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Abstract. Decorrelation theory has recently been proposed in order to
address the security of block ciphers and other cryptographic primitives
over a finite domain. We show here how to extend it to infinite domains,
which can be used in the Message Authentication Code (MAC) case.
In 1994, Bellare, Kilian and Rogaway proved that CBC-MAC is secure
when the input length is fixed. This has been extended by Petrank and
Rackoff in 1997 with a variable length.
In this paper, we prove a result similar to Petrank and Rackoff’s one by
using decorrelation theory. This leads to a slightly improved result and
a more compact proof.
This result is meant to be a general proving technique for security, which
can be compared to the approach which was announced by Maurer at
CRYPTO’99.

Decorrelation theory has recently been introduced. (See references [17] to [22].)
Its first aim was to address provable security in the area of block ciphers in
order to prove their security against differential [7] and linear cryptanalysis [10].
As a matter of fact, these techniques have also been used in order to prove
Luby-Rackoff -like pseudorandomness results [9] in a way similar to Patarin’s
“coefficient H method” [14,15]. All previous cases however address random func-
tions over a finite domain, which is not appropriate for MACs.

The CBC-MAC construction is well known in order to make Message Au-
thentication Codes from a block cipher in Cipher Block Chaining mode. Namely,
if C is a permutation defined on a block space {0, 1}m, for a message x =
(m1, . . . ,m�) ∈ ({0, 1}m)� we define

MAC(x) = C(C(. . . C(m1) +m2 . . .) +m�).

The addition is traditionally the XOR operation but can be replaced by any
group (or even quasigroup) law. In 1994, Bellare, Kilian and Rogaway proved
that if C is a uniformly distributed random permutation, then for any integer
� and any distinguisher between MAC and a truly random function which is
limited to d queries, the advantage is less than 3d2�22−m [6]. This shows that
no adaptive attack can forge a new valid (x,MAC(x)) pair with a relevant prob-
ability unless the total number of known blocks d� is within the order of 2

m
2 .

This however holds when all messages have the fixed length �. If the attacker is
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allowed to use messages with different length, it is easy to notice that for any
message x and any block a the MAC of x concatenated with a−MAC(x) is

MAC(x, a−MAC(x)) = C(a)

which does not depend on x and allows to forge a new authenticated message
by replacement of x.

In 1997, Petrank and Rackoff addressed the case of DMAC defined by

MAC(x) = C2(C1(C1(. . . C1(m1) +m2 . . .) +m�))

(see [16]). This type of construction does not mean any originality since it is
already suggested by several standards [2,3,4]. Its security was however formally
proved in [16] for the first time.

If we replace C2 by C2◦C−1
1 we can obviously remove the last C1 application.

We can thus consider the MAC defined by

MAC(x) = C2(C1(. . . C1(m1) +m2 . . .) +m�)

which we call the “encrypted CBC-MAC” in the sequel. In this paper we give a
security proof which is different from [16] and with a slightly improved reduc-
tion. Our proof also happens to be more compact (it is less than 2-page long),
thanks to use of the decorrelation theory tools. Our approach is also more gen-
eral and can be applied to other schemes. In this way it can be compared to
the information theoretic general approach which was announced by Maurer at
CRYPTO’99 [12].

1 Prerequisite

1.1 Definitions and Notations

First of all, for any random function F from a set M1 to a set M2 and any
integer d we associate the “d-wise distribution matrix” which is denoted [F ]d,
defined in the matrix set RMd

1×Md
2 by

[F ]d(x1,...,xd),(y1,...,yd) = Pr[F (x1) = y1, . . . , F (xd) = yd].

Given a metric structure D in RMd
1×Md

2 we can define the distance between
the matrices associated to two random functions F and G. This is the “d-wise
decorrelation distance”. IfG is a random function uniformly distributed in the set
of all functions from M1 to M2 (we let F ∗ denote such a function), this distance
is called the “d-wise decorrelation bias of function F” and denoted DecFd

D(F ).
When F is a permutation (which will usually be denoted C as for “Cipher”)
and G is a uniformly distributed permutation (denoted C∗) it is called the “d-
wise decorrelation bias of permutation F” and denoted DecPd

D(F ). In previous
results we used the metric structures defined by the norms denoted ||.||2 (see
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[18]), |||.|||∞, ||.||a, ||.||s (see [21]). These four norms are matrix norms, which
means that they are norms on RMd

1×Md
2 with the property that

||A×B|| ≤ ||A||.||B||.
This property leads to non-trivial inequalities which can shorten many treat-
ments on the security of conventional cryptography.

Given two random functions F and G from M1 to M2 we call “distinguisher
between F and G” any oracle Turing machine AO which can send M1-element
queries to the oracle O and receive M2-element responses, and which finally
outputs 0 or 1. In particular the Turing machine can be probabilistic. In the fol-
lowing, the number of queries to the oracle will be limited to d. The distributions
on F and G induces a distribution on AF and AG, thus we can compute the
probability that these probabilistic Turing machines output 1. The advantage
for distinguishing F from G is

AdvA(F,G) = Pr
[AF → 1

] − Pr
[AG → 1

]
.

For any class of distinguishers Cl we will denote

AdvCl(F,G) = max
A∈Cl

AdvA(F,G).

We notice that if A is a distinguisher, we can always define a complementary
distinguisher Ā = 1 − A which gives the opposite output. There is no need
for investigating the minimum advantage when the class is closed under the
complement (which is the case of the above class) since

AdvĀ(F,G) = −AdvA(F,G).

We consider the class Clda of all (adaptive) distinguishers limited to d queries.

1.2 Properties

The d-wise distribution matrices have the property that if F and G are indepen-
dent random functions, F from M2 to M3 and G from M1 to M2, then

[F ◦G]d = [G]d × [F ]d.

Thus, if we are using a matrix norm ||.||, we obtain
DecFd

||.||(F ◦G) ≤ DecFd
||.||(F ).DecF

d
||.||(G).

and the same for permutations.
The ||.||a norm defined in [21] has the quite interesting property that it

characterizes the best advantage of a distinguisher in Clda.

Lemma 1 ([21]). For any random functions F and G we have

||[F ]d − [G]d||a = 2.AdvClda
(F,G).
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In this paper, we will use the ||.||a norm only and omit it in the notations.
Finally we recall the following lemma.

Lemma 2 ([21]). Let d be an integer, F1, . . . , Fr be r random function oracles,
and C1, . . . , Cs be s random permutation oracles. We let Ω be a deterministic
oracle Turing machine which can access to the previous oracles and an input tape
x. It defines a random function G(x) = Ω(F1, . . . , Fr, C1, . . . , Cs)(x). We assume
that Ω is such that the number of queries to Fi is limited to some integer ai,
and the number of queries to Cj is limited to bj in total for any i = 1, . . . , r and
any j = 1, . . . , s. We let the F ∗

i (resp. C∗
j ) be independent uniformly distributed

random functions (resp. permutations) on the same range than Fi (resp. Cj) and
we let G∗ = Ω(F ∗

1 , . . . , F
∗
r , C

∗
1 , . . . , C

∗
s ). We have

DecFd(G) ≤
r∑

i=1

DecFaid(Fi) +
s∑

j=1

DecPbjd(Cj) + DecFd(G∗).

This lemma actually separates the problem of studying the decorrelation bias
of a construction scheme into the problem of studying the decorrelation biases
of its internal functions Fi and Cj and studying the decorrelation bias of an
idealized version G∗.

1.3 The Coefficient H Method

Patarin introduced the “coefficient H method” which enables to make pseudo-
randomness proofs more systematic. In the decorrelation theory setting, this
method can be formalized by the following lemma.

Lemma 3 ([22]). Let d be an integer. Let F be a random function from a set
M1 to a set M2. We let X be the subset of Md

1 of all (x1, . . . , xd) with pairwise
different entries. We let F ∗ be a uniformly distributed random function from
M1 to M2. We assume there exist a subset Y ⊆ Md

2 and two positive numbers
ε1 and ε2 such that

– |Y|(#M2)−d ≥ 1− ε1
– ∀x ∈ X ∀y ∈ Y [F ]dx,y ≥ (1− ε2)(#M2)−d.

Then we have DecFd(F ) ≤ 2ε1 + 2ε2.

This lemma intuitively means that if [F ]dx,y is close to [F
∗]dx,y for all x and almost

all y, then the decorrelation bias of F is small. It is quite straightforward with
techniques inspired by Patarin [14,15] and Maurer [11].

As an illustration, Lemma 3 can be used in order to prove the famous Luby-
Rackoff Theorem easily as shown in Appendix.

Theorem 4 (Luby-Rackoff 1986 [9]). Let F ∗
1 , F

∗
2 , F

∗
3 be three independent

random functions on {0, 1}m
2 with uniform distribution. We have

DecFd(Ψ(F ∗
1 , F

∗
2 , F

∗
3 )) ≤ 2d2.2− m

2

DecPd(Ψ(F ∗
1 , F

∗
2 , F

∗
3 )) ≤ 2d2.2− m

2 .
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The results hold for Feistel schemes defined from any (quasi)group operation1.

2 Decorrelation Biases of Functions
over an Infinite Domain

In order to define decorrelation biases of MACs, we need to address the problem
of having infinite sets. Let for instance F be a random function defined from M∗

1
to M2 (M∗

1 is the set of all finite sequences with entries in M1). We define the
[F ]q1,...,qd matrix with rows defined on Mq1

1 × . . . × Mqd

1 and columns defined
on Md

2. Next we define DecF
q1,...,qd(F ) as the distance between [F ]q1,...,qd and

[F ∗]q1,...,qd , where F ∗ has a uniform distribution. Additionally, we can define

DecFd,q(F ) = max
q1+...+qd=q

DecFq1,...,qd(F ).

We can easily check that all previous results remain valid for these definitions,
namely:

– The best advantage of a distinguisher limited to d (adaptively) chosen queries
with a total length of q blocks between F and F ∗ is 1

2DecF
d,q(F ).

– As in Lemma 2, if G = Ω(F1, . . . , Fr, F
′
1, . . . , F

′
s) uses functions Fi and F ′

j on
fixed input length, but with occurrence numbers of ai� and bj respectively
where � is the length of the input of G, we have

DecFd,q(G) ≤
r∑

i=1

DecFaiq(Fi) +
s∑

j=1

DecFbjd(F ′
j) + DecF

d,q(G∗).

We can use permutations Ci and C ′
j as well and have DecP instead of DecF,

or even mixtures of functions and permutations.
– Lemma 3 still holds with DecFd,q instead of DecFd and X equal to the set
of (x1, . . . , xd) with total length q.

3 Security of MAC

Message Authentication Codes (MAC) are functions which map any binary
string onto a fixed length value2 with a secret key. In this paper, we consider
functions defined on the set ({0, 1}m)∗ of finite sequences of m-bit integers3. For
1 Here Ψ(F ∗

1 , F ∗
2 , F ∗

3 ) is the standard notation for a Feistel cipher with three rounds
and round functions F ∗

1 , F ∗
2 , F ∗

3
2 More precisely, the MAC is the output of the function, but we will improperly call
the function a MAC

3 Note that arbitrary bit strings do not always have an integral number of blocks.
For this we must use a padding scheme like the Merkle-Damg̊ard [8,13] one in order
to transform an arbitrary string into a string with an integral number of blocks. In
this paper we prove the security for padded messages which induces the security for
the whole scheme with the padding scheme
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instance, given a block cipher EncK which is a permutation on {0, 1}m defined
from a secret key K, we consider the CBC-MAC construction defined by

MACK(m1, . . . ,m�) = EncK(EncK(. . .EncK(m1) +m2 . . .) +m�).

Since the secret key K is unknown by the opponent and chosen at random
by the legitimate user, we can consider equivalently C = EncK as a random
permutation with a given publicly known distribution, and the MAC itself as a
random function.

The purpose of MACs is to authenticate messages. Namely, the legitimate
authenticator provides MAC(x) is order to authenticate a message x. Saying that
a MAC is (d, q, p)-secure means that for any opponent who can use the legitimate
authenticator as an oracle for at most d − 1 chosen messages x1, . . . , xd−1 and
issue an (xd, c) pair such that xd �= xi for any i and that the total length of
x1, . . . , xd is of q m-bit blocks, the probability that c = MAC(xd) is less than p.
This is the security against adaptive existential forgery attacks.

We notice that if MAC is such that DecFd,q(MAC) = ε, then it is a (d, q,
2−m + ε

2 )-secure MAC. Namely, for any opponent we can make a distinguisher
who just query the forged xd and check whether the output is c or not. Since the
advantage must be less than ε

2 , the probability of success of the opponent must
be less than ε

2 plus the probability of success against a truly random function,
which is 2−m. Hence we use DecFd,q(MAC) upper bounds as security evidences.

For instance, we can consider the Bellare-Kilian-Rogaway result which works
with a fixed input length �.

Theorem 5 (Bellare-Kilian-Rogaway 1994 [6]). For any fixed integer �, we
consider the functionMAC defined on � m-bit blocks from a uniformly distributed
random function F ∗ as follows.

MAC(m1, . . . ,m�) = F ∗(F ∗(. . . F ∗(m1) +m2 . . .) +m�).

For any d we have DecFd(MAC) ≤ 6d2�22−m. This holds for any (quasi)group
addition.

Here is another result which is quite similar to the An-Bellare result [5].

Theorem 6 ([22]). Let F1 and F2 be two independent random functions from
{0, 1}b+m to {0, 1}b. For any � and any (m1, . . . ,m�) ∈ ({0, 1}m)� we define

MAC(m1, . . . ,m�) = F2(F1(. . . F1(F1(0,m1),m2) . . . ,m�), �)

where 0 means a b-bit zero string, and � means an m-bit string which represents
the � value. Considering distinguishers limited to d queries and a total length of
qm bits we have

DecFd,q ≤ DecFq(F1) + DecFd(F2) + q(q − 1)2−m.

Finally, here is the Petrank-Rackoff [16] result.
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Theorem 7 (Petrank-Rackoff [16]). Let C1 and C2 be two independent ran-
dom permutations on {0, 1}m with the same distribution C. For any � and any
(m1, . . . ,m�) ∈ ({0, 1}m)� we define

MAC(m1, . . . ,m�) = C2(C1(C1(. . . C1(C1(m1) +m2) . . .+m�−1) +m�)).

Considering adaptive distinguishers limited to d queries and a total length of qm
bits we have

DecFd,q(MAC) ≤ 2DecPq(C) + 4q22−m.

The result holds for any (quasi)group addition.

4 Encrypted CBC-MAC

Here is our main result.

Theorem 8. Let C1 and C2 be two independent random permutations over
{0, 1}m. For any � and any (m1, . . . ,m�) ∈ ({0, 1}m)� we define

MAC(m1, . . . ,m�) = C2(C1(. . . C1(C1(m1) +m2) . . .+m�−1) +m�).

Considering adaptive distinguishers limited to d queries and a total length of qm
bits we have

DecFd,q(MAC) ≤ DecPq−d(C1) + DecPd(C2)
+d(d− 1)2−m + q(q + 1)(1 + q2−m)2−m.

The result holds for any (quasi)group addition.

This result is slightly better than Theorem 7.

Proof. Lemma 2 reduces to the case where C1 and C2 are independent uniformly
distributed random permutations.

Using Lemma 3, let Y be the set of all y = (y1, . . . , yd) with different yis. We
thus have

ε1 = 1− 2md

2m(2m − 1) . . . (2m − d+ 1) ≤ d(d− 1)
2

2−m.

Now for any collection of xi = (mi,1, . . . ,mi,qi
) we let

Ui,j = C1(. . . C1(C1(mi,1) +mi,2) . . .+mi,j−1) +mj .

We consider the event E that all Ui,qi are pairwise different. We have

[MAC]q1,...,qd
x,y ≥ Pr[MAC(xi) = yi; i = 1, . . . , d and E]

= Pr[MAC(xi) = yi; i = 1, . . . , d/E] Pr[E]

=
1

2m(2m − 1) . . . (2m − d+ 1) Pr[E]

≥ 2−md(1− Pr[Ē])
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therefore we can take ε2 = Pr[Ē] = Pr[∃i < r;Ui,qi = Ur,qr ].
The remaining part of the proof consists of upper bounding ε2 by

q(q+1)
2 (1+

q2−m)2−m and applying Lemma 3.
We call a collision an event Ui,j = Ur,s. This collision is trivial if we have

(mi,1, . . . ,mi,j) = (mr,1, . . . ,mr,s) and non-trivial otherwise. Let Inv be the
event that C1(Ui,j) = 0 for some i, j, and let Coll be the event that we have a
non-trivial collision. We can easily show that the Ē event is included in Inv∪Coll:
if Ui,qi = Ur,qr , then either mi,qi �= mr,qr and it is a non-trivial collision, or it
reduces to Ui,qi−1 = Ur,qr−1 and we can iterate... Thus ε2 ≤ Pr[Inv] + Pr[Coll].

The probability that any adaptive attack against C1 finds a preimage of 0
after q − d queries is obviously less than q

2m−q . Thus Pr[Inv] ≤ q
2m−q .

We let U be the set of all Ui,j-indices, which means the set of all (i, j) such
that 1 ≤ i ≤ d and 1 ≤ j ≤ qi. For A ⊆ U we let c(A) be

c(A) = {(i, j);∃(r, s) ∈ A i = r and j ≤ s}.
Thus c(A) is the set the indices of all Ui,j which are required in order to compute
all Ur,s values for (r, s) ∈ A. We define an ordering on 2U by

A ≤ B ⇐⇒ c(A) ⊆ c(B).
We let I be the set of all indices pairs of potential non-trivial collisions

Ui,j = Ur,s, namely the set of all pairs {(i, j), (r, s)} of U-elements such that
(mi,1, . . . ,mi,j) �= (mr,1, . . . ,mr,s). For any i, j, r, s such that {(i, j), (r, s)} ∈ I
we let Colli,j,r,s be the event of the collision Ui,j = Ur,s (which is necessarily
non-trivial since {(i, j), (r, s)} ∈ I), and we let MinColli,j,r,s be the comple-
mentary in Colli,j,r,s of the union of all Colli′,j′,r′,s′ for {(i′, j′), (r′, s′)} ∈ I
and {(i′, j′), (r′, s′)} < {(i, j), (r, s)}, i.e. the event Ui,j = Ur,s with no prior
non-trivial collision. We easily notice that

Coll =
⋃

{(i,j),(r,s)}∈I
MinColli,j,r,s.

We have at most q(q−1)
2 terms in I. Hence

Pr[Coll] ≤ q(q − 1)
2

max
{(i,j),(r,s)}∈I

Pr[MinColli,j,r,s].

For {(i, j), (r, s)} ∈ I, let us consider the MinColli,j,r,s event. We assume
without loss of generality that s ≤ j. Since we have no prior collision we must
have mi,j �= mr,s. Furthermore we must have Ui,j−1 �= Ur,s−1 because C1 is a
permutation (otherwise C1(Ui,j−1)+mi,j cannot be equal to C1(Ur,s−1)+mr,s)
and j > 1, and we need to consider the event

C1(Ui,j−1) +mi,j = Ur,s.

If we have a collision Ui,j−1 = Ui′,j′ with (i, j − 1) �= (i′, j′) and (i′, j′) ∈
c(i, j, r, s), it must be trivial (otherwise the initial collision is not minimal) which
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means j′ = j − 1 and i′ = r �= i and (mi,1, . . . ,mi,j−1) = (mr,1, . . . ,mr,j−1). If
s < j we have Ui,j = Ur,s and Ur,s = Ui,s thus Ui,j = Ui,s which is non-trivial,
which contradicts the minimality of the initial collision. Thus we must have
s = j, but the trivial collision Ui,j−1 = Ur,j−1 then contradicts Ui,j−1 �= Ur,s−1.
Therefore Ui,j−1 is equal to no Ui′,j′ for (i′, j′) ∈ c(i, j, r, s)\{(i, j − 1)}. This
implies that the marginal distribution of C1(Ui,j−1) with the knowledge of all
previous Ui′,j′ is uniform among a set of at least 2m − q + 1 elements. Hence
Pr[MinColli,j,r,s] ≤ 1

2m−q .
Finally we obtain

ε2 ≤ q

2m − q +
q(q − 1)

2
× 1
2m − q ≤ q(q + 1)

2
(1 + q2−m)2−m.

Applying Lemma 3 now completes the proof. ��

5 Extensions

In our result we notice that since d ≤ q, the bound is small until q reaches
the order of 2

m
2 . This result is tight since usual collision attacks can break

our construction within this complexity. Actually, we can query 2
m
2 two-block

messages until we get a collision MAC(m1,m2) = MAC(m′
1,m

′
2) then query c =

MAC(m1,m2,m3) and output a forged authenticated message ((m′
1,m

′
2,m3), c).

We have d = 2
m
2 + 2 and q = 2.2

m
2 + 6 and p ≈ 1− e−1.

We may think that since we have anm-bit MAC and a security of 2
m
2 uses we

have an efficiency loss in term of storage. We can improve this construction by
shrinking the MAC on m

2 bits as suggested in most of standards. More precisely,
let F be a random function from {0, 1}m to {0, 1}b. We can define

MAC(m1, . . . ,m�) = F (C(. . . C(C(m1) +m2) . . .+m�−1) +m�)

and we have

DecFd,q(MAC) ≤ DecPq(C) + DecFd(F ) + q(q + 1)(1 + q2−m)2−m.

(In the proof of Theorem 8, we take Y equal to the full set so that ε1 = 0.)
If we now want to shorten the two keys, we can replace the independent C

and F random functions by dependent ones. Let ||[CF ]q − [C0F0]q||a denote the
decorrelation distance between the (C,F ) pair and a pair (C0, F0) of independent
random functions such that C0 (resp. F0) has the same distribution than C (resp.
F ). This is half of the best advantage for distinguishing them from q queries.
We should still consider DecPq−d(C) and DecFd(F ). So, even if C and F are
dependent, we still have the following result.

Theorem 9. Let C and C0 be two identically distributed random permutations
on {0, 1}m and let F and F0 be two identically distributed random functions from
{0, 1}m to {0, 1}b. We assume that C0 and F0 are independent. For any � and
any (m1, . . . ,m�) ∈ ({0, 1}m)� we define

MAC(m1, . . . ,m�) = F (C(. . . C(C(m1) +m2) . . .+m�−1) +m�).
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Considering adaptive distinguishers limited to d queries and a total length of qm
bits we have

DecFd,q(MAC) ≤ ||[CF ]q − [C0F0]q||a +DecPq−d(C) +
DecFd(F ) + q(q + 1)(1 + q2−m)2−m.

The result holds for any (quasi)group addition.

This theorem clearly separates the security issues induced by the probabilistic
dependence between C and F , the C algorithm, the F algorithm, and the MAC
scheme.

As an example we can use

C(x) = DESK(x) and F (x) = Trunc(DESK+c(x))

for a given constant c, and where Trunc truncates a 64-bit string onto its first
half and DES is the Data Encryption Standard [1]. We get a MAC on b = 32
bits with a single 56-bit key and block of m = 64 bits. We obtain

DecFd,q(MAC) ≤ f(q) + q(q + 1)(1 + q2−64)2−64

where f(q) is the sum of the best advantages for distinguishing

– (DESK ,Trunc ◦DESK+c) from (DESK1 ,Trunc ◦DESK2)
– DES from C∗

– Trunc ◦DES from F ∗

within a total number of query blocks less than q. Let q = θ2
m
2 (which is a limit

of 32θGB of queries). The advantage of any distinguisher is less than f(q)+θ2

2
thus the probability of success of any adaptive existential forgery attack is less
than 2−32 + f(q)+θ2

2 . Let us conjecture that f
(

232

10

)
≤ 2−7. If we authenticate

less than 3GB, the probability of success of the best attack is less than 1%.
The Advanced Encryption Standard will soon provide better security with

m = 128.
It shall however be outlined that this example is a little misleading since

we do not assume any computational bound on the distinguisher which can
thus perform an exhaustive search. This means that the conjecture is wrong.
We can still modify the result and the computational model by limiting the
time complexity to t. All reductions in this paper introduce simulators (like for
instance a simulator for the MAC given an oracle for DES) which induce a small
time complexity overhead which is often denoted O(1). As a result we obtain
that for the maximal time complexity t such that f

(
232

10

)
≤ 2−7, the probability

of success of any attack which is limited to a complexity of t−O(1) is less than
1% after having authenticated 3GB.
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6 Conclusion

We have shown that the regular CBC-MAC construction provides a secure MAC
when the output is encrypted. The security analysis suggests that if m is the
block length of the underlying block cipher, then we should not use the MAC
construction on more than 2

m
2 blocks in total.

In order to fit to the security, we can even reduce the MAC length down to m
2

bits, and shorten the key with extra security hypothesis. This enables to prove
the security of existing standards.

These results are quite similar than the Petrank-Rackoff ones. Our technique
based on decorrelation theory is however quite systematic and can be applied to
most of current MAC constructions with compact proofs.

Finally, we believe that these techniques will contribute to making systematic
proof analysis of cryptographic schemes and ultimately lead to some automatic
security validation procedures.

A Proof of Theorem 4

Following the Feistel scheme F = Ψ(F ∗
1 , F

∗
2 , F

∗
3 ), we let

xi = (z0i , z
1
i )

z2i = z
0
i + F

∗
1 (z

1
i )

yi = (z4i , z
3
i )

We let E be the event z3i = z
1
i + F

∗
2 (z

2
i ) and z

4
i = z

2
i + F

∗
3 (z

3
i ) for i = 1, . . . , d.

We thus have [F ]dx,y = Pr[E]. We now define

Y =
{
(y1, . . . , yd);∀i < j z3i �= z3j

}
.

We can easily check that Y fulfill the requirements of Lemma 3. Firstly we have

|Y| ≥
(
1− d(d− 1)

2
2− m

2

)
2md

thus we let ε1 =
d(d−1)

2 2− m
2 . Second, for y ∈ Y and any x (with pairwise different

entries), we need to consider [F ]dx,y. Let E
2 be the event that all z2i s are pairwise

different over the distribution of F ∗
1 . We have

[F ]dx,y ≥ Pr[E/E2] Pr[E2].

For computing Pr[E/E2] we know that z3i s are pairwise different, as for the z
2
i s.

Hence Pr[E/E2] = 2−md. It is then straightforward that Pr[E2] ≥ 1− d(d−1)
2 2− m

2

which is 1− ε2. We thus obtain from Lemma 3 that DecFd(F ) ≤ 2d(d− 1)2− m
2 .

From Lemma 3 it is straightforward that DecFd(C∗) ≤ d(d − 1)2−m. We thus
obtain DecPd(F ) ≤ 2d22− m

2 for d ≤ 21+
m
2 . Since DecF is always less than 2, it

also holds for larger d. ��
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