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Abstract. In a previous paper, we proposed a first formal and conceptual com-
parison between the two most important formalizations of context in AI: Proposi-
tional Logic of Context (PLC) and Local Models Semantics/MultiContext Systems
(LMS/MCS). The result was that LMS/MCS is at least as general as PLC, as it
can be embedded into a particular class of MCS, called MPLC. In this paper we
go beyond that result, and prove that, under some important restrictions (includ-
ing the hypothesis that each context has finite and homogeneous propositional
languages), MCS can be embedded in PLC with generic axioms. To prove this
theorem, we prove that MCS cannot be embedded in PLC using only lifting ax-
ioms to encode bridge rules. This is an important result for a general theory of
context and contextual reasoning, as it proves that lifting axioms and entering
context are not enough to capture all forms of contextual reasoning that can be
captured via bridge rules in LMS/MCS.

1 Introduction

This paper continues the investigation of formal theories of context we started in [3]. In
that paper, we compared two well-known formalizations of context, namely the Propo-
sitional Logic of Context (PLC) [5] and Local Models Semantics (LMS) [7], axiom-
atized via Multi Context Systems [9, 8] (MCS)1. The main technical result was that
LMS/MCS is at least as general as PLC, as it can be embedded into a particular class
of MCS, called MPLC.

In this paper we go beyond that result, and analyze the claim that LMS/MCS is
strictly more general than PLC. The main technical results are the following: (i) un-
der some important restrictions (including the hypothesis that each context has finite
and homogeneous propositional languages), LMS/MCS can be embedded in PLC with
generic axioms; (ii) LMS/MCS cannot be embedded in PLC using only lifting axioms
to encode bridge rules. These results are important for a general theory of context and
contextual reasoning in two senses: first, the restrictions needed to prove the first the-
orem have a significant impact on the fulfillment of the intuitive desiderata that were

1 Hereafter, we will refer to the general framework of LMS together with its axiomatization via
MCS as LMS/MCS.



brought forward to motivate the formalization of context in AI (e.g., in [11]); second,
they prove that lifting axioms and entering context are not enough to capture all forms
of contextual reasoning that can be captured via bridge rules in LMS/MCS.

2 The two systems: PLC and LMS/MCS

In this section we quickly revise the two formalisms, and prepare the ground for the
technical comparison between them2.

2.1 Propositional Logic of Context

In this paper, we use the version of PLC presented in [4]. Given a set K of labels,
intuitively denoting contexts, the language of PLC is a multi modal language on a set of
atomic propositions P with the modality ist(κ,φ) for each context (label) κ ∈ K. More
formally, the set of well formed formulae W of PLC, based on P, are

W := P∪ (¬P)∪ (P ⊃ P)∪ ist(K,P)

The other propositional connectives are defined as usual. If κ is a context, then the
formula ist(κ,φ) can be read as: φ is true in the context κ. PLC allows to describe how a
context is viewed from another context. For this PLC introduces sequences of contexts
(labels). Let K∗ denote the set of finite contexts sequences and let κ = κ1 . . .κn denote
any (possible empty) element of K∗. The sequence of contexts κ1κ2 represents how
context κ2 is viewed from context κ1. Therefore, the intuitive meaning of the formula
ist(κ2,φ) in the context κ1 is that φ holds in the context κ2, from the point of view of
κ1. Similar interpretation can be given to formulae in sequences of contexts longer than
2. A model for PLC associates a set of partial truth assignments to a subset of context
sequences and satisfiability is defined with respect to a context sequence.

Definition 1. A model M of PLC is a partial function which maps context sequences
in K

∗ into a set of partial truth assignments for P.

M ∈ (K∗ →p P(P →p {true, false}))

where A →p B denotes the set of partial functions from A to B and P(A) denotes the
powerset of A.

The original intuition was that, partial truth assignments allow us to represent the
fact that in different context sequences there are different sets of meaningful formulae.
Indeed, a model M defines a vocabulary, denoted by Vocab(M), namely, a function that
associates to each context sequence a set of meaningful formulae. Formally, a vocabu-
lary is a relation Vocab⊆K∗×P that associates a subset of primitive propositions with
each context. Vocab(M), i.e, the vocabulary defined by the model M, is the function
that associates to each context sequence κ a subset of P for which all the assignments in

2 An exhaustive presentation of the two formalisms is beyond the scope of this paper; interested
readers can refer to the bibliography for more details.



M(κ) are defined. That is, 〈κ, p〉 ∈ Vocab(M) if and only if M(κ) is defined and, for
all ν ∈ M(κ), ν(p) is defined (where ν is a truth assignment to atomic propositions).

Satisfiability and validity of formulae are defined only for these models that pro-
vides enough vocabulary, i.e. the vocabulary which is necessary to evaluate a formula
in a context sequence. Each formula φ in a context sequence κ implicitly defines its vo-
cabulary, denoted by Vocab(κ,φ), which intuitively consists of the minimal vocabulary
necessary to build the formula φ in the context sequence κ. More formally, Vocab(κ,φ)
is recursively defined as follows:

Vocab(κ, p) = {〈κ, p〉}

Vocab(κ,¬φ) = Vocab(κ,φ)

Vocab(κ,φ ⊃ ψ) = Vocab(κ,φ)∪Vocab(κ,ψ)

Vocab(κ, ist(κ,φ)) = Vocab(κκ,φ)

Definition 2 (Satisfiability and Validity). Let φ and M be a formula and a model
respectively. φ is satisfied in M by an assignment ν ∈ M(κ) (notationally M,ν |=κ φ)
according to the following clauses:

1. M,ν |=κ p iff ν(p) = true;
2. M,ν |=κ ¬φ iff not M,ν |=κ φ;
3. M,ν |=κ φ ⊃ ψ iff not M,ν |=κ φ or M,ν |=κ ψ;
4. M,ν |=κ ist(κ,φ) iff for all ν′ ∈ M(κκ), M,ν′ |=κκ φ;
5. M |=κ φ iff for all ν ∈ M(κ); M,ν |=κ φ;
6. |=κ φ iff for all PLC-model M, such that Vocab(κ,φ) ⊆ Vocab(M), M |=κ φ.

φ is valid in a context sequence κ if |=κ φ; φ is satisfiable in a context sequence κ if there
is a PLC-model M such that M |=κ φ. A set of formulae T is satisfiable at a context
sequence κ if there is a model M such that M |=κ φ for all φ ∈ T .

According to the above definition, vocabularies affect truth in contexts making each
formula outside the vocabulary false. This implies that a PLC-model M presents a non
classical semantics for all the formulas φ such that 〈κ,φ〉 6⊆ Vocab(M). For instance,
if a proposition 〈κ, p〉 6∈ Vocab(M) then M 6|=κ p∨¬p. This “non classical” effect
however disappear in the definition of validity. For validity of a formula φ is checked
by considering only the models whose vocabularies contain φ. This means that validity
and satisfiability can be formulated by considering only PLC-models with complete
vocabularies, i.e. PLC-models M’s with 〈κ, p〉 ∈Vocab(M) for each p∈ P and κ∈K∗.

Theorem 1 (Reduction to complete vocabulary). A formula is valid in PLC if and
only if it is satisfied by all the PLC-models with complete vocabulary. Similarly, a for-
mula is satisfiable in PLC if and only if there is a PLC-model with complete vocabulary
that satisfies it.

Ignoring vocabularies, PLC is a multi-modal K extended with the axiom (∆), on the set
of propositions P. Indeed the Hilbert style axiomatization of validity proposed in [4]—
presented in Figure 1—is the modal system K extended with the axiom (∆).



(PL) `κ φ If φ is an instance of a classical tautology
(K) `κ ist(κ,φ ⊃ ψ) ⊃ ist(κ,φ) ⊃ ist(κ,ψ)
(∆) `κ ist(κ1, ist(κ2,φ)∨ψ) ⊃ ist(κ1, ist(κ2,φ))∨ ist(κ1,ψ)

(MP) `κφ `κφ⊃ψ
`κψ

(CS) `κκφ
`κist(κ,φ)

Fig. 1. Axioms and inference rules for PLC

2.2 Local Models Semantics and Multi-Context Systems

The version of LMS we present here was presented in [7]. Let {Li}i∈I be a family of
languages defined over a set of indexes I (in the following we drop the index i ∈ I).
Intuitively, each Li is the (formal) language used to describe the facts in the context i. In
this paper, we assume that I is (at most) countable. Let Mi be the class of all the models
(interpretations) of Li. We call m ∈ Mi a local model (of Li).

To distinguish the formula φ occurring in the context i from the occurrences of the
“same” formula φ in the other contexts, we write i : φ. We say that i : φ is a labelled wff,
and that φ is an Li-wff. For any set of labeled formulae Γ, Γi = {φ | i : φ ∈ Γ}.

Definition 3 (Compatibility chain3). A compatibility chain c = {ci ⊆ Mi}i∈I is a fam-
ily of set of models of Li such that each ci is either empty or a singleton. We call ci

the i-th element of c. A compatibility chain is nonempty if one of its components is
nonempty.

A compatibility chain represents a set of “instantaneous snapshots of the world”
each of which is taken from the point of view of the associated context. Due to the
fact that contexts describe points of view of the same world, certain combinations of
snapshots are possible while others can never happen. To distinguish between these two
sets, LMS contains the notion of compatibility relation—defined in the following—
represents the “admissible” combinations snapshots.

Definition 4 (Compatibility relation and LMS-model). A compatibility relation is
a set of compatibility chains. A LMS-model is a compatibility relation that contains a
nonempty compatibility chain.

Definition 5 (Satisfiability and Entailment). Let |= be the propositional classical sat-
isfiability relation. We extend the definition of |= as follows:

1. for any φ ∈ Li, ci |= φ if, for all m ∈ ci, m |= φ;
2. c |= i : φ if ci |= φ;
3. C |= i : φ if, for all c ∈ C, c |= i : φ;
4. Γi |=ci φ if, for all m ∈ ci, if m |= Γi, then m |= φ;

3 For the sake of this paper, we use a definiton of compatibility chain which is specialized and
simpler than the one given in [7].



5. Γ |=c i : φ if, either there is a j 6= i, such that c j 6|= Γ j , or Γi |=ci φ;
6. Γ |=C i : φ if, for all c ∈ C, Γ |=c i : φ;
7. For any class of models C, Γ |=C i : φ if, for all models C ∈ C, Γ |=C i : φ.

We adopt the usual terminology of satisfiability and entailment for the statements
about the relation |=. Thus we say that c satisfies φ at i, or equivalently, that φ is true in
ci, to refer to the fact that ci |= φ. We say that Γ entails i : φ in c to refer to the fact that
Γ |=c i : φ. Similar terminology is adopted for Γ |=C i : φ and Γ |=C i : φ.

MultiContext Systems (MCS) [9] are a class of proof systems for LMS4. The key
notion of an MCS is that of bridge rule.

Definition 6 (Bridge Rule). A bridge rule on a set of indices I is a rule of the form:

i1 : φ1 . . . in : φn

i : φ br

where i1, . . . , in, i ∈ I, A bridge rule can be associated with a restriction, namely a crite-
rion which states the conditions of its applicability.

Definition 7 (MultiContext System (MCS)). A MultiContext System for a family of
languages {Li}, is a pair MS = 〈{Ci = 〈Li,Ωi,∆i〉},∆br〉, where each Ci = 〈Li,Ωi,∆i〉
is a theory (on the language Li, with axioms Ωi and natural deduction inference rules
∆i), and ∆br is a set of bridge rules on I.

MCSs are a generalization of Natural Deduction (ND) systems [12]. The general-
ization amounts to using formulae tagged with the language they belong to. This allows
for the effective use of the multiple languages. The deduction machinery of an MCS is
the composition of two kinds of inference rules: local rules, namely the inference rules
in each ∆i, and bridge rules. Local rules formalize reasoning within a context (i.e. are
only applied to formulae with the same index), while bridge rules formalize reasoning
across different contexts.

Deductions in a MCS are trees of formulae which are built starting from a finite set
of assumptions and axioms, possibly belonging to distinct languages, and by a finite
number of application of local rules and bridge rules.

2.3 Lifting axioms and bridge rules

A crucial feature of a formal theory of context—contained both in LMS/MCS and
PLC—is the possibility to specify relations between facts of different contexts. This
is an essential feature of contextual reasoning, as contexts are not simply unrelated rep-
resentations, but typically are different representations of the same world. For example,
two contexts may describe the same piece of the world from the same perspective, but
at different level of detail; or may describe the same piece of the world, only from dif-
ferent perspectives. PLC formalizes relations between contexts via lifting axioms, while
LMS/MCS uses bridge rules. Lifting axioms are defined as

4 In this paper, we present a definition of MC system which is suitable for our purposes. For a
fully general presentation, see [9].



“. . . axioms which relate the truth in one context to the truth in another context.
Lifting is the process of inferring what is true in one context based on what is
true in another context by the means of lifting axioms” [10]

The general form of lifting axioms is the following:

ist(κ1,φ1)∧ . . .∧ ist(κn,φn) ⊃ ist(κ,φ) (1)

As any formula in PLC, lifting axioms must be stated in a context. The lifting axiom
above can be intuitively read as “ φ is true in a context κ if the formulas φ1, . . . ,φn are
true in the contexts κ1, . . . ,κn respectively”.

Bridge rules, introduced in Definition 6, are inference rules whose premises and
conclusion belong to different contexts. The general form of bridge rules is described
in [9], and can be though as a generalization of a Natural Deduction inference rules [12]
which involve more than one index. For the sake of this paper we consider only bridge
rules of the following form.

κ1 : φ1 . . . κn : φn

κ : φ br (2)

The above bridge rules roughly formalize the same intuition as that formalized by lifting
axiom (1).

The main difference between lifting axioms and bridge rules is that lifting axioms
are stated in an external context, which must be expressive enough to represent facts
of all the contexts involved (using ist-formulae), whereas bridge rules allow stating re-
lations between contexts without the need of an external context. There are situations
where having an external context may be an advantage (for example, when one needs to
reason about lifting axioms themselves, e.g. to discover that a lifting axiom is redundant,
or leads to inconsistent contexts). However, in general, specifying an external context
can be very costly—especially when there are many interconnected contexts—as the
external context essentially duplicates the information of each context. LMS/MCS al-
lows both solutions. Indeed, instead of using bridge rules to lift a fact φ from κ1 to κ2,
one can define a third context connected with κ1 and κ2 via bridge rules and explicitly
add an axiom like (1) to this new context5. This very last observation constitutes the un-
derlying idea of the proof of the fact that PLC can be embedded in LMS/MCS described
in [3]. The converse question, i.e., if LMS/MCS can be reconstructed in PLC will be
answered in the rest of this paper. As a consequence we will have a sharper intuition on
the analogies and differences between bridge rules and lifting axioms.

3 Reconstructing LMS/MCS in PLC

Since a comparison of the two logical systems should be done on a common ground,
we consider LMS/MCS with homogeneous languages, i.e., LMS/MCS whose contexts
have all the same propositional language. Indeed, as it is shown by Treorem 1, PLC does

5 This approach was used, for example, in the solution to the qualification problem presented in
[2].
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Fig. 2. Embedding LMS/MCS into PLC

not support contexts with different languages. Similarly we restrict the comparison to
LMS/MCS in which all contexts have the same inference engine, which is contexts are
all classical propositional theories.

The general intuition for encoding an MCS into PLC is shown in Figure 2. Given a
MCS with I contexts, we define a PLC with I contexts (one for each context in MCS)
and an additional (meta/external)-context ε. The content of each context in I and the
compatibility relations (bridge rules) between contexts are described via ist–formulas
in in ε. The representation of the content of the MCS contexts is quite straightforward:
any formula i : φ in MCS is translated into a formula ε : ist(i,φ) in PLC. For bridge rules,
the translation is more tricky. Indeed, the intuition that a bridge rule like (2) is translated
into the lifting axiom (1) does not work. Indeed, the following theorem proves a first
important fact, namely that in general bridge rules cannot be modeled in PLC only as a
set of lifting axioms. Let BRI be the set of bridge rules between a set I of contexts with
language Li = L j (for i, j ∈ I).

Let LA ⊂ W the set of lifting axioms among the contexts I expressed in a new
context ε not in I. The notation Γ `brbrbr i : φ stands for: i : φ is derivable from Γ in the
MCS with the set I of contexts, no axioms, and the set brbrbr of bridge rules.

Theorem 2. There is no transformation la : BR → LA such that for any finite subset
brbrbr ⊆ BR of bridge rules:

i1 : φ1, . . . , in : φn `brbrbr i : φ
if and only if

`ε
V

br∈brbrbrla(br) ⊃ (ist(i1,φ1)∧ . . .∧ ist(in,φn) ⊃ ist(i,φ))
(3)

Proof. The theorem is proved by counterexample. Consider the following two bridge
rules.

1 : p
2 : q

br12
2 : q
1 : r

br21 (4)

where p, q, and r are three distinct propositional letters. Let br12 and br21 be both
unrestricted (i.e., always applicable). Considering br12 or br21 separately, they do not



affect theoremhood in either context 1 and 2. Formally, for i = 1,2, `br12 i : φ if and
only if φ is a propositional tautology, and analogously `br21 i : φ if and only if φ is a
tautology (see [6] for a proof of a similar fact). Instead, combining br12 and br21 in the
same MCS, new theorems, which are not tautologies, can be proved. An example of
such a theorem is 1 : p ⊃ r, and its proof is the following:

1 : p(∗)

2 : q
br12

1 : r
br21

1 : p ⊃ r
⊃ I(Discharging the assumption (∗))

Let la(br12) and la(br21) be the following general conjunctions of lifting axioms:

la(br12) =
M̂

m=1

(

Km̂

k=1

ist(imk,φmk) ⊃ ist( jm,ψm)

)

(5)

la(br21) =
N̂

n=M+1

(

Kn̂

k=1

ist(ink,φnk) ⊃ ist( jn,ψn)

)

(6)

where imk, ink, and jn are either 1 or 2. Posing brbrbr = {br12,br21}, we have that
V

br∈brbrbr la(br)
is equivalent to the following formula:

N̂

n=1

(

Kn̂

k=1

ist(ink,φnk) ⊃ ist( jn,ψn)

)

Suppose, for contradiction, that equivalence (3) holds. Since 1 : p ⊃ r is derivable via
br12 and br21, we have that

`ε
^

br∈brbrbr

la(br) ⊃ ist(i, p ⊃ r) (7)

Consider the PLC-model M with M(1) equal to all the assignments for L1 and M(2)
equal to all the assignments for L2. Since p⊃ r is not valid, there is an assignment ν such
ν 6|= p ⊃ r. By construction, M(1) contains all the assignments to L1. As a consequence
M 6|=ε ist(1, p ⊃ r). Soundness of PLC and (7) entail that M 6|=ε

V

br∈brbrbr la(br), and
therefore, that there is an n ≤ N such that

M |=ε

Kn̂

k=1

ist(ink,φnk) and M 6|=ε ist( jn,ψn) (8)

The left part of (8) states that each φnk (with 1 ≤ k ≤ Kn) is a tautology, as it must be
true in all the assignments in M(ink). As a consequence we have that

`ε

Kn̂

k=1

ist(ink,φnk) (9)



The right part of (8) states that there is an assignment ν ∈ M( jn) such that ν 6|= ψn, i.e.,
ψn is not a tautology. Let us consider two cases n ≤ M, and n > M. In the first case we
have, due to the definiton of la(br12), we have that

`ε la(br12) ⊃

(

Kn̂

k=1

ist(ink,φnk) ⊃ ist( jn,ψn)

)

(10)

while, in the second one we have:

`ε la(br21) ⊃

(

Kn̂

k=1

ist(ink,φnk) ⊃ ist( jn,ψn)

)

(11)

By applying Modus Ponens to (10) and (9), or to (11) and (9), we obtain one of the
following two consequences:

`ε la(br12) ⊃ ist( jn,ψn) or `ε la(br21) ⊃ ist( jn,ψn)

If the equivalence holds we would have that, either `br12 jn : ψn or `br21 jn : ψn, while
ψn is not a tautology. But this is a contradiction.

Lifting axioms are not the only possible ist–formulas. There are ist–formulas, as
for instance ¬ist(i,φ) or ist(i,φ) ⊃ ist( j,ψ)∨ ist(k,θ), which are not lifting axioms but
could be used to represent the compatibility relation formulated by bridge rules. So the
question arises of whether bridge rules can be encoded by generic ist–formulas in some
external context ε. In the following we show that this is the case for MCSs with a finite
number of contexts and with finite languages.

Theorem 3. There is a transformation a(.) from finite sets brbrbr ∈ BRI of bridge rules to
ist–axioms, and a context ε such that:

i1 : φ1, . . . , in : φn `brbrbr i : φ
if and only if

`ε a(brbrbr) ⊃ ist(i1,φ1)∧ . . .∧ ist(in,φn) ⊃ ist(i,φ)
(12)

Proof. The proof is constructive, i.e., we define the transformation a(.) for each set of
bridge rules. The definition of a(brbrbr) passes through a syntactic encoding of the LMS-
models for brbrbr.

Let C be a LMS-model (i.e. a set of chains), the set of PLC-models MMMC correspond-
ing to C is defined as follows:

MMMC =

{

MC′

∣

∣

∣

∣

C′ is a subset of C such that for any i ∈ I, M(i) =
S

c∈C′ ci

}

(13)

Let C be the set of LMS-models for brbrbr. The set MMMC is defined as
S

C∈C MMMC. Let us
prove that the logical consequence defined by C can be represented by valid formulas
in the set of models MMMC, i.e., that:

i1 : φ1, . . . , in : φn |=C i : φ
if and only if for all M ∈MMMC

M |=ε ist(i1,φ1)∧ . . .∧ ist(in,φn) ⊃ ist(i,φ)
(14)



Suppose that i1 : φ1, . . . , in : φn |=C i : φ. Let MC′ ∈MMMC, with C′ ⊆C ∈ C. Suppose that
MC′ |=ε ist(ik,φk) for any 1 ≤ k ≤ n. This implies that for all c ∈C′, cik |= φk. From the
hypothesis we have that ci |= φ, and therefore that MC′ |=ε ist(i,φ,).

Vice-versa, let us prove that M |=ε ist(i1,φ1)∧ . . .∧ ist(in,φn)⊃ ist(i,φ) for all M ∈
MMMC implies that for any model C of brbrbr and for any chain c∈C, if cik |= φk for 1≤ k ≤ n,
then ci |= φ. Notice that, for any c ∈ C ∈ C we have that M{c} ∈ MMMC. By definition
(see equation (13)), M{c} is such that M(i) = ci. By hypothesis we have that M{c} |=
ist(i1,φ1)∧ . . .∧ ist(in,φn) ⊃ ist(i,φ), which implies that if cik |= φk for all 1 ≤ k ≤ n,
then ci |= φ.

To define a(brbrbr) we proceed as follows: for any PLC model M ∈MMMC we find a for-
mula φM, that axiomatizes exactly M. Then the axiomatization of MMMC can be obtained
by the disjunction of all the axiomatization φM associated to each single PLC-model
M of MMMC (this definition is possible because MMMC is finite).

Let M ∈MMMC, and let φM be the following formula

^

i∈I



ist(i,
_

ν∈M(i)

φν)∧
^

ν∈M(i)

¬ist(i,¬φν)



 (15)

where φν is the conjunction of all the literals verified by the assignment ν. (15) is a
finite formula, for the set I of context is finite and the set of literals in each context is
finite too. By adding (15) as axioms in the context ε we obtain an PLC that is satisfied
only by the model M. Let

a(brbrbr) =
_

M∈MMMC

φM

Let us now prove the equivalence (12). By soundness and completeness of brbrbr, i1 :
φ1, . . . , in : φn `brbrbr i : φ holds if and only if

i1 : φ1, . . . , in : φn |=C i : φ (16)

By (14), we have that (16) holds if and only if for all M ∈MMMC,

M |=ε ist(i1,φ1)∧ . . .∧ ist(in,φn) ⊃ ist(i,φ) (17)

By construction of a(brbrbr), M |=ε a(brbrbr), if and only if M ∈MMMC. This implies that (17)
holds if and only if

|=ε a(brbrbr) ⊃ ist(i1,φ1)∧ . . .∧ ist(in,φn) ⊃ ist(i,φ) (18)

Finally, soundness and completeness of PLC implies that (18) holds if and only if `ε
a(brbrbr) ⊃ ist(i1,φ1)∧ . . .∧ ist(in,φn) ⊃ ist(i,φ), which concludes our proof.

Theorem 3 shows that the translation from bridge rules to generic ist-formulas is
possible. However, it is still open the question if a set of bridge rules can be translated
into set of ist-formulas which are lifting axioms. Here the answer is negative.



Theorem 4. There does not exist a transformation la(.) from finite sets brbrbr ∈ BRI of
bridge rules to a conjunction of lifting axioms, and a context ε such that:

i1 : φ1, . . . , in : φn `brbrbr i : φ
if and only if

`ε la(brbrbr) ⊃ ist(i1,φ1)∧ . . .∧ ist(in,φn) ⊃ ist(i,φ)
(19)

Proof. The proof is by counterexample. Consider the following LMS/MCS composed
of two languages L1 and L2 containing the single proposition p and q respectively.
Consider the following set of bridge rules:

1 : ¬p
2 : q

br12
1 : p

2 : ¬q
brr

12
2 : ¬q
1 : p

br21
2 : q

1 : ¬p
brr

21
1 : ⊥
2 : ⊥

⊥12
2 : ⊥
1 : ⊥

⊥21

where all the rules but those indexed with r are non restricted. The chains that satisfies
the un-restricted bridge rules are:

c = 〈p,q〉, d = 〈p,q〉, e = 〈p,q〉

where p denotes the model in which p is true and p the model in which p is false.
Similarly for q and q. The compatibility relations that satisfy the restricted bridge rules
are:

{c} , {d} , {e} , {c,e} , {d,e}

Following the definitions given in the proof of Theorem 3 one can see that the ist-
formulas associated to the set of LMS-models above is equivalent to the following:

¬ist(1,⊥)∧¬ist(2,⊥)∧ (ist(1, p)∨ ist(2,q))

Notice that the above formula cannot be reduced in the form of a conjunction of lifting
axioms.

4 Discussion

In the previous section we have given two somehow opposite results: namely Theorem 2
and Theorem 3. Intuitively the former states that bridge rules cannot be transformed into
lifting axioms, so that this translation composes; the latter states that finite sets of bridge
rules can be translated into a finite sets of ist-formulas. This two results constitutes two
boundaries within which one can look for further correspondence results.

Theorem 2 states that a set of bridge rules cannot be translated into a set of lift-
ing axiom simply by translating each single bridge rule into a lifting axiom. This is
intuitively due to the fact that bridge rules allows for inter-leaving of local reasonings,
while lifting axioms do not. By inter-leaving of local reasonings we mean the reasoning
pattern composed by a sequence of chunks of local reasoning. This reasoning pattern
allow for cyclic contextual reasoning. For instance, one starts in a context κ1 switches
in a context κ2 then, switch back in the context κ1 and then again in the context κ2.



Consider the bridge rules given in the counter-example of the proof of Theorem 2, plus
the bridge rule:

1 : p ⊃ r
2 : s

br′12

An example of inter-leaving of local reasonings is the following proof of 2 : s.

1 : p(∗)

2 : q
br12

1 : r
br21

1 : p ⊃ r
⊃ I(Discharging the assumption (∗))

2 : s
br′12

PLC does not support inter-leaving of local reasonings. The reasoning pattern imple-
mented in PLC, instead, is “bottom up combination of local reasonings” in a tower of
transcendent contexts. In this reasoning pattern one starts from the bottom of a tower
of contexts, he locally reasons in a (set of) context(s), say in the context denoted by the
sequence κ1 . . .κnκ, then he transcends to by (CS) to the context κ1 . . .κn and he locally
reasons there (e.g., by using the lifting axioms), then he transcends again to κ1 . . .κn−1.
Eventually, he stops at some point of the tower. Theorem 2 shows that “inter-leaving of
local reasonings” cannot be reduced to “bottom-up combination of local reasonings +
lifting axioms”.

Theorem 3, instead, provides a way to translate LMS/MCS into PLC. Furthermore,
the counterexample provides in Theorem 4 show that the one proposed in Theorem 3
is the “simplest” translation, i.e., that any other translation cannot be reduced to a con-
junction of lifting axioms. If one wants to rewrite bridge rules into lifting axioms he has
to take into account the following two points:

1. in embedding LMS/MCS into PLC, bridge rules are not directly translated into
implications, as one could expect. For instance the MCS containing the bridge rules
(4) are not translated into the axioms of the form ist(1, p)⊃ ist(2,q) and ist(2,q)⊃
ist(1, p) as shown by Theorem 2. Indeed, the PLC formalizing the bridge rules
(4) is not computed by a direct (syntactic) translation of the bridge rules of MCS.
The axioms (15) are determined by enumerating all the LMS-models of (4) and
by axiomatizing them in a PLC-formula. This is not a problem of our translation,
indeed any alternative translation which is equivalent to the axiom (15) with more
than two contexts cannot be reduced to a set of lifting axioms.

2. the above translation is not compositional. This means that, if PLC1 and PLC2

are the representations of MCS1 and MCS2 respectively, then the translation of
MCS1 ∪MCS2 (i.e., the MCS containing the axioms and the bridge rules of both
MCS1 and MCS2) cannot be defined as the union of the axioms of PLC1 and PLC2.

5 Conclusions

This paper concludes the technical and conceptual comparison between LMS/MCS and
PLC we started in [3]. The results presented in this paper will help clarify the technical
and conceptual differences between the two approaches, by showing how bridge rules
can be represented in lifting axioms or in ist-formulas. In particular we have shown that:



1. Bridge rules cannot be translated into lifting axioms;
2. sets of bridge rules can be translated into set of ist-formulas which cannot be re-

duced to a conjunction of lifting axioms.

We stress the fact that the two formalisms do not provide equivalent solutions, even
if they share some of the intuitive motivations for having a formal theory of context
in AI. The technical results we provide in the previous paper [3] and in this paper
allow us to justify the conclusion that LMS/MCS is more general than PLC, and that it
captures some patterns of contextual reasoning in a more intuitive and straightforward
way. Moreover, in our opinion, the restrictions needed to reconstruct LMS/MCS in
PLC have a significant impact on the appropriateness of PLC to capture the intuitive
desiderata of a logic of context in AI.
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