problems auto-matially our main fous was to takle this domain interatively with Multi. Thiswas motivated by the idea to integrate proof planning with this domain into a tu-toring environment for an interative mathematial ourse in algebra. The realizedinterative proof planning bene�ts from Multi's exible employment of di�erentstrategies. In partiular, we exploit the strategy level in the tutor senario to enablethe exible instantiation of meta-variables and the exible deletion of steps.We start with an introdution of the homomorphism domain. Then, we brieydisuss HomStrategy and how it takles homomorphism problems. Afterwards, we



10.2. Interative Theorem Proving with Multi 221motivate Multi's tutor mode and illustrate it with an example from the homo-morphism domain. A more detailed desription of the use of Multi in a tutoringenvironment an be found in [195℄.Homomorphism ProblemsThe problems in the homomorphism domain range from standard problems on-erning the homomorphism property as they an be found in standard mathematialtextbooks on algebra suh as [233℄ up to omplex problems taken from [71℄. As ex-amples for both ategories onsider the following two problems:1. [Group(G; Æ) ^Group(H; ?) ^Hom(h; (G; Æ); (H; ?))℄)9e:Im(h;G) Unit(Im(h;G); ?; e)2. [Group(G; Æ) ^Group(H; ?) ^Hom(h1; (G; Æ); (H; ?)) ^ Surj(h1; G;H)^Hom(h2; (G; Æ); (K; �)) ^ [8x:G h2(x) :='(h1(x))℄℄)[Hom('; (H; Æ); (K; �))℄The �rst problem states that, given a homomorphism h between two groupsG and H , the image of h with respet to G ontains a unit element. The seondtheorem, whih is the most diÆult of our homomorphism problems, states that ifthere are two groups G;H and a surjetive homomorphism h1 : G! H and if thereis an additional homomorphism h2 from G into some arbitrary struture (K; �) anda mapping ' : H ! K, suh that h2(x) :='(h1(x)) for all x 2 G, then ' is also ahomomorphism.FormalizationSome onepts relevant for the homomorphism domain are already introduedin setion 5.2.2, for instane, homomorphism Hom, injetivity Inj, surjetivity Surj.The onepts Group, image Im, and kernel Kern are de�ned in 
mega's databaseas follows:Group(�o)(���)o � �G�o � Æ��� Closed(G; Æ) ^ Asso(G; Æ)^9e� :G (Unit(G; Æ; e) ^ Inverse(G; Æ; e))Im(��)(�o)�o � �f�� �A�o �y� 9x�:A y :=f(x)Kern(��)(�o)��o � �f�� �A�o �y� �x� [x 2 A℄ ^ [f(x) :=y℄Note that the image of a mapping f with respet to a set A is a subset of theodomain of f (i.e., the term Im(f�� ; A�o) has the type �o). The kernel of amapping f with respet to a set A and an element y from the odomain is a subsetof the domain of f (i.e., the termKern(f�� ; A�o; y�) has the type �o). The oneptsClosed, Asso, Unit, and Inverse used here to formalize Group are also introduedand explained in setion 5.2.2.The HomStrategyThe basi approah of HomStrategy is to �rst unfold all de�nitions up to a pointwhere the homomorphism property an be applied as often as possible; that is, ifthere is a homomorphism h : A! B HomStrategy tries to transform problems statedfor elements of B into equivalent problems on A. Then, the proofs are onludedby deriving the neessary properties from the de�nition of A.The entral method in HomStrategy is ApplyHom-B, whih applies a homo-morphism h bakwards. That is, the appliation of ApplyHom-B redues a line-task with goal �[b1 Æ b2℄ and a support Hom(h; (A; ?); (B; Æ)) to the �ve new goals



222 Chapter 10. Further Appliations of Multi�[h(mv1 ? mv2)℄, h(mv1) :=b1, h(mv2) :=b2, mv1 2 A, and mv2 2 A where mv1 andmv2 are new meta-variables.Ourring meta-variables are not instantiated by external systems but are boundby domain-spei� methods that use and apply partiular properties of groups. Forinstane, the methods UnitInGroup-B and ApplyUnitGroup-B rely on the ex-istene of a unit element in a group. UnitInGroup-B loses goals of the formt 2 G when there is a support Group(G; Æ) and if t is either groupunit(G; Æ) or ameta-variable. If t is a meta-variable mv, then the appliation of UnitInGroup-Bbinds mv to groupunit(G; Æ). ApplyUnitGroup-B redues an equation t Æ d :=dor d Æ t :=d to d 2 G when there is a support Group(G; Æ) and if t is eithergroupunit(G; Æ) or a meta-variable. If t is a meta-variable mv, then the appliationof ApplyUnitGroup-B binds mv to groupunit(G; Æ). InverseInGroup-B andApplyInverseGroup-B are similar domain-spei� methods in HomStrategy thatrely on the inverse property.Interative Theorem Proving with MultiIn the tutor senario, a user should learn with Multi how to takle problemsfrom a ertain domain with methods that enode the typial steps in this domain.The user should be able to apply these methods exibly and to ombine the appli-ation of methods with meta-variable instantiation and the deletion of steps.Our �rst approah to use Multi for interative proof onstrution was to in-tegrate Multi with 
mega's user interfae L
UI . In this interative mode theuser an ontrol eah hoie point in Multi and its algorithms via L
UI (e.g.,seleting the next strategy, the next task, the next method, the next supports, thenext parameters, et.). However, it turned out that this approah is not suÆientfor a tutoring environment. The onrete ontrol of the hoie points in Multi ispossible only for an experiened user who has profound knowledge of Multi andits algorithms. A user of a tutoring system annot be expeted to have this deepknowledge of the underlying system.To overome these problems we deided to hide the tehnial issues of Multiand proof planning as muh as possible. The user should be able to apply methodsas well as to instantiate meta-variables and to perform baktraking but withoutnotiing the tehnial details suh as strategy and algorithm swithing. Moreover,sine the seletion of suitable supports and parameters is often a painstaking e�ortthe user should be supported here. We realized these ideas in a speial mode ofMulti, whih we all the tutor mode.Multi's Tutor ModeWhen Multi is invoked in tutor mode it obtains one PPLANNER strategy asargument that ontains the methods whose appliation should be teahed. Weall this strategy the tutor strategy . Multi invokes diretly the tutor strategy onthe initial line-task (provided that the appliation ondition of the tutor strategyis satis�ed by the initial line-task) suh that the user is not onfronted with thestrategy level.The ommuniation between the user and Multi in the tutor mode is realizedvia a speial onsole that is integrated into L
UI . The onsole pops up as soon asMulti starts the tutor strategy. Figure 10.4 shows this onsole during the appli-ation of Multi in tutor mode to the problem that 9e:Im(h;G) Unit(Im(h;G); ?; e)follows from Group(G; Æ), Group(H; ?) and Hom(h; (G; Æ); (H; ?)). Figure 10.5 on-tains the PDS at the moment, when the sreen shot of the onsole was taken. Notethat mm is a meta-variable, whih is displayed in the onsole as m m.
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Figure 10.4: Operation onsole of Multi in tutor mode.L2. L2 `Group(G; Æ) (Hyp)L3. L3 `Group(H; ?) (Hyp)L4. L4 `Hom(h; (G; Æ); (H; ?)) (Hyp)L5. H1 `mm 2 Im(h;G) (Open)L8. L8 `  2 Im(h;G) (Hyp)L10. H2 `  ? mm := (Open)L11. H2 `mm ?  := (Open)L9. H2 `  ? mm := ^mm ?  := (^I-B L11 L10)L7. H1 `8x:Im(h;G) x ? mm :=x ^mm ? x :=x (8ISort-B L9)L6. H1 `Unit(Im(h;G); ?;mm) (DefnUnfold-B L7)L1. H1 `9e:Im(h;G) Unit(Im(h;G); ?; e) (9ISort-B L5 L6)H1 = fL1; L2; L3g, H2 = fL1; L2; L3; L8gFigure 10.5: Homomorphism problem.The onsole onsists of four olumns with entries and two �elds with speialsymbols, namely a omputer symbol and a hand symbol. The �rst olumn with thetitle Goals ontains the urrent open lines. The seond olumn whose title is Ationsontains a subset of the methods of the tutor strategy. The entries of the thirdolumn with the title Variables are the urrent meta-variables whereas the fourtholumn with the title Undo ontains again the urrent goals. The olumns and thespeial �elds orrespond to hoies of the user about the next proof manipulationto perform. We shall explain all possibilities in detail in the following. In general, itis important to note that the user does not have to follow the hoie point sequenein PPLANNER. Rather the user an selet entries in the onsole in an arbitrary order.Tehnially, this auses exible jumps in the PPLANNER algorithm from one hoiepoint to another hoie point (also bak to prior hoie points).The onsole restrits the hoies of the user in the PPLANNER algorithm to taskseletion and ation seletion. The user selets a line-task by liking the goal of theline-task in the �rst olumn. Then, the tutor strategy omputes ations for this taskand suggests them to the user in the seond olumn (in the onsole in Figure 10.4 theuser did lik L11 suh that the entries in the seond olumn orrespond to ationsomputed for the task with goal L11). The omputed ations are abbreviated inthe seond olumn by the name of their methods. When the user liks an entryof the seond olumn, then an additional window pops up in whih the user anhoose among di�erent ations of the seleted method (e.g., with di�erent supportsor parameters).We ould employ the ation omputation algorithm CHOOSEACTIONALL (see se-



224 Chapter 10. Further Appliations of Multition 6.1.3) to ompute the ations for a task. However, in tutor mode Multiemploys the 
ants mehanism (independent from the ation omputation algo-rithm of the tutor strategy). For eah method in the tutor strategy there exists an
ants agent4 that omputes ations for this method. We deided to use 
antsinstead of CHOOSEACTIONALL for the ation omputation sine it heks the methodsonurrently. This provides an anytime harater, so that the user an ontinuewhen a suitable ation shows up and does not have to wait until all possible ationsare omputed. Moreover, it is possible to speify agents that reate wrong sugges-tions, i.e., ations that are not appliable. This provides the independene to makewrong suggestions for pedagogial purposes in order to make the user �nd out whatis wrong.The user an also deide to instantiate ourring meta-variables and to deletesteps. To instantiate a meta-variable the user liks on the name of the meta-variable in the third olumn. Then, an additional window pops up with an input�eld in whih the user an enter the desired instantiation. To delete steps the userliks on an open line in the fourth olumn. This auses the deletion of the stepthat introdued the open line (and all steps that may depend from it). Tehnially,both operations are realized by strategy swithes. The lik of a meta-variableauses the swith from the tutor strategy to the INSTMETA strategy InstByUser. Theinstantiation omputation funtion of InstByUser onsists of a ommuniation pro-tool that pops up the additional window and asks the user for an instantiation.The undo lik auses a swith from the tutor strategy to the BACKTRACK strategyBakTrakAtionToTask, whih performs the desired baktraking.Last but not least, the user an deide anytime to run the tutor strategy auto-matially and to return afterwards again to interative proof development. The au-tomated mode is invoked by a lik on the �eld with the omputer symbol, whereasit is interrupted again with a lik on the �eld with the hand symbol. When thetutor strategy runs automatially, then it performs PPLANNER's usual yle of taskseletion, ation seletion, and ation appliation. In partiular, the ation ompu-tation is performed by the omputation algorithm of the strategy and not by 
antsagents.We onlude the setion with a short aount on how to �nish the problem inFigure 10.5. First, the user has to applyApplyHom-B to L10 and L11, respetively.The appliation of ApplyHom-B to L10 results | among others | in the goalsh(mv1 Æmv2) :=h(mv1) and h(mv2) :=mm. The former goal an be redued to mv1 Æmv2 :=mv1, whih an be losed with an appliation of ApplyUnitGroup-B thatbinds mv2 to groupunit(G; Æ). The seond goal is losed by :=Reflex-B, whihbinds mm to h(groupunit(G; Æ)). The goal L10 an be solved analog. It remainsto prove in L5 that h(groupunit(G; Æ)) is in Im(h;G). To do so a y 2 G is neededsuh that h(y) :=h(groupunit(G; Æ). A suitable y is groupunit(G; Æ).
4The 
ants agents are not part of the PPLANNER strategy. Rather the agents relevant for thetutor strategy are identi�ed diretly from the methods of the tutor strategy (urrently, orrespond-ing agents and methods have the same name). Moreover, also the heuristis for 
ants are notpart of the PPLANNER strategy. Rather, there is a �x set of 
ants heuristis that are employed forthe tutor mode of Multi.



Chapter 11Conlusion and OutlookThis thesis presents proof planning with multiple strategies. Proof planning withmultiple strategies is a novel approah extending proof planning by the new hi-erarhial level of strategies and their heuristi ontrol in strategi ontrol rules.The strategies are separate but ollaborating operations, whih an realize di�er-ent plan re�nements and modi�ations. The appliation of strategies is guided bymeta-reasoning enoded in the strategi ontrol rules that reason on the appliablestrategies as well as on the whole proof planning status and the proof planninghistory. Both, the strategies and the strategi ontrol rules an enode diverse(mathematial) domain knowledge beyond the apabilities of methods and method-level ontrol rules.We realized proof planning with multiple strategies in the Multi proof plan-ner, whih we implemented as a omponent of the 
mega system. To enable theexible ombination of di�erent strategies during a proof attempt Multi employsa blakboard arhiteture with two blakboards: the proof blakboard ontains thestatus and the history of the proof planning problem, the ontrol blakboard on-tains the information relevant for the ontrol problem, that is, whih possible stepshould the system perform next. We deided for a two-blakboard arhiteture toseparate the ontrol problem from the solution of the proof planning problem sineboth problems are equally important. The strategies are the knowledge soures thatwork on the proof blakboard. An invoked strategy an re�ne or modify the proofplan under onstrution and reords its hanges in a history. The knowledge sourethat works on the ontrol blakboard is alled the MetaReasoner. It evaluates thestrategi ontrol rules in order to prefer or rejet the appliation of strategies.We evaluated Multi with problems from several domains. In partiular, weperformed two large ase studies in whih we applied Multi to problems from thelimit domain and problems of residue lass strutures. The ase studies illustratethe domain knowledge at the strategy-level and and how it an be exploited forproof planning. In partiular, we presented example problems that annot be solvedwith the previous proof planner of 
mega sine their solution requires the exibleombination of di�erent proof plan re�nements. Multi an solve these problemsand also all problems provable with the previous proof planner. Thereby, Multibene�ts, in partiular, from the meta-reasoning in strategi ontrol rules that guide,for instane, the introdution of instantiations for variables or analyze failures tosuggest partiular plan re�nements or modi�ations. Another major advantageof Multi that we exploit in the ase studies is the realization of several prooftehniques for one lass of problems. This makes proof planning more robust: ifone proof tehnique fails on a problem, another proof tehnique may solve it.



226 Chapter 11. Conlusion and OutlookPossible ExtensionsThe modular struture of algorithms and strategies and the exibility ofMulti'sblakboard arhiteture ensure that neessary extensions an be easily realized.We disussed various possibilities to extend the multiple-strategy proof planningapproah realized in Multi throughout the thesis. In partiular, the followingextensions ould be onsidered if there is a need for them.Algorithms and Tasks Multi is open for the integration of further algorithmsthat an ontribute to the solution of a proof planning problem. Moreover, itis also possible to speify further kinds of tasks.Conurreny Currently, Multi employs no onurreny. However, onurrenyould be bene�ial at several points in Multi. For instane, the appliabilityof strategies ould be heked onurrently. This would avoid that a strategywhose appliability is diÆult to hek (whih is not the ase for the strategiesurrently employed) bloksMulti. Multi ould ontinue as soon as some ap-pliable strategies are found, rather than to wait until all appliability heksare done. Another possibility to employ onurreny ould be the invoationof strategies. Multi ould invoke several promising strategies onurrently onseveral opies of a subproblem, rather than to deide for one strategy. Thiswould allow to hek the performane of several strategies on the onretesubproblem in a ompetitive manner.Changing The Setting The user invokes Multi with a set of strategies and aset of strategi ontrol rules. Currently, Multi annot hange afterwardsthe set of employed strategies or strategi ontrol rules during its exeution.To enable this, Multi ould plae all ontrol related issues on the ontrolblakboard and allow for their manipulation by partiular knowledge soures.For instane,Multi ould store all given strategies and strategi ontrol ruleson the ontrol blakboard. The status of a strategy or a strategi ontrolrule ould be hanged by knowledge soures from ative to passive and vieversa. Multi would then onsider only ative strategies for invoation andthe MetaReasoner would evaluate only ative ontrol rules.Goal-Direted Reasoning In general, the problem solving proess in blakboardsystems is event-driven, that is, knowledge soures are triggered by ertainevents. If the triggering events do not our, then the knowledge soure isnot appliable and is not invoked. Goal-direted reasoning, in ontrast, en-tails identifying and performing ations in order to perform and enable otherations, whih may be desirable per se or beause of their e�ets. We alreadyemploy some goal-direted reasoning in strategi ontrol rules. More elaborategoal-direted reasoning ould be realized with the onstrution and manipula-tion of meta-plans of desirable strategy invoations that guide the subsequentproof planning proess: Multi would try to invoke the next strategy of themeta-plan or, if this is not possible, it would try to invoke strategies that arelikely to enable the next strategy in the meta-plan.AvailabilityMulti is implemented in Allegro Common Lisp with CLOS. It is available aspart of the 
mega system via the 
mega home-page:http://www.ags.uni-sb.de/~omega.



Appendix AChooseAtionAll Algorithm
Input: (1) a task T , (2) a history ~H, (3) a list of methods M, (4) a list of ontrol rules C.Output: Either a pair of an ation and a list of ations or fail.Algorithm: ChooseAtionAll(T ,~H,M,C)Let T=Lopen J SUPPSLopen .1. Order MethodsMethods:= evalcrules-methods(M,C,T ).Let Methods = [M1; : : : ;Mn℄.When Methods empty then terminate and return fail.Ations1:=initial-action-set(T;M1)....Ationsn:=initial-action-set(T;Mn).2. Handle Task, Supports, Parameters, and Appl. ConditionsFor i = 1 to n:(a) Math Task LineLet 	Consi the 	 onlusions of Mi.Ationsi:=match-task-line (Lopen,	Consi,Ationsi).(b) Selet and Math Supports and ParametersLet 	Premsi and BPremsi the 	 premises and blank premises ofMi. Let Paramsi the parameter variables of Mi.Supps+Paramsi:=evalcrules-s+p (SUPPSLopen ,C,T ,Mi,Ationsi).Ationsi:= match-s+p (Supps+Paramsi,	Premsi [ BPremsi,Paramsi,Ationsi).() Evaluate Appliation ConditionsAtionsi:=eval-appl-conds(Ationsi,Mi).Ations:=Ations1 [ : : : [ Ationsn.When Ations empty then terminate and return fail.
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3. Outline Computations
eval-outline-computations(Ations).
complete-outline(Ations).4. Choose AtionAtions:=remove-backtracked(Ations, ~H).Ations:=evalcrules-actions(Ations,C).If Ations = ;thenTerminate and return fail.elseTerminate and return first (Ations).Figure A.1: The CHOOSEACTIONALL algorithm.



Appendix BLim+ ExampleLimf . Limf ` limx!a f(x) = lf (Hyp)Limg. Limg ` limx!a g(x) = lg (Hyp)L2. Limf `8�1 (0 < �1 ) 9Æ1 (0 < Æ1 ^8x1 (jx1 � aj < Æ1 ^ jx1 � aj > 0) jf(x1)� lf j < �1))) (DefnUnfold-F Limf )L3. Limg `8�2 (0 < �2 ) 9Æ2 (0 < Æ2 ^8x2 (jx2 � aj < Æ2 ^ jx2 � aj > 0) jg(x2)� lgj < �2))) (DefnUnfold-F Limg)L17. Limf ` 0 < mv�1 ) 9Æ1 (0 < Æ1 ^8x1 (jx1 � aj < Æ1 ^ jx1 � aj > 0) jf(x1) � lf j < mv�1 )) (8E-F L2)L18. H3 ` 0 < mv�1 (TellCS-B)L20. H3 `9Æ1 (0 < Æ1 ^ 8x1 (jx1 � aj < Æ1^ jx1 � aj > 0) jf(x1) � lf j < mv�1 )) ()E L18 L17)L21. L21 ` 0 < Æ1 ^8x1 (jx1�aj < Æ1 ^jx1�aj > 0) jf(x1)� lf j < mv�1 ) (Hyp)L23. L21 ` 0 < Æ1 (^E-F L21)L24. L21 `8x1 (jx1 � aj < Æ1 ^ jx1 � aj > 0) jf(x1)� lf j < mv�1 ) (^E-F L21)L25. L21 ` jmvx1 � aj < Æ1 ^ jmvx1 � aj > 0) jf(mvx1 ) � lf j < mv�1 )) (8E-F L24)L38. Limg ` 0 < mv�2 ) 9Æ2 (0 < Æ2 ^8x2 (jx2 � aj < Æ2 ^ jx2 � aj > 0) jg(x2)� lgj < mv�2 )) (8E-F L3)L39. H3 ` 0 < mv�2 (TellCS-B)L41. H3 `9Æ2 (0 < Æ2 ^ 8x2 (jx2 � aj < Æ2^ jx2 � aj > 0) jg(x2)� lgj < mv�2 )) ()E L39 L38)L42. L42 ` 0 < Æ2 ^8x2 (jx2�aj < Æ2 ^jx2�aj > 0) jg(x2) � lgj < mv�2 ) (Hyp)L44. L42 ` 0 < Æ2 (^E-F L42)L45. L42 `8x2 (jx2 � aj < Æ2 ^ jx2 � aj > 0) jg(x2) � lgj < mv�2 ) (^E-F L42)L46. L42 ` jmvx2 � aj < Æ2 ^ jmvx2 � aj > 0) jg(mvx2 )� lgj < mv�2 )) (8E-F L45)L11. L11 ` jx � aj > 0 ^ jx � aj < mvÆ (Hyp)L14. L11 ` jx � aj > 0 (^E-F L11)L13. L11 ` jx � aj < mvÆ (^E-F L11)L5. L5 ` 0 < � (Hyp)L61. H1 ` 0 � 0 (AskCS-B)L59. H1 `mvÆ � Æ1 (TellCS-B)L57. H2 ` 0 � 0 (AskCS-B)L55. H2 `mvÆ � Æ2 (TellCS-B)L52. H2 `mvx2 = x (TellCS-B)



230 Chapter B. Lim+ ExampleL53. H2 `mv�2 � 12 � � (TellCS-B)L50. H2 ` jmvx2 � aj < Æ2 (Solve*-B L13 L55)L51. H2 ` jmvx2 � aj > 0 (Solve*-B L14 L57)L47. H2 ` jmvx2 � aj < Æ2 ^ jmvx2 � aj > 0 (^I-B L50 L51)L49. H2 ` jg(mvx2 )� lgj < mv�2 ()E L47 L46)L48. H2 ` jg(x)� lgj < 12 � � (Solve*-B L49 L52 L53)L43. H2 ` jg(x)� lgj < 12 � � ()E-F L47 L46 L48)L40. H1 ` jg(x)� lgj < 12 � � (9E-F L41 L43)L37. H1 ` jg(x)� lgj < 12 � � ()E-F L39 L38 L40)L31. H1 ` j1j � mv (TellCS-B)L32. H1 `mv�1 � �2�mv (TellCS-B)L33. H1 ` jg(x)� lgj < �2 (Simplify-B L37)L34. H1 ` 0 < mv (TellCS-B)L35. H1 `mvx1 = x (TellCS-B)L29. H1 ` jmvx1 � aj < Æ1 (Solve*-B L13 L59)L30. H1 ` jmvx1 � aj > 0 (Solve*-B L14 L61)L26. H1 ` jmvx1 � aj < Æ1 ^ jmvx1 � aj > 0 (^I-B L29 L30)L28. H1 ` jf(mvx1 )� lf j < mv�1 ()E L26 L25)L27. H1 ` j((f(x) + g(x)) � lf )� lgj < � (ComplexEstimate-BL28 L31 L32 L33 L34 L35)L22. H1 ` j((f(x) + g(x)) � lf )� lgj < � ()E-F L26 L25 L27)L19. H3 ` j((f(x) + g(x)) � lf )� lgj < � (9E-F L20 L21)L16. H3 ` j((f(x) + g(x)) � lf )� lgj < � ()E-F L18 L17 L19)L12. H3 ` j(f(x) + g(x))� (lf + lg)j < � (Simplify-B L16)L10. H4 ` jx � aj < mvÆ ^ jx � aj > 0) j(f(x) + g(x)) � (lf + lg)j < � ()I-B L12)L9. H4 `8x (jx� aj < mvÆ ^ jx� aj > 0) j(f(x) + g(x))� (lf + lg)j < �) (8I-B L10)L8. H4 ` 0 < mvÆ (TellCS-B)L7. H4 ` 0 < mvÆ ^ 8x (jx� aj < mvÆ ^ jx� aj > 0) j(f(x) + g(x))� (lf + lg)j < �) (^I-B L8 L9)L6. H4 `9Æ (0 < Æ ^ 8x (jx� aj < Æ ^ jx� aj > 0) j(f(x) + g(x)) � (lf + lg)j < �)) (9I-B L7)L4. Limf ; Limg` 0 < � ) 9Æ (0 < Æ ^8x (jx� aj < Æ ^ jx� aj > 0) j(f(x) + g(x)) � (lf + lg)j < �)) ()I-B L6)L1. Limf ; Limg`8� (0 < �) 9Æ (0 < Æ ^8x (jx� aj < Æ ^ jx� aj > 0) j(f(x) + g(x)) � (lf + lg)j < �))) (8I-B L4)LIM+. Limf ; Limg` limx!a(f(x) + g(x)) = lf + lg (DefnUnfold-B L1)H1 = fLimf ; Limg; L5; L11; L21g; H2 = fLimf ; Limg; L5; L11; L21; L42gH3 = fLimf ; Limg; L5; L11g; H4 = fLimf ; Limg; L5g



Appendix CLimit TheoremsThe following theorems from the limit domain an be proved by Multi so far. Wetested mainly onjetures from [12℄. Many similar theorems ould be formulated.In the following, X;Y denote sequenes over the reals, f and g denote funtionsover the reals, and a; b denote arbitrary but �x reals. For problems marked with (�)CoSIE fails to ompute instantiations for meta-variables for the reasons disussedin setion 8.2.3.Limits of sequenes1. (Exerise 3.1.7 �rst part in [12℄)If the sequene jX j = j(xn)j has the limit 0, then the sequene X = (xn) hasalso the limit 0:limseq jX j = 0) limseq X = 02. (Theorem 3.2.2 in [12℄)If the sequene X = (xn) has an limit l, then the sequene X is bounded:limseq X = l) 9m 0 < m ^ 8n jxnj < m3. (Theorem 3.2.3.a �rst part in [12℄)If the sequene X = (xn) has the limit lx and the sequene Y = (yn) has thelimit ly, then the sequene X + Y = (xn + yn) has the limit lx + ly:limseq X = lx ^ limseq Y = ly ) limseq X + Y = lx + ly4. (Theorem 3.2.3.a seond part in [12℄)If the sequene X = (xn) has the limit lx and the sequene Y = (yn) has thelimit ly, then the sequene X � Y = (xn � yn) has the limit lx � ly:limseq X = lx ^ limseq Y = ly ) limseq X � Y = lx � ly5. (Theorem 3.2.3.a third part in [12℄)If the sequene X = (xn) has the limit lx and the sequene Y = (yn) has thelimit ly, then the sequene X � Y = (xn � yn) has the limit lx � ly:limseq X = lx ^ limseq Y = ly ) limseq X � Y = lx � ly6. (Theorem 3.2.3.a fourth part in [12℄)If the sequene X = (xn) has the limit lx, then the sequene a �X = (a � xn)has the limit a � lx:limseq X = lx ) limseq a �X = a � lx7. (�)(Theorem 3.2.3.b in [12℄)If the sequene X = (xn) has the limit lx and the sequene Y = (yn) has the



232 Chapter C. Limit Theoremslimit ly 6= 0 and yn 6= 0 for all n, then the sequene XY = (xnyn ) has the limitlxly :limseq X = lx ^ limseq Y = ly ^ 8n yn 6= 0) limseq XY = lxly8. (Theorem 3.2.4 in [12℄)If the sequene X = (xn) has a limit l and xn � 0 for all n, then l � 0:limseq X = l ^ 8n xn � 0) l � 09. (Theorem 3.2.5 in [12℄)If the sequene X = (xn) has a limit lx and the sequene Y = (yn) has a limitly and xn � yn for all n, then lx � ly:limseq X = lx ^ limseq Y = ly ^ 8n xn � yn ) lx � ly10. (Theorem 3.2.6 in [12℄)If the sequene X = (xn) has a limit l and a � xn � b for all n, then a � l � b:limseq X = l ^ 8n a � xn � b) a � l � bLimits of funtions1. (LIMC: Example 4.1.7.a in [12℄)The funtion f(x) = b has the limit b at a:limx!a b = b2. (LIMV: Example 4.1.7.b in [12℄)The funtion f(x) = x has the limit a at a:limx!ax = a3. (Example 4.1.7. in [12℄)The funtion f(x) = x2 has the limit a2 at a:limx!ax2 = a24. (�) (LIM-DIV-1-X: Example 4.1.7.d in [12℄)The funtion f(x) = 1x has the limit 1a at a, if a > 0:a > 0) limx!a 1x = 1a5. (�) (Example 4.1.7.e in [12℄)limx!2 x3�4x2+1 = 456. (Exerise 4.1.2 �rst part in [12℄)If f has limit l at a, then the funtion jf(x)� lj has the limit 0 at a:limx!a f(x) = l) limx!a jf(x)� lj = 07. (Exerise 4.1.2 seond part in [12℄)If the funtion jf(x)� lj has the limit 0 at a, then f has the limit l at a:limx!a jf(x)� lj = 0) limx!a f(x) = l8. (Exerise 4.1.3 �rst part in [12℄)If the funtion f(x) has the limit l at a, then the funtion f(x + a) has thelimit l at 0:limx!a f(x) = l) limx!0 f(x+ a) = l9. (Exerise 4.1.3 seond part in [12℄)If the funtion f(x + a) has the limit l at 0, then the funtion f(x) has thelimit l at a:limx!0 f(x+ a) = l) limx!a f(x) = l



23310. (Exerise 4.1.7 in [12℄)If k > 0 and jf(x)� lj � k � jx� aj for all x, then f has the limit l at a:k > 0 ^ 8x jf(x)� lj � k � jx� aj ) limx!a f(x) = l11. (Exerise 4.1.8 in [12℄)limx!ax3 = a312. (�) (Exerise 4.1.10.a in [12℄)limx!2 11�x = �113. (�) (Exerise 4.1.10.b in [12℄)limx!1 x1+x = 1214. (�) (Exerise 4.1.10. in [12℄)limx!0 x2jxj = 015. (�) (Exerise 4.1.10.d in [12℄)limx!1 x2�x+1x+1 = 1216. (Exerise 4.1.12 in [12℄)If f(x) has limit l at 0 and a > 0, then f(a � x) has the limit l at 0:limx!0 f(x) = l ^ a > 0) limx!0 f(a � x) = l17. (Reverse of exerise 4.1.12)If f(a � x) has the limit l at 0 and a > 0, then f(x) has limit l at 0:limx!0 f(a � x) = l ^ a > 0) limx!0 f(x) = l18. (Theorem 4.2.2 in [12℄)If f has a limit at a, then f is bounded in a neighborhood of a:limx!a f(x) = l) 9m; Æ m > 0 ^ Æ > 0 ^ 8x (jx� aj < Æ ^ jx� aj > 0)) jf(x)j < m19. (LIM+: Theorem 4.2.4.a �rst part in [12℄)If f has limit lf at a and g has limit lg at a, then f + g has limit lf + lg at a:limx!a f(x) = lf ^ limx!a g(x) = lg ) limx!a f(x) + g(x) = lf + lg20. (LIM-: Theorem 4.2.4.a seond part in [12℄)If f has limit lf at a and g has limit lg at a, then f � g has limit lf � lg at a:limx!a f(x) = lf ^ limx!a g(x) = lg ) limx!a f(x)� g(x) = lf � lg21. (LIM*: Theorem 4.2.4.a third part in [12℄)If f has limit lf at a and g has limit lg at a, then f � g has limit lf � lg at a:limx!a f(x) = lf ^ limx!a g(x) = lg ) limx!a f(x) � g(x) = lf � lg22. (Theorem 4.2.4.a fourth part in [12℄)If f has limit lf at a, then a � f has limit a � lf at a:limx!a f(x) = lf ) limx!a a � f(x) = a � lf23. (�) (Theorem 4.2.4.b in [12℄)If f has limit lf at a and g has limit lg 6= 0 at a and g(x) 6= 0 for all x, thenfg has limit lflg at a:limx!a f(x) = lf ^ limx!a g(x) = lg ^ 8x g(x) 6= 0) limx!a f(x)g(x) = lflg



234 Chapter C. Limit Theorems24. (Example 4.2.5.b in [12℄)limx!2(x2 + 1) � (x3 � 4) = 2025. (Example 4.2.8.b in [12℄)limx!0 sin(x) = 026. (Example 4.2.8. in [12℄)limx!0 os(x) = 127. (Example 4.2.8.f in [12℄)limx!0x � sin( 1x) = 028. (Exerise 4.2.1 in [12℄)limx!1(x + 1) � (2 � x+ 3) = 1029. (Theorem 4.3.3 �rst part in [12℄)If f has limit l at a, then f has the left-hand limit l at a:limx!a f(x) = l) limLx!af(x) = l30. (Theorem 4.3.3 seond part in [12℄)If f has limit l at a, then f has the right-hand limit l at a:limx!a f(x) = l) limRx!af(x) = l31. (Lim-If-Both-Sides-Lim: Theorem 4.3.3 third part in [12℄)If f has the left-hand limit l and the right-hand limit l at a, then f has thelimit l at a:limLx!af(x) = l ^ limRx!af(x) = l ) limx!a f(x) = lContinuity of funtions1. (Example 5.1.5.a in [12℄)The funtion f(x) = b is ontinuous at a:ont(b; a)2. (Example 5.1.5.b in [12℄)The funtion f(x) = x is ontinuous at a:ont(x; a)3. (Example 5.1.5.b in [12℄)The funtion f(x) = x2 is ontinuous at a:ont(x2; a)4. (Exerise 5.1.6 in [12℄)If f is ontinuous at a, then for any � > 0 there exists a Æ-neighborhood of asuh that if x; y in this Æ-neighborhood then jf(x)� f(y)j < �:ont(f; a))8� (� > 0) 9Æ (Æ > 0^8x; y (jx � aj < Æ ^ jy � aj < Æ ) jf(x)� f(y)j < �)))5. (Exerise 5.1.11 in [12℄)If k > 0 and jf(x)� f(y)j � k � jx� yj for all x,y, then f is ontinuous at a:k > 0 ^ 8x; y jf(x) � f(y)j � k � jx� yj ) ont(f; a)



2356. (Continuous+: Theorem 5.2.1.a �rst part in [12℄)If f is ontinuous at a and g is ontinuous at a, then f + g is ontinuous at a:ont(f; a) ^ ont(g; a)) ont(f + g; a)7. (Continuous-: Theorem 5.2.1.a seond part in [12℄)If f is ontinuous at a and g is ontinuous at a, then f � g is ontinuous at a:ont(f; a) ^ ont(g; a)) ont(f � g; a)8. (Continuous*: Theorem 5.2.1.a third part in [12℄)If f is ontinuous at a and g is ontinuous at a, then f � g is ontinuous at a:ont(f; a) ^ ont(g; a)) ont(f � g; a)9. (Theorem 5.2.1.a fourth part in [12℄)If f is ontinuous at a, then a � f is ontinuous at a:ont(f; a)) ont(a � f; a)10. (�) (Theorem 5.2.1.b in [12℄)If f is ontinuous at a and g is ontinuous at a and g(x) 6= 0 for all x, then fgis ontinuous at a:ont(f; a) ^ ont(g; a) ^ 8x g(x) 6= 0) ont( fg ; a)11. (Theorem 5.2.7 in [12℄)If f is ontinuous at a and g is ontinuous at f(a), then the omposition g Æ fis ontinuous at a:ont(f; a) ^ ont(g; f(a))) ont(g Æ f; a)12. (Exerise 5.2.6 in [12℄)If f has the limit l at a and g is ontinuous at l, then the omposition g Æ fhas the limit g(l) at a:limx!a f(x) = l ^ ont(g; l)) limx!a g(f(x)) = g(l)13. (Cont-If-Lim=f)If f has the limit f(a) at a, then f is ontinuous at a:limx!a f(x) = f(a)) ont(f; a)Derivatives of funtions1. (�) (Theorem 6.1.3.a in [12℄)If f has the derivative f 0 at a, then a � f has the derivative a � f 0 at a:deriv(f; a) = f 0 ) deriv(a � f; a) = a � f 02. (�) (Theorem 6.1.3.b in [12℄)If f has the derivative f 0 at a and g has the derivative g0 at a, then f + g hasthe derivative f 0 + g0 at a:deriv(f; a) = f 0 ^ deriv(g; a) = g0 ) deriv(f + g; a) = f 0 + g03. (�) (Theorem 6.1.3. in [12℄)If f has the derivative f 0 at a and g has the derivative g0 at a, then f � g hasthe derivative f 0 � g(a) + f(a) � g0 at a:deriv(f; a) = f 0 ^ deriv(g; a) = g0 ) deriv(f � g; a) = f 0 � g(a) + f(a) � g04. (�) (Cont-If-Deriv: Theorem 6.1.2 in [12℄)If f has a derivative at a, then f is ontinuous at a:deriv(f; a) = f 0 ) ont(f; a)
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