
Querying Inconsistent Databases: Algorithms
and Implementation

Alexander Celle and Leopoldo Bertossi

Pontificia Universidad Católica de Chile
Escuela de Ingenieŕıa

Departamento de Ciencia de Computación
Casilla 360, Santiago 22, Chile
{acelle,bertossi}@puc.cl

Abstract. In this paper, an algorithm for obtaining consistent answers
to queries posed to inconsistent relational databases is presented. This is
a query rewriting algorithm proven to be sound, terminating and com-
plete for some classes of integrity constraints that extend those previously
considered in [1]. Complexity issues are addressed.
The implementation of the algorithm in XSB presented here takes advan-
tage of the functionalities of XSB, as a logic programming language with
tabling facilities, and the possibility of coupling it to relational database
systems.

1 Introduction

It is usually assumed that data stored in a database is consistent; and not having
this consistency is considered a dangerous situation. However, it often happens
that this is not the case and the database reaches an inconsistent state in the
sense that the database instance does not satisfy a given set of integrity con-
straints IC. This situation may arise due to several reasons. The initial problem
was due to poor design of the database schema itself or a malfunctioning appli-
cation that made the system reach the inconsistent state.

Nowadays, other sources of inconsistencies have appeared. For example, in a
datawarehouse context [4], inconsistencies may appear, among other reasons to
integration of different data sources. In particular, in the presence of duplicate
information, and to delayed update of the datawarehouse views.

Either case, having a consistent database or not, the information stored in it
remains relevant to the user and is potentially useful, as long as the distinction
between consistent and inconsistent data can be made, and they can be separated
when answering queries.

The common solution for the problem of facing inconsistent data is to repair
the database and take it back to a consistent state. However, this approach is
very expensive in terms of computing power, complexity and in some cases we
might lose potentially relevant data in the process. In addition, a particular user,
without control on the database administration, might want to impose his/her
particular, soft or hard constraints on the database (or some views). In this case,
the database cannot be repaired.

J. Lloyd et al. (Eds.): CL 2000, LNAI 1861, pp. 942–956, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Querying Inconsistent Databases: Algorithms and Implementation 943

Example 1. Consider the inclusion dependency stating that a purchase must
have a corresponding client: ∀(u, v). (Purchase(u, v)⇒ Client(x)). The follow-
ing database instance r violates the IC :

Purchase Client
c e1 c
d e2
d e1

When repairing the database we might be tempted to remove all the purchases
done by client d which provide us with useful information about a client’s be-
havior, no matter whether he is a valid client or not. 2

A promising alternative to restoring consistency is to keep the inconsistent data
in the database and modify the queries in order to retrieve only consistent in-
formation. By using this kind of approach we can still use the inconsistent data
for analysis (purchases of customer d in Example 1).

A semantic notion of consistent answer to a query was given in [1]. In essence,
a tuple answer t̄ is a consistent answer to a query Q(x̄) if Q(t̄) becomes true in
every repair of the inconsistent database instance r that can be obtained by a
minimal set of changes on r. Of course, the idea is not to construct all possible
minimal repairs and then query; this would impossible or too complex. It is
necessary to search for an alternative mechanism.

In this context, an operator Tω was presented in [1] which does not repair the
database but that, given the query Q(x̄), computes a modified query Tω(Q)(x̄)
whose answers, when posed to the original database instance r, are consistent in
the semantic sense already explained. The operator produces query rewritings
that are sound, complete and terminating for interesting syntactic classes of
queries and constraints [1]. However, this operator has some drawbacks: it is hard
to implement due to its recursive nature and a semantic termination condition.

In this paper we address the problem of designing and implementing an alter-
native operator inspired by Tω. The new operator corresponds to an algorithm,
called QUECA, for “QUEry for Consistent Answers”, which, given a first order
query1 Q, generates again a new query QUECA(Q), whose answers in r are con-
sistent with IC, but as opposed to Tω, it guarantees termination, soundness and
completeness for a larger set of integrity constraints.

The implementation is done in XSB [6], a powerful logic programming system,
which is provided with useful functionalities for the right implementation and
operation of the consistent query answering algorithm.

In Section 2, we will show the most relevant characteristics of the operator
Tω and what makes it difficult to implement. We will also give a description of
what we will understand by a database repair, query, integrity constraint and
consistent answer. Next, in Section 3 we present the algorithms which generate a
query QUECA(Q) for a given first order query Q. In Section 4 the properties of
these algorithms are analyzed, namely: scope, runtime complexity, termination,
soundness and completeness. In Section 5 we describe issues regarding the im-
plementation done in XSB. Finally, in Section 6 we draw some conclusions and
1 Aggregate queries are being treated in [2].

944 Alexander Celle and Leopoldo Bertossi

propose some extensions to the solution presented in this article. Due to space
restrictions we do not give proofs of propositions; we leave them for an extended
version.

2 Preliminaries

2.1 Basic Notions

We start from a fixed set, IC, of integrity constraints associated to fixed relational
database schema. We assume that IC is consistent. A database instance r is
consistent if it satisfies IC, that is r � IC. Otherwise, we say that r is inconsistent.
If r is inconsistent, its repairs are database instances (wrt the same schema and
domain) that, each of them, satisfy IC and differ from r by a minimal set of
inserted or deleted tuples. A tuple t̄ is a consistent answer to a query Q(x̄) wrt
IC, and we denote this with r �c Q(t̄), if for every repair r′ of r, r′ � Q(t̄).

Example 2. Consider a distributors database. Provider(u, v) means that product
v is provided by u, and Receives(u, v) that product v is received from provider
u. The following ICs state that the products supplied by a provider are received
from him (and vice versa), and that a provider supplies only one product.

∀u, v. (Provider(u, v)⇒ Receives(u, v)) ,

∀u, v. (Receives(u, v)⇒ Provider(u, v)) ,

∀u, v, z. (Provider (u, v) ∧ Provider(u, z)⇒ v = z) .
The following database instance r, which violates IC,

Provider Receives
a b a b
a c a c
d e d e

has two repairs:
r′ : Provider Receives r′′ : Provider Receives

a c a c a b a b
d e d e d e d e

Here, the only consistent answer to the query Provider(u, v)? in the database
instance r is (d, e): r �c Provider(d, e).

2.2 The Tω Operator

The Tω operator [1] is defined based on a previous residue calculation stage2

which generates the necessary rules to feed the operator. Generally speaking, it is
defined as a collection of operators T0 . . .Tn (for some n called finiteness point),
that were calculated based on the residues generated for that query according
to the existing set IC of integrity constraints. The (semantical) finiteness point
was defined as the step in which further computation (i.e. calculate Tn+1) had
no practical sense because Tn ⇒ Tn+1. We illustrate the application of this
operator by means of an example.
2 See Sections 3 and 3.1 for a description of what residues are and how to obtain them.

Querying Inconsistent Databases: Algorithms and Implementation 945

Example 3. With the set of integrity constraints of example 2 and with the query
P (u, v), we will compute Tω(P (u, v)), letting P stand for Provider and R for
Receives.

T0(P (u, v)) =P (u, v) .

T1(P (u, v)) =P (u, v)∧ (R(u, v) ∧ (¬P (u, z) ∨ v = z)) .

T2(P (u, v)) =P (u, v)∧ ((R(u, v) ∧ P (u, v)) ∧ ((¬P (u, z) ∧ ¬R(u, z))∨ v = z)) .

T3(P (u, v)) =P (u, v)∧ ((R(u, v) ∧ P (u, v)∧ (R(u, v) ∧ (¬P (u, w)∨ v = w))) ∧
((¬P (u, z)∧ ¬R(u, z)∧ ¬P (u, z))∨ v = z)) .

It seems as if T3 is very different from T2, however, if we rewrite them by hand
we have

T2(P (u, v)) =P (u, v) ∧ (R(u, v) ∧ P (u, v) ∧ ((¬P (u, z)∨ v = z) ∧
(¬R(u, z) ∨ v = z))) .

T3(P (u, v)) =P (u, v) ∧ (R(u, v) ∧ P (u, v) ∧ ((R(u, v) ∨ ¬P (u, w))∧
(R(u, v) ∨ v = w) ∧ (¬P (u, z)∨ v = z) ∧ (¬R(u, z) ∨ v = z) ∧
(¬P (u, z) ∨ v = z))) .

We can easily see that T2(P (u, v)) ≡ T3(P (u, v)), therefore the finiteness point
is 2 and the modified query is T0(P (u, v)) ∧ T1(P (u, v)) ∧ T2(P (u, v)). 2

Although operator Tω is sound, it lacks a more general completeness result;
and when thinking of a possible implementation, the termination issue is critical
because the finiteness point can be very complicated to detect, even in simple
examples like the one above (or may be an undecidable problem). An initial
approach consisted in using Otter [5], but it turned out to be cumbersome and
sometimes it did not deliver the expected results. For instance, it was not able to
solve the previous example. Furthermore, even if it does work, the offline nature
of such process makes it unsuitable for a real world implementation where a user
should interact directly with the query answering system.

Thus we need to modify the previous approach to improve the results regard-
ing termination, and possibly extending completeness as well.

In consequence, we face the problem of modifying Tω, providing a new, more
practical mechanism, but preserving the nice properties Tω had in terms of
soundness and completeness. We need to add a stronger termination property
which makes the new mechanism more likely for implementation. The basic
approach involves identifying a stronger syntactical condition to achieve seman-
tically correct results.

2.3 Integrity Constraints

In this paper we will only consider only static first order integrity constraints.
As in [1], we will only consider universal constraints that can be transformed
into a standard format

946 Alexander Celle and Leopoldo Bertossi

Definition 1. An integrity constraint is in standard format if it has the form

∀(
m∨

i=1

Pi(x̄i) ∨
n∨

i=1

¬Qi(ȳi) ∨ ψ) ,

where ∀ represents the universal closure of the formula, x̄i, ȳi are tuples of
variables, the Pi’s and Qi’s are atomic formulas based on the schema predicates
that do not contain constants, and ψ is a formula that mentions only built–in
predicates.

Notice that in these ICs, constants, if needed, can be pushed into ψ. Also
notice that equality is allowed in ψ.

Because of implementation issues we shall negate the ICs in standard format,
representing ICs as denials, that is as range restricted goals of the form

← l1 ∧ · · · ∧ ln , (1)

where each li is a literal and variables are assumed to be universally quantified
over the whole formula. We must emphasize the fact that this is just notation,
and from now on we shall talk about of ICs assuming they are in denial form in
the sense of classical logic and not of logic programming.

We shall note, however, that not all integrity constraints may be transformed
into standard format, and therefore are not considered in this article. Such is
the case of unsafe ICs [7], as ∀x̄∃y. (P (x̄))→ Q(x̄, y).

3 Query Generation for Consistent Answers

The whole process of query rewriting for consistent answers relies on the concept
of residues developed in the context of semantic query optimization [3]. Residues,
simply put, show the interaction between an integrity constraint and a literal
name3. Thus, a literal name which does not appear in any constraint does not
have any (non–maximal [3]) residues, i.e. there are no restrictions applied to that
literal. Similarly, a literal that appears more than once in an IC or set of ICs, may
have several residues, which may or may not be redundant (see Definition 2).

To calculate the residues in a database schema, we will introduce Algorithm 1,
which shows how to systematically obtain residues for a given literal name.
Because only literal names appearing in an integrity constraint generate (non-
maximal) residues, the algorithm will only be applied to them, and not to every
relation in r.

Once we have calculated all the residues associated to a literal name appear-
ing in IC, we shall present a second algorithm QUECA, that will generate the
3 Literal names denote relations, so different literals may have the same literal name,

e.g. P (u) and P (v) have the same literal name P . Literal names may be negative,
e.g. ¬P , where P is a predicate name; and have an associated arity that further
differentiates them (like Prolog convention), so from now on when talking about a
literal, say P (u, v), we are really talking about its literal name, P/2.

Querying Inconsistent Databases: Algorithms and Implementation 947

queries for consistent answers on the basis of the residues that have been already
computed. We will also show how this algorithm differs from the operator Tω

presented in [1], not only in terms of termination, but in the operation itself and
the necessary conditions for sound execution.

3.1 Residue Calculation

The first step in the residue calculation determines for whom they are to be
calculated. In our case, it is for every literal name appearing in an integrity
constraint. Because of this we must first build a list of ICs and a list of the distinct
literal names LP appearing in IC. This list of integrity constraints LIC will only
include the bodies of the ICs(represented in the form (1)). That is, given the set
of integrity constraints IC, we build LIC = {[l1∧. . .∧ln] | ∀(← l1∧. . .∧ln) ∈ IC}.
It should be noted that when negating a member of LIC we obtain a clause.

Example 4. Let IC be the following set of integrity constraints taken from Ex-
ample 2 expressed in the form (1).

← P (u, v)∧ ¬R(u, v) .

← ¬P (u, v)∧R(u, v) .

← P (u, v)∧ P (u, z)∧ y 6= z .

From this we would generate LIC = {[P (u, v)∧ ¬R(u, v)], [¬P (u, v)∧R(u, v)],
[P (u, v)∧ P (u, z)∧ y 6= z]} and LP = {P (u, v), R(u, v),¬P (u, v),¬R(u, v)}. We
should recall that in LP we have the following literal names: P/2, R/2, ¬P/2
and ¬R/2. 2

Next, to calculate the residues coming from l ∈ LP , and ic ∈ LIC , we use the
subsumption algorithm presented in [3]. However, because we are dealing with
an implementation, we need a systematical procedure to obtain residues. The
method utilized is formalized as Algorithm 1.

Example 5. (Example 4 Continued) Applying Algorithm 1 up to line 13, to l =
P (u, v) and every member of LIC , we would obtain one residue for each occur-
rence of P/2: residue1(P (u, v)) := R(u, v), residue2(P (u, v)) := ¬P (u, z)∨v = z
and residue3(P (u, v)) := ¬P (u, w)∨w = v. Here we may find redundant residues
(see Definition 2). 2

Finally, a conjunction of all the residues associated to a given l ∈ LP is
created and denoted by residues(l). In this process, we take care of eliminating
redundant residues as we build the conjunction (steps 14–21 in Algorithm 1) in
order to reduce complexity in the following phase (QUECA).

Definition 2 (Residue Redundancy). Let R∧ϕ be a conjunction of residues
associated to a literal l, where R is a clause and ϕ a conjunction of clauses. We
will say R is redundant in R ∧ ϕ if exists a clause R′ ∈ ϕ and a substitution
σ : (V ar(R′)4rV ar(l))→ (V ar(R) r V ar(l)), such that R′σ ≡ R.
4 Var(X) is the set of all (quantified or unquantified) variables in the expression X.

948 Alexander Celle and Leopoldo Bertossi

Algorithm 1 Compute residues(l)
Require: Set of integrity constraints in denial form IC.
Ensure: residues(l) is a formula in CNF that contains all the residues associated to a

literal l.
1: Create list LIC of integrity constraint bodies and a list LP of distinct literal names

in LIC.
2: for all l ∈ LP do
3: i = 1
4: for all ic ∈ LIC do
5: for each occurrence of l in ic do
6: delete l from ic 7→ ıc
7: negate ıc {Now ıc is in clausal form}
8: residuei(l) := ıc
9: i := i + 1

10: end for
11: end for
12: n(l) := i {the number of residues associated to l}
13: end for
14: for all l ∈ LP do
15: residues(l) := ?
16: for all i := 1 to n(l) do
17: if residuei(l) is not redundant then
18: residues(l) := residues(l) ∧ residuei(l)
19: end if
20: end for
21: end for

Note that, in the definition above, if R is redundant in R ∧ ϕ, then R ∧ ϕ
is logically equivalent to ϕ. The elimination of redundant residues is based on
unification and is done in steps 14–21 of Algorithm 1.

Example 6. (Example 5 Continued) By Definition 2, we have that
residue3(P (u, v)) is a redundant residue, because there exists a substitution
σ : z 7→ w, such that residue2(P (u, v))σ = residue3(P (u, v)). Thus, we have
residues(P (u, v)) = [R(u, v)] ∧ [¬P (u, z)∨ v = z]. 2

Note that the definition does not state that it detects all redundancies, but
only those subject to the sufficient condition presented. For example, if we con-
sider the following residues for R(x): residue1(R(x)) = P (x) ∨ x > 100 and
residue2(R(x)) = P (x) ∨ x > 50. Clearly residue1 includes the information in
residue2, so residue2 would be redundant; However, Definition 2 does not detect
it. This occurs mainly when ICs are redundant, which can easily be avoided for
cases like these. As shown in Example 6, functional dependencies are a common
case of ICs which generate redundant residues according to Definition 2. The
reason why residue redundancy is not treated further is due to the complexity of
implementation, which could be far higher than the performance improvement
we could get in the next stage (QUECA). Besides, residue redundancy can be-
come such a large subject that it would deviate the central point of attention of
this article, which is to build the queries for consistent answers.

Querying Inconsistent Databases: Algorithms and Implementation 949

Example 7. Finally, by applying Algorithm 1 to the set IC presented in Exam-
ple 4, we would obtain:

residues(P (u, v)) =(R(u, v)) ∧ (¬P (u, z)∨ v = z) ,
residues(¬P (u, v)) =(¬R(u, v)) ,
residues(R(u, v)) =P (u, v) ,

residues(¬R(u, v)) =¬P (u, v) .

3.2 Query Generation (QUECA)

Once all the residues have been computed, and given a query Q, we can generate
the query, QUECA(Q), which will deliver consistent answers from a consistent
or inconsistent database. This query differs from Q only when Q has residues,
so QUECA(Q) should be only executed for literal names appearing in IC.

Initially the query QUECA(Q) is equal to Q, plus a list of pending residues
which are the residues associated toQ calculated by Algorithm 1.5 These residues
are not yet part of the query, they form a list of pending clauses that must be
resolved via some condition if they should belong to the query. This condition
is, informally, if they add new information to it or not. If they do not, they are
discarded; but if they do, they must be added to the query and their residues
appended at the end of the residue list. This procedure is iterated until no
residues are left to resolve, i.e. either we run out of residues or they have all
been discarded. We will see later that the procedure does not always terminate.

Example 8. Consider the following hypothetical pairs of queries and residues:

Query : 1. S(u) Residues : S(u)
2. M(u) N(u)
3. P (u, v) ∀z (P (u, v) ∨ ¬Q(u, z)) .

Clearly in the first case, the residue can be discarded because it adds no new
information to the query. However, in the second and third cases the residues
must be added to the corresponding query, and their residues to the Pending
Residue List. So we would have

Query : 1. S(u) Residues : ∅

2. M(u) ∧N(u) residues(N(u))
3. P (u, v) ∧ ∀z (P (u, v) ∨ ¬Q(u, z)) residues(P (u, v) ∨ ¬Q(u, z)).

2

This method works when only conjunctions are involved (case 2 in Exam-
ple 8), because determining if a residue should be part of the query or not is
easy. However, most of the residues are clauses (case 3 in Example 8), so we
must somehow deal with disjunction.

The way to solve this problem is by keeping conjunctions together, i.e. work-
ing in DNF. To do so, when a clausal residue adds new information to a query,
we make as many copies of the query as literals in the residue we are adding,
5 The residues are in CNF, we will treat every clause as an element of a list.

950 Alexander Celle and Leopoldo Bertossi

and append to each of them exactly one of the literals in the residue. The pend-
ing residue list of each of these new copies must then be the existing list plus
the residues coming from the newly appended literal. We shall informally call
this a split operation. These copies, connected together by disjunctions, would
constitute the final query QUECA(Q).

Example 9. (Example 8 Continued) In the third case of the previous example
we would then have

Query : Residues :
3. E1 : P (u, v) ∧ P (u, v) R1 : residues(P (u, v))
E2 : P (u, v) ∧ ¬Q(u, z) R2 : residues(¬Q(u, z)) .

So, we have QUECA(Q) = ∀z(E1 ∨ E2) where Ei is a disjunctionless formula,
and Residues = R1, R2, where each Ri belongs to its corresponding Ei. 2

This clarifies the need for a new notation that will enable us to keep track
of the residues involved in building each E. Furthermore, this notation should
not only include the literals in E and its associated Pending Residue List, but
it should also “remember” the last residue that provoked one of these split
operations, in order to avoid inserting a residue whose information was already
inserted earlier. For these purposes we define a Temporary Query Unit (TQU).

Definition 3. A temporary query unit, D : E • R, consists of a set of clauses
D, a conjunction of literals E and a conjunction of residues R.

Both symbols, : and •, are only used to separate D, E and R from each other.
D represents the last residues involved in building E and R is the conjunction
of residues φ1 ∧ · · · ∧ φn yet to be resolved. We shall note that all variables
coming from a residue appear universally quantified inD andE(see Example 10).
Both symbols have higher precedence that any other connective. In this way,
QUECA(Q) can be seen as a disjunction of temporary query units,

∨
TQU ,

when we reach the point in which R = ∅ for every TQU .

Example 10. (Example 9 Continued) Using the new notation for the third case
we would have:

QUECA(P (u, v)) :
TQU 1 [∀z(P (u, v)∨ ¬Q(u, z))] : P (u, v) ∧ P (u, v) • residues(P (u, v)) ∨
TQU 2 [∀z(P (u, v)∨ ¬Q(u, z))]︸ ︷︷ ︸

D

: P (u, v) ∧ ∀z¬Q(u, z)︸ ︷︷ ︸
E

• residues(¬Q(u, z))︸ ︷︷ ︸
R

.

2

The critical step is then determining when a residue should be added to
the query and when its information is already in it, i.e. it should be discarded.
It is easy to see that when E � φ1

6 or D � φ1, then φ1 can be discarded. If
either condition is not satisfied, the residue must be included in the query.7 In
example 10, we have from TQU 1 that D � residues(P (u)), thus they can be
6 The required condition is that every term in φ1 belongs to E.
7 We will see that sometimes only part of the residue must be included.

Querying Inconsistent Databases: Algorithms and Implementation 951

discarded and the iteration would have ended for TQU 1. This is the semantic
result we want to obtain via syntactical means. The usual way to attain this is
via unification.

In our case we will define a sort of one way unification in which only certain
types of variables will be involved: New Variables in a TQU and Free Variables
in a Residue.

Definition 4. A New Variable in a TQU = D : E •R associated to a query Q is
a variable that belongs to newVar(TQU) := Var(E)rVar(Q) and is universally
quantified.

Definition 5. Given a TQU = D : E •R, a Free Variable in a Residue φ ∈ R
is a variable that belongs to freeVar(φ) := Var(φ) r Var(E) and is universally
quantified.

Because D in a TQU consists of a recently resolved residue, it also behaves
as one and has Free Variables in the sense of definition 5. For instance, in ex-
ample 10, we have newVar(TQU 2) = {z} and freeVar(D1) = {z}. From these
definitions it is clear that we can substitute a freeVar for any other variable
because they occur nowhere else than in that residue.

We can now formally define the meaning of the information of a residue
already in a TQU.

Definition 6. We will say the information of a residue φ = l1 ∨ · · · ∨ ln is
already in a TQU = D : E •R, and will write φ ∈̃ D : E, whenever there exists
a substitution σ : freeVar(φ)→ newVar(TQU) ∪ freeVar(D), such that φσ ∈ D
or for all i, liσ ∈ E. In case only some liσ ∈ E, we will say the information of
a residues is already partially in a TQU, and we will write φ p∈̃σ D : E.

Notice that if freeVar(φ) = ∅, then σ could be ε (the identity).
Consequently we have that, when verifying whether to add a residue φ =

l1 ∨ · · · ∨ lm to a query, if φ ∈̃ D : E, then φ is discarded. Otherwise, it must be
added to E and one of the mentioned split operations must take place. However,
if φ ∈̃P,θ D : E, then we must keep a copy of D : E •R; and for all the cases in
which liθ /∈ E, liθ must be appended to a copy Ei of E and its residues must be
added at the end of a copy Ri of R.

Example 11. (Example 10 Continued) By using the method presented above the
second P (u, v) would not be included in TQU 1, that is
QUECA(P (u, v)) :

TQU 1 [P (u, v) ∨ ¬Q(u, z)] : P (u, v) • residues(P (u, v)) ∨
TQU 2 [P (u, v) ∨ ¬Q(u, z)] : P (u, v)∧ ∀z¬Q(u, z) • residues(¬Q(u, z)) . 2

The procedure just described is formalized in Algorithm 2.

Example 12. (Example 3 Continued) We will show how Algorithm 2 computes
QUECA(P (u, v)), which is equivalent to T2(P (u, v)), being 2 the finiteness point.

952 Alexander Celle and Leopoldo Bertossi

QUECA(P (u, v)) =∅

TQUs =∅ : P (u, v) • (R(u, v)) ∧ (¬P (u, z)∨ v = z)

QUECA(P (u, v)) =∅

TQUs =R(u, v) : P (u, v) ∧R(u, v) • (¬P (u, z)∨ v = z) ∧ (P (u, v))

QUECA(P (u, v)) =∅

TQUs =[(¬P (u, z)∨ v = z) : P (u, v)∧R(u, v) ∧ ¬P (u, z) •
(P (u, v)) ∧ (¬R(u, z))] ∨
[(¬P (u, z)∨ v = z) : P (u, v)∧R(u, v) ∧ v = z • (P (u, v))]

QUECA(P (u, v)) =∅

TQUs =[(¬P (u, z)∨ v = z) : P (u, v)∧R(u, v) ∧ ¬P (u, z) •
(¬R(u, z))] ∨
[(¬P (u, z)∨ v = z) : P (u, v)∧R(u, v) ∧ v = z • (P (u, v))]

QUECA(P (u, v)) =∅

TQUs =[¬R(u, z) : P (u, v)∧R(u, v) ∧ ¬P (u, z)∧ ¬R(u, z) •
(¬P (u, z))] ∨
[(¬P (u, z)∨ v = z) : P (u, v)∧R(u, v) ∧ v = z • (P (u, v))]

QUECA(P (u, v)) =∅

TQUs =[¬R(u, z) : P (u, v)∧R(u, v) ∧ ¬P (u, z)∧ ¬R(u, z)•] ∨
[(¬P (u, z)∨ v = z) : P (u, v)∧R(u, v) ∧ v = z • (P (u, v))]

QUECA(P (u, v)) =[P (u, v) ∧R(u, v) ∧ ¬P (u, z)∧ ¬R(u, z)]

TQUs =[(¬P (u, z)∨ v = z) : P (u, v)∧R(u, v) ∧ v = z • (P (u, v))]

QUECA(P (u, v)) =[P (u, v) ∧R(u, v) ∧ ¬P (u, z)∧ ¬R(u, z)]

TQUs =[(¬P (u, z)∨ v = z) : P (u, v)∧R(u, v) ∧ v = z•]
QUECA(P (u, v)) =∀z [[P (u, v)∧R(u, v) ∧ ¬P (u, z)∧ ¬R(u, z)] ∨

[P (u, v) ∧R(u, v) ∧ v = z]]

By rearranging the result by hand, we obtain

QUECA(P(u, v)) =P (u, v)∧R(u, v) ∧ ∀z [(¬P (u, z)∧ ¬R(u, z)) ∨ v = z]

QUECA(P (u, v)) =P (u, v)∧R(u, v) ∧ ∀z [(¬P (u, z)∨ v = z) ∧
(¬R(u, z)∨ v = z)]

and we can see how the constraints get spread towards the related literals, in
this case R/2, where we can see how the functional dependency of the second
argument of P/2 has generated a functional dependency for the second argument
of R/2 due to the nature of IC. This example was shown to be non terminating
for Tω (see Example 3), but is now solved by QUECA. 2

Querying Inconsistent Databases: Algorithms and Implementation 953

Algorithm 2 Generate a QUEry for Consistent Answers for a literal l:
QUECA(l)
Require: Algorithm 1 has been executed.
Ensure: QUECA(l) contains the expected results.
1: QUECA(l) := ?
2: TQUs := ? : l • residues(l)
3: while TQUs 6= ? do
4: select(extract) first TQU from TQUs 7→ (D : E • R)
5: if R = ? then
6: QUECA(l) := QUECA(l) ∨ E
7: else
8: select(extract) first residue(clause) from R 7→ φ {φ = l1 ∨ · · · ∨ lm }
9: if φ e∈ D : E then

10: TQUs = D : E • R ∨ TQUs
11: else
12: if φ pe∈θ D : E then
13: append(D, φ) 7→ D0

14: E0 := E
15: R0 := R
16: else
17: θ = ε (identity)
18: end if
19: for all i ∈ [1, m] do
20: if liθ /∈ E then
21: Di := φ
22: Ei := E ∧ liθ
23: Ri := R ∧ residues(liθ)
24: else
25: Do nothing
26: end if
27: end for
28: TQUs :=

Wm
i=0(Di : Ei • Ri) ∨ TQUs

29: end if
30: end if
31: end while

In the previous example we can see how the • symbol works as a separator
between the residues that have been included in the final query and those that
are to be resolved. It graphically shows when a TQU is ready to be included in
QUECA, this occurs when the • reaches the end of R, put in other words, when
no residues are left to be resolved.

954 Alexander Celle and Leopoldo Bertossi

4 Properties of QUECA

In this section we will show that QUECA algorithm is well behaved for an
interesting syntactical class of ICs.

Definition 7. (a) A binary integrity constraint (BIC) is a denial of the form
∀ (← l1(x̄1) ∧ l2(x̄2) ∧ ψ(x̄)), where l1 and l2 are database literals, and ψ is a
formula that only contains built-in predicates.
(b) A set of BICs, IC, is fact-oriented8 if there is a tuple ā and a literal name
L, such that IC |= L(ā).

Usually ICs are not fact-oriented. As a particular case of BICs, we obtain
unary integrity constraints, which have just one database literal and possibly
a formula with built-in predicates. In the class of binary contraints we find
functional dependencies, inclusion dependencies, symmetry constraints, and do-
main and range constraints. In consequence, we are covering most of the static
constraints found in traditional relational databases, excluding (existential) ref-
erential ICs, transitivity constraints, and possibly other constraints that might
be better expressed as rules or views at the application layer.

The following results apply to the case of a finite set of BICs.

Theorem 1. The worst case runtime complexity of Algorithm 1 for residue com-
putation is O(n2), where n represents the number of ICs.

Theorem 2 (Termination). Given a set of non fact-oriented binary integrity
constraints, Algorithm 2 terminates in a finite number of steps.

The termination property is based on the fact that by restricting execution
to BICs only, residues contain one literal name at most, which in the worst case
generates an infinite sequence of single literals. The infiniteness of this sequence
is then limited by the condition in line 12 of Algorithm 2 and the fact that we
only consider range–restricted ICs (1), conditions which ensure that at a given
point, pending residues add no new information to the resulting query, thus being
discarded. Notice that this result extends the termination results presented in
[1], where semantic termination was only ensured for uniform binary constraints.

Theorem 3. For non fact-oriented binary ICs, and a literal name L, the worst
case runtime complexity of Algorithm 2 running on L is O(nk8n), where n rep-
resents the number of ICs and k is the maximum number of terms per integrity
constraint.

Although this is not an encouraging result, we will see in Section 5 that this
process is done at compile–time, so it should not affect the performance from a
user’s point of view.
8 Fact-oriented integrity constraints can be seen as a special case of tuple-generating

dependencies, tgd’s [7], in which the body may contain equality. A common fact-
oriented constraint is of the form true ⇒ L(a).

Querying Inconsistent Databases: Algorithms and Implementation 955

It is possible to prove that the QUECA algorithm can simulate the iterative
application of operator T until the point where QUECA stops. At that point we
obtain a corresponding semantical termination point for T. The main difference
is that, while T would perform split operations and add residues to the pending
list (for the whole set of residues) whenever at least one of the residues adds
new information to the resulting query, QUECA does this on a per-residue basis.
This eliminates residues one by one, thus obtaining a much more efficient query
(see the difference between T3(P (u, v)) in Example 3 and QUECA(P (u, v)) in
Example 12). Having mapped QUECA’s execution to that of T, we may take
advantage of soundeness and completeness results for T.

Theorem 4 (Soundness). Let r be a database instance, IC a set of binary
integrity constraints and Q(x̄) a literal query, such that r � QUECA(Q(t̄)). If
Q is universal or non-universal and domain independent, then t̄ is a consistent
answer to Q in r, that is, r �c Q(t̄).

Theorem 5 (Completeness). Let r be a database instance and IC a set of
non fact-oriented binary integrity constraints, then for every ground literal l(t̄),
if r �c l(t̄), then r � QUECA(t̄).

All the results above can be easily extended to queries that are conjunctions
of literals without existential quantifiers.

5 Implementation

To achieve the objectives of this work we need a common framework for data,
rules, queries and integrity constraints, to be able to perform operations on
them and elaborate the queries for consistent answers mentioned earlier. Logic
Programming languages provide this framework and XSB seems an adequate
candidate. Generally speaking we prefer an LP language because the algorithms
presented in this article need the ability to perform unifications, substitutions
and detecting subsumption. Perhaps what makes XSB a better candidate that
other LP languages is, apart from the Relational DMBS interface, Foreign Lan-
guage interface and the fact it runs on multiple platforms, its tabling capabilities
that improve its efficiency over other systems that would, for example, have to
recalculate the residues every time they are needed by Algorithm 2.

Our system consists of a four modules which provide several predicates that
allow the user direct interaction with the system. Upon initialization, the pro-
gram connects itself to a database previously defined by the user, executes both
algorithms presented in this paper and stores their results on XSB’s tables. This
avoids having to recalculate residues, QUECAs or their equivalent SQL strings,
thus practically eliminating the relevance of the exponential runtime complexity
of Algorithm 2.

The integrity constraints of the form (1) are read from the file named ics,
in which they are written with the following syntax:
<- [... denials ...].

956 Alexander Celle and Leopoldo Bertossi

For instance, to include the ICs corresponding to Example 12, we would modify
the file ics to contain:

<- [p(U,V),~r(U,V)].
<- [~p(U,V),r(U,V)].

<- [p(U,V),p(U,Z),~(V==Z)].

Once initialization is over, the user may query directly the database or re-
trieve one of the computed residues, QUECAs or SQL strings. For example, by
executing | ?-queca(p(X,Y),Q). we would obtain:

Q = and(p(id1,id2),all(u1,and(r(id1,id2),or(and(no(p(id1,u1)),
no(r(id1,u1))),equal(id2,u1)))))

With this method we can answer any query that is free of disjunctions and
existential quantifiers. Due to space limitations, further details of the implemen-
tation are included in an extended version of this paper.

6 Conclusions

We have shown an algorithm to obtain consistent answers to queries posed to
inconsistent databases. This algorithm is proved to be terminating, sound and
complete for the class of non fact-oriented binary ICs. The termination results
extends those obtained in [1].

We also implemented the algorithm on XSB with a program that interfaces
directly to a given RDBMS. The next steps towards an effective application
include handling queries and integrity constraints with existential quantifiers.
Complete elimination of residue redundancy could be addressed as well.

Acknowledgements

This work has been supported by Fondecyt Grants (# 1980945 and # 1000593).
We are grateful to Marcelo Arenas for illuminating conversations.

References

1. M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query Answers in Inconsistent
Databases. In Proceedings ACM Symposium on Principles of Database Systems
(ACM PODS ’99, Philadelphia), pages 68–79. ACM Press, 1999.

2. M. Arenas, L. Bertossi, and J. Chomicki. Aggregation in Inconsistent Databases.
In Preparation, 2000.

3. U.S Chakravarthy, John Grant, and Jack Minker. Logic-Based Approach to Seman-
tic Query Optimization. ACM Transactions on Database Systems, 15(2):162–207,
June 1990.

4. S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and OLAP Tech-
nology. SIGMOD Record, 26:65–74, March 1997.

5. W.W. McCune. OTTER 3.0 Reference Manual and Guide. Argonne National
Laboratory, Technical Report ANL-94/6, 1994.

6. K. F. Sagonas, T. Swift, and D. S. Warren. XSB as an Efficient Deductive Database
Engine. In Proceedings of SIGMOD 1994 Conference, pages 442–453. ACM Press,
1994.

7. J.D. Ullman. Principles of Database and Knoledge-Base Systems, volume I. Com-
puter Science Press, Maryland, 1988.

	Introduction
	Preliminaries
	Basic Notions
	The $textnormal {T}_omega $ Operator
	Integrity Constraints

	Query Generation for Consistent Answers
	Residue Calculation
	Query Generation ({em QUECA})

	Properties of {em QUECA}
	Implementation
	Conclusions
	References

