Skip to main content

Fuzzy Models of Rainfall-Discharge Dynamics

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2715))

Abstract

Three different methods for building Takagi-Sugeno models relating rainfall to catchment discharge are tested on the Zwalm catchment. They correspond to the following identification methods: Grid Partitioning (GP), Subtractive Clustering (SC), and Gustafson-Kessel clustering (GK). The models are parametrized on a one-year identification data set and tested against the complete five-year data set. Although these models show a similar behaviour, resulting in comparable values of the Nash and Suttcliffe criterion and the root mean square error, the best values are obtained for the models generated using the GK method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Babuška, Fuzzy Modeling for Control, International series in intelligent technologies, Kluwer Academic Publishers, Boston, USA, 1998.

    Google Scholar 

  2. R. Babuška, P.J. van der Veen and U. Kaymak, Improved covariance estimation for Gustafson-Kessel clustering, Proc. Fuzz-IEEE (Honolulu, Hawaii, USA), 2002.

    Google Scholar 

  3. S. Bergström, The HBV model, Computer Models of Watershed Hydrology (V. P. Singh, ed.), Water Resources Publications, 1995, pp. 443–476.

    Google Scholar 

  4. K.J. Beven, Rainfall-Runoff Modelling, The Primer, John Wiley and Sons, Ltd., Chichester, UK, 2000.

    Google Scholar 

  5. F.J. Chang and Y.C. Chen, A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction, J. Hydrol. 245 (2001), 153–164.

    Article  Google Scholar 

  6. S.L. Chiu, Fuzzy model identification based on cluster estimation, Journal of Intelligent and Fuzzy Systems 2 (1994), 267–278.

    Article  Google Scholar 

  7. O.J. Dunn, Multiple contrasts using rank sums, Technometrics 6 (1964), 241–252.

    Article  Google Scholar 

  8. D. Gustafson and W. Kessel, Fuzzy clustering with a fuzzy covariance matrix, Proc. IEEE CDC (San Diego, CA, USA), 1979, pp. 761–766.

    Google Scholar 

  9. M. Hollander and D.A. Wolfe, Nonparametric Statistical Methods, JohnWiley, New York, USA, 1973.

    MATH  Google Scholar 

  10. Y. Hundecha, A. Bárdossy and H.W. Theisen, Development of a fuzzy logic-based rainfall-runoff model, Hydrol. Sc. Journal 46 (2001), 363–376.

    Google Scholar 

  11. J.S.R. Jang, ANFIS: adaptive network-based fuzzy inference system, IEEE Trans. on Systems, Man and Cybernetics 23 (1993), 665–685.

    Article  Google Scholar 

  12. W.H. Kruskal and W.A. Wallis, Use of ranks in one-criterion analysis of variance, J. Amer. Statist. Assoc. 47 (1952), 583–621.

    Article  MATH  Google Scholar 

  13. R.J. Moore, The probability-distributed principle and runoff production at point and basin scales, Hydrological Sciences Journal 30 (1985), 273–297.

    Article  Google Scholar 

  14. J.E. Nash, A unit hydrograph study, with particular reference to british catchments, Proc. Inst. Civil Eng. 17 (1960), 299–327.

    Google Scholar 

  15. J.E. Nash and J.V. Sutcliffe, River flow forecasting through conceptual models part I-a discussion of principles, J. Hydrol. 10 (1970), 282–290.

    Article  Google Scholar 

  16. T. O’Donnell, Instantaneous unit hydrograph derivation by harmonic analysis, IAHS Resour. Res. 51 (1960), 546–557.

    Google Scholar 

  17. V.R.N. Pauwels, N.E.C. Verhoest and F.P. De Troch, A meta-hillslope model based on an analytical solution to the linearized Boussinesq-equation for temporally variable recharge rates, Water Resour. Res., 38 (2002), no. 12, 1297, doi:1029/2001WR000714.

    Article  Google Scholar 

  18. I. Rodríguez-Iturbe and J. Valdés, The geomorphologic structure of hydrologic response, Water Resour. Res. 15 (1979), 1409–1420.

    Article  Google Scholar 

  19. L. See and S. Openshaw, A hybrid multi-model approach to river level forecasting, Hydrol. Sci. Journal 45 (2000), 523–536.

    Google Scholar 

  20. P.A. Troch, F.P. De Troch and W. Brutsaert, Effective water table depth to describe initial conditions prior to storm rainfall in humid regions, Water Resour. Res. 29 (1993), 427–434.

    Article  Google Scholar 

  21. L. Xiong, A.Y. Shamseldin and K.M. O’Connor, A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system, J. Hydrol. 245 (2001), 196–217.

    Article  Google Scholar 

  22. R.J. Zhao and X.R. Liu, The Xinanjiang model, Computer Models of Watershed Hydrology (V.P. Singh, ed.), Water Resources Publications, 1995, pp. 215–232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vernieuwe, H., Georgieva, O., De Baets, B., Pauwels, V.R.N., Verhoest, N.E.C. (2003). Fuzzy Models of Rainfall-Discharge Dynamics. In: Bilgiç, T., De Baets, B., Kaynak, O. (eds) Fuzzy Sets and Systems — IFSA 2003. IFSA 2003. Lecture Notes in Computer Science, vol 2715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44967-1_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-44967-1_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40383-8

  • Online ISBN: 978-3-540-44967-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics