
Camellia: A 128-Bit Block Cipher Suitable
for Multiple Platforms – Design and Analysis

Kazumaro Aoki1, Tetsuya Ichikawa2, Masayuki Kanda1, Mitsuru Matsui2,
Shiho Moriai1, Junko Nakajima2, and Toshio Tokita2

1 Nippon Telegraph and Telephone Corporation,
1-1 Hikarinooka, Yokosuka, Kanagawa, 239-0847 Japan

{maro,kanda,shiho}@isl.ntt.co.jp
2 Mitsubishi Electric Corporation,

5-1-1 Ofuna, Kamakura, Kanagawa, 247-8501 Japan
{ichikawa,matsui,june15,tokita}@iss.isl.melco.co.jp

Abstract. We present a new 128-bit block cipher called Camellia.
Camellia supports 128-bit block size and 128-, 192-, and 256-bit keys,
i.e., the same interface specifications as the Advanced Encryption Stan-
dard (AES). Efficiency on both software and hardware platforms is a
remarkable characteristic of Camellia in addition to its high level of se-
curity. It is confirmed that Camellia provides strong security against
differential and linear cryptanalyses. Compared to the AES finalists, i.e.,
MARS, RC6, Rijndael, Serpent, and Twofish, Camellia offers at least
comparable encryption speed in software and hardware. An optimized
implementation of Camellia in assembly language can encrypt on a Pen-
tium III (800MHz) at the rate of more than 276 Mbits per second, which
is much faster than the speed of an optimized DES implementation. In
addition, a distinguishing feature is its small hardware design. The hard-
ware design, which includes encryption and decryption and key schedule,
occupies approximately 11K gates, which is the smallest among all ex-
isting 128-bit block ciphers as far as we know.

1 Introduction

This paper presents a 128-bit block cipher called Camellia, which was jointly
developed by NTT and Mitsubishi Electric Corporation. Camellia supports 128-
bit block size and 128-, 192-, and 256-bit key lengths, and so offers the same
interface specifications as the Advanced Encryption Standard (AES). The design
goals of Camellia are as follows.

High Level of Security. The recent advances in cryptanalytic techniques are re-
markable. A quantitative evaluation of security against powerful cryptanalytic
techniques such as differential cryptanalysis [4] and linear cryptanalysis [18] is
considered to be essential in designing any new block cipher. We evaluated the
security of Camellia by utilizing state-of-art cryptanalytic techniques. We have
confirmed that Camellia has no differential and linear characteristics that hold

D.R. Stinson and S. Tavares (Eds.): SAC 2000, LNCS 2012, pp. 39–56, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

40 Kazumaro Aoki et al.

with probability more than 2−128. Moreover, Camellia was designed to offer secu-
rity against other advanced cryptanalytic attacks including higher order differen-
tial attacks [13,10], interpolation attacks [10,2], related-key attacks [5,15], trun-
cated differential attacks [13,23], boomerang attacks [26], and slide attacks [6,7].

Efficiency on Multiple Platforms. As cryptographic systems are needed in var-
ious applications, encryption algorithms that can be implemented efficiently on
a wide range of platforms are desirable, however, few 128-bit block ciphers are
suitable for both software and hardware implementation. Camellia was designed
to offer excellent efficiency in hardware and software implementations, including
gate count for hardware design, memory requirements in smart card implemen-
tations, as well as performance on multiple platforms.

Camellia consists of only 8-by-8-bit substitution tables (s-boxes) and logical
operations that can be efficiently implemented on a wide variety of platforms.
Therefore, it can be implemented efficiently in software, including the 8-bit pro-
cessors used in low-end smart cards, 32-bit processors widely used in PCs, and
64-bit processors. Camellia doesn’t use 32-bit integer additions and multiplica-
tions, which are extensively used in some software-oriented 128-bit block ciphers.
Such operations perform well on platforms providing a high degree of support,
e.g., Pentium II/III or Athlon, but not as well on others. These operations can
cause a longer critical path and larger hardware implementation requirements.

The s-boxes of Camellia are designed to minimize hardware size. The four
s-boxes are affine equivalent to the inversion function in the finite field GF(28).
Moreover, we reduced the inversion function in GF(28) to a few GF(24) arith-
metic operations. It enabled us to implement the s-boxes by fewer gate counts.

The key schedule is simple and shares part of its procedure with encryption.
It supports on-the-key subkey generation and subkeys are computable in any
order. The memory requirement for generating subkeys is quite small; an efficient
implementation requires about 32-byte RAM for 128-bit keys and about 64-byte
RAM for 192- and 256-bit keys.

Outline of the Paper. This paper is organized as follows: Sect. 2 describes the
notations and high-level structure of Camellia. Section 3 defines each components
of the cipher. Section 4 describes the rationale behind Camellia’s design. In
Sect. 5 we evaluate Camellia’s strength against known attacks. Section 6 contains
the performance of Camellia. We conclude in Sect. 7.

2 Structure of Camellia

Camellia uses an 18-round Feistel structure for 128-bit keys, and a 24-round Feis-
tel structure for 192- and 256-bit keys, with additional input/output whitenings
and logical functions called the FL-function and FL−1-function inserted every
6 rounds. Figures 1 shows an overview of encryption using 128-bit keys. An
element with the suffix (n) shows that the element is n-bit long.

The key schedule generates 64-bit subkeys kwt(t = 1, 2, 3, 4) for input/output
whitenings, ku (u = 1, 2, . . . , r) for round functions and klv (v = 1, 2, . . . , r/3−2)

Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms 41

FL

F

F

F

F

F

F

FL -1

6-Round

6-Round

FL FL -1

k 6(64)k5(64),k4(64),

k3(64),k2(64),k1(64),

M(128)

C
(128)

k1(64)

k 2(64)

k 3(64)

k 4(64)

k 5(64)

k 6(64)

k 12(64)k11(64),k10(64),

k9(64),k8(64),k7(64),

k 18(64)k17(64),k16(64),

k15(64),k14(64),k13(64),

L0(64)

L1(64)

L2(64)

L3(64)

L4(64)

L5(64)

R0(64)

R1(64)

R2(64)

R3(64)

R4(64)

R 5(64)

L0(64) R0(64)

L18(64) R18(64)

kl3(64) kl4(64)

kl1(64) kl2(64)

kw
1(64)

kw
3(64)

6-Round

2(64)
kw

kw
4(64)

Fig. 1. Encryption procedure of Camellia for 128-bit keys

for FL- and FL−1-functions from the secret key K, where r is the number of
rounds.

2.1 Notations

XL, XR : the left-half and the right-half data of X, respectively.
⊕,∩,∪ : bitwise exclusive-OR (XOR), AND and OR operation, respectively.

|| : concatenation of two operands.
>>>n, <<<n : rotation to the right and the left by n bits, respectively.

0x : hexadecimal representation.

2.2 Encryption for 128-Bit Keys

First a 128-bit plaintext M is XORed with kw1||kw2 and separated into two
64-bit data L0 and R0, i.e., M ⊕ (kw1||kw2) = L0||R0. Then, the following
operations are performed from r = 1 to 18, except for r = 6 and 12;

Lr = Rr−1 ⊕ F (Lr−1, kr), Rr = Lr−1.

42 Kazumaro Aoki et al.

For r = 6 and 12, the following is carried out;

L′
r = Rr−1 ⊕ F (Lr−1, kr), R′

r = Lr−1,
Lr = FL(L′

r, klr/3−1), Rr = FL−1(R′
r, klr/3).

Lastly, R18 and L18 are concatenated and XORed with kw3||kw4. The resul-
tant value is the 128-bit ciphertext, i.e., C = (R18||L18) ⊕ (kw3||kw4).

2.3 Encryption for 192- and 256-Bit Keys

Similarly to the encryption for 128-bit keys, first a 128-bit plaintext M is XORed
with kw1||kw2 and separated into two 64-bit data L0 and R0, i.e., M⊕(kw1||kw2)
= L0||R0. Then, the following operations are performed from r = 1 to 24, except
for r = 6, 12, and 18;

Lr = Rr−1 ⊕ F (Lr−1, kr), Rr = Lr−1.

For r = 6, 12, and 18, the following are performed;

L′
r = Rr−1 ⊕ F (Lr−1, kr), R′

r = Lr−1,
Lr = FL(L′

r, klr/3−1), Rr = FL−1(R′
r, klr/3).

Lastly, R24 and L24 are concatenated and XORed with kw3||kw4. The resul-
tant value is the 128-bit ciphertext, i.e., C = (R24||L24) ⊕ (kw3||kw4).

2.4 Decryption

The decryption procedure of Camellia can be done in the same way as the
encryption procedure by reversing the order of the subkeys, which is one of
merits of Feistel networks. In Camellia, FL/FL−1-function layers are inserted
every 6 rounds, but this property is still preserved.

2.5 Key Schedule

Figure 2 shows the key schedule of Camellia. Two 128-bit variables KL and KR

are defined as follows. For 128-bit keys, the 128-bit key K is used as KL and
KR is 0. For 192-bit keys, the left 128-bit of the key K is used as KL, and
concatenation of the right 64-bit of K and the complement of the right 64-bit of
K is used as KR. For 256-bit keys, the left 128-bit of the key K is used as KL

and the right 128-bit of K is used as KR.
Two 128-bit variables KA and KB are generated from KL and KR as shown

in Fig. 2. Note that KB is used only if the length of the secret key is 192 or 256
bits. The 64-bit constants Σi (i = 1, 2, . . . , 6) are used as “keys” in the Feistel
network. They are defined as continuous values from the second hexadecimal
place to the seventeenth hexadecimal place of the hexadecimal representation of
the square root of the i-th prime. These constant values are shown in Table 1.

The 64-bit subkeys kwt, ku, and klv are generated from KL, KR, KA, and
KB . The subkeys are generated by rotating KL, KR, KA, and KB and taking
the left- or right-half of them. Details are shown in Table 2.

Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms 43

Table 1. The key schedule constants

Σ1 0xA09E667F3BCC908B Σ4 0x54FF53A5F1D36F1C
Σ2 0xB67AE8584CAA73B2 Σ5 0x10E527FADE682D1D
Σ3 0xC6EF372FE94F82BE Σ6 0xB05688C2B3E6C1FD

Table 2. Subkeys for 128-bit keys and 192/256-bit keys

128-bit keys subkey value 192/256-bit keys subkey value
Prewhitening kw1 (KL<<<0)L Prewhitening kw1 (KL<<<0)L

kw2 (KL<<<0)R kw2 (KL<<<0)R
F (Round1) k1 (KA<<<0)L F (Round1) k1 (KB<<<0)L
F (Round2) k2 (KA<<<0)R F (Round2) k2 (KB<<<0)R
F (Round3) k3 (KL<<<15)L F (Round3) k3 (KR<<<15)L
F (Round4) k4 (KL<<<15)R F (Round4) k4 (KR<<<15)R
F (Round5) k5 (KA<<<15)L F (Round5) k5 (KA<<<15)L
F (Round6) k6 (KA<<<15)R F (Round6) k6 (KA<<<15)R
FL kl1 (KA<<<30)L FL kl1 (KR<<<30)L
FL−1 kl2 (KA<<<30)R FL−1 kl2 (KR<<<30)R
F (Round7) k7 (KL<<<45)L F (Round7) k7 (KB<<<30)L
F (Round8) k8 (KL<<<45)R F (Round8) k8 (KB<<<30)R
F (Round9) k9 (KA<<<45)L F (Round9) k9 (KL<<<45)L
F (Round10) k10 (KL<<<60)R F (Round10) k10 (KL<<<45)R
F (Round11) k11 (KA<<<60)L F (Round11) k11 (KA<<<45)L
F (Round12) k12 (KA<<<60)R F (Round12) k12 (KA<<<45)R
FL kl3 (KL<<<77)L FL kl3 (KL<<<60)L
FL−1 kl4 (KL<<<77)R FL−1 kl4 (KL<<<60)R
F (Round13) k13 (KL<<<94)L F (Round13) k13 (KR<<<60)L
F (Round14) k14 (KL<<<94)R F (Round14) k14 (KR<<<60)R
F (Round15) k15 (KA<<<94)L F (Round15) k15 (KB<<<60)L
F (Round16) k16 (KA<<<94)R F (Round16) k16 (KB<<<60)R
F (Round17) k17 (KL<<<111)L F (Round17) k17 (KL<<<77)L
F (Round18) k18 (KL<<<111)R F (Round18) k18 (KL<<<77)R
Postwhitening kw3 (KA<<<111)L FL kl5 (KA<<<77)L

kw4 (KA<<<111)R FL−1 kl6 (KA<<<77)R
F (Round19) k19 (KR<<<94)L
F (Round20) k20 (KR<<<94)R
F (Round21) k21 (KA<<<94)L
F (Round22) k22 (KA<<<94)R
F (Round23) k23 (KL<<<111)L
F (Round24) k24 (KL<<<111)R
Postwhitening kw3 (KB<<<111)L

kw4 (KB<<<111)R

44 Kazumaro Aoki et al.

K L(128)

Σ1(64)

Σ2(64)

Σ3(64)

Σ4(64)

Σ5(64)

Σ6(64)

K R(128)

K A(128) K B(128)

K R(128)

K L(128)

F

F

F

F

F

F

Fig. 2. Key schedule

3 Components of Camellia

3.1 F -Function

The F -function is shown in Fig. 3. The F -function uses the SPN (Substitution-
Permutation Network) structure. The S-function is the non-linear layer and the
P -function is the linear layer.

3.2 S-Function, s-Boxes

The S-function consists of eight s-boxes, and four different s-boxes, s1, s2, s3,
and s4 are used. All of them are affine equivalent to the inversion function in
GF(28). The data of s2, s3, and s4 can be generated from the s1 table. The
tables are shown in [1].

s1 : GF(2)8 → GF(2)8, x �→ h(g(f(0xc5 ⊕ x))) ⊕ 0x6e

s2 : GF(2)8 → GF(2)8, x �→ s1(x)<<<1

s3 : GF(2)8 → GF(2)8, x �→ s1(x)>>>1

s4 : GF(2)8 → GF(2)8, x �→ s1(x<<<1)

Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms 45

z 8

z 7

z 6

z 5

z 4

z 3

z 2

z 1

y8

y7

y6

y5

y4

y3

y2

y1

s

k

s

s

s

s

s

s

s

i (64)

P-FunctionS-Function

x 8(8)

x 7(8)

x 6(8)

x 5(8)

x 4(8)

x 3(8)

x 2(8)

x 1(8)

z’ 8(8)

z’ 7(8)

z’ 6(8)

z’ 5(8)

z’ 4(8)

z’ 3(8)

z’ 2(8)

z’ 1(8)

1

4

3

2

4

3

2

1

Fig. 3. F -function

where functions f and h are affine functions and function g is the inversion
function in GF(28) as given below.

f : GF(2)8 → GF(2)8, (a1, a2, . . . , a8) �→ (b1, b2, . . . , b8),

where

b1 = a6 ⊕ a2, b2 = a7 ⊕ a1, b3 = a8 ⊕ a5 ⊕ a3, b4 = a8 ⊕ a3,
b5 = a7 ⊕ a4, b6 = a5 ⊕ a2, b7 = a8 ⊕ a1, b8 = a6 ⊕ a4.

h : GF(2)8 → GF(2)8, (a1, a2, . . . , a8) �→ (b1, b2, . . . , b8),

where

b1 = a5 ⊕ a6 ⊕ a2, b2 = a6 ⊕ a2, b3 = a7 ⊕ a4, b4 = a8 ⊕ a2,
b5 = a7 ⊕ a3, b6 = a8 ⊕ a1, b7 = a5 ⊕ a1, b8 = a6 ⊕ a3.

g : GF(2)8 → GF(2)8, (a1, a2, . . . , a8) �→ (b1, b2, . . . , b8),

where

(b8 + b7α+ b6α
2 + b5α

3) + (b4 + b3α+ b2α
2 + b1α

3)β
= ((a8+a7α+a6α2+a5α3)+(a4+a3α+a2α2+a1α3)β)−1.

This inversion is performed in GF(28) assuming 0−1 = 0, where β is an
element in GF(28) that satisfies β8 + β6 + β5 + β3 + 1 = 0, and α = β238 =
β6 + β5 + β3 + β2 is an element in GF(24) that satisfies α4 + α+ 1 = 0.

46 Kazumaro Aoki et al.

1

X(64)

XL(32)

Y(64)

kl i L(32)

XR(32)

YL(32) YR(32)

kl i R(32)

Fig. 4. FL-function

1

X (64)

Y(64)

kl i R(32)

kl i L(32)

YL(32) YR(32)

XL(32) XR(32)

Fig. 5. FL−1-function

3.3 P -Function

The P -function is defined as follows:

P : (GF(2)8)8 → (GF(2)8)8, (z1, z2, . . . , z8) �→ (z′
1, z

′
2, . . . , z

′
8),

where

z′
1 = z1 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8, z′

2 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8,
z′
3 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8, z′

4 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7,
z′
5 = z1 ⊕ z2 ⊕ z6 ⊕ z7 ⊕ z8, z′

6 = z2 ⊕ z3 ⊕ z5 ⊕ z7 ⊕ z8,
z′
7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8, z′

8 = z1 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7.

3.4 FL-Function and FL−1-Function

The FL-function is shown in Fig. 4, and is defined as follows.

FL : GF(2)64 × GF(2)64 → GF(2)64, (XL||XR, klL||klR) �→ YL||YR,

where
YR = ((XL ∩ klL)<<<1) ⊕XR, YL = (YR ∪ klR) ⊕XL.

The FL−1-function is shown in Fig. 5. The following equation holds.

FL−1(FL(x, k), k) = x.

4 Design Rationale

4.1 F -Function

The design strategy of the F -function of Camellia follows that of the F -function
of E2 [14]. The main difference between E2 and Camellia is the adoption of

Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms 47

the 1-round (conservative) SPN, not the 2-round SPN, i.e., S-P-S. When the
1-round SPN is used as the round function in a Feistel cipher, the theoretical
evaluation of the upper bound of differential and linear characteristic probability
becomes more complicated, but the speed under the same level of “real” security
is expected to be improved. See Sect. 6 for detailed discussions on security.

4.2 P -Function

The design rationale of the P -function is similar to that of the P -function of
E2 [16]. That is, for computational efficiency, it should be represented using only
bytewise XORs and for security against differential and linear cryptanalyses, its
branch number should be optimal. From among the linear transformations that
satisfy these conditions, we chose one considering highly efficient implementation
on 32-processors [3] and high-end smart cards, as well as 8-bit processors.

4.3 s-Boxes

As the s-boxes we adopted functions affine equivalent to the inversion function
in GF(28) for enhanced security and small hardware design.

There is a function affine equivalent to the inversion function in GF(28) that
achieves the best known of the maximum differential and linear probabilities,
2−6. We choose this kind of functions as s-boxes. Moreover, the high degree of
the Boolean polynomial of every output bit of the s-boxes makes it difficult to
attack Camellia by higher order differential attacks. The two affine functions
that are performed at the input and output of the inversion function in GF(28)
complicates the expressions of the s-boxes in GF(28), which is expected to make
interpolation attacks ineffective. Making the four s-boxes different slightly im-
proves security against truncated differential cryptanalysis [23].

For small hardware design, the elements in GF(28) can be represented as
polynomials with coefficients in the subfield GF(24). In other words, we can
implement the s-boxes by using a few operations in the subfield GF(24) [22].
Two affine functions at the input and output of the inversion function in GF(28)
also play a role in complicating the expressions of the s-boxes in GF(24).

4.4 FL- and FL−1-Functions

FL- and FL−1-functions are “inserted” between every 6 rounds of a Feistel
network to provide non-regularity across rounds. One of the goals for such a
design is to thwart future unknown attacks. It is one of merits of regular Feistel
networks that encryption and decryption procedures are the same except for the
order of the subkeys. In Camellia, FL/FL−1-function layers are inserted every
6 rounds, but this property is still preserved.

The design criteria of these functions are similar to those of the FL-function
of MISTY [20]. The difference between MISTY and Camellia is the addition of
1-bit rotation. This is expected to make bytewise cryptanalysis harder, but it

48 Kazumaro Aoki et al.

has no negative impact on hardware size or speed. The design criteria are that
these functions must be linear for any fixed key and that their forms depend on
key values. Since these functions are linear as long as the key is fixed, they do
not make the average differential and linear probabilities of the cipher higher.
Moreover, these functions are fast in both software and hardware since they are
constructed by logical operations such as AND, OR, XOR, and rotations.

4.5 Key Schedule

The design criteria of the key schedule are as follows.

1. It should be simple and share part of its procedure with encryption (and
decryption).

2. Subkey generation for 128-, 192- and 256-bit keys can be performed by using
the same key schedule (circuit). Moreover, the key schedule for 128-bit keys
can be performed by using a part of this circuit.

3. Key setup time should be shorter than encryption time. In cases where large
amounts of data are processed with a single secret key, the setup time for key
scheduling may be unimportant. On the other hand, in applications in which
the key is changed frequently, key agility is a factor. One basic component
of key agility is key setup time.

4. It should support on-the-fly subkey generation.
5. On-the-fly subkey generation should be computable in the same way in both

encryption and decryption. Some ciphers have separate key schedules for
encryption and decryption. In other ciphers, e.g., Rijndael or Serpent, sub-
keys are computable in the forward direction only and require unwinding for
decryption.

6. There should be no equivalent keys.
7. There should be no related-key attacks or slide attacks.

Criteria 1 and 2 mainly address small hardware requirements, Criteria 3, 4,
and 5 are advantageous in terms of practical applications, and Criteria 6 and 7
are for security.

The memory requirement for generating subkeys is quite small. An efficient
implementation of Camellia for 128-bit keys requires 16 bytes (=128 bits) for the
original secret key, KL, and 16 bytes (=128 bits) for the intermediate key, KA.
Thus the required memory is 32 bytes. Similarly, an efficient implementation of
Camellia for 192- and 256-bit keys needs only 64 bytes.

5 Security

This section discusses the security of Camellia. Hereafter, we call Camellia with-
out FL- and FL−1-functions Camellia∗.

Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms 49

5.1 Differential and Linear Cryptanalysis

The most well-known and powerful approaches to attacking many block ciphers
are differential cryptanalysis [4] and linear cryptanalysis [18]. There are several
methods of evaluating security against these attacks, where there is a kind of
“duality” relation between them [19,8]: in other words, the security against both
attacks can be evaluated in similar ways.

It is known that the upper bounds of differential and linear characteristic
probabilities can, for several block ciphers, be estimated using the minimum
numbers of differential and linear active s-boxes in some consecutive rounds,
respectively. Kanda [11] shows the minimum numbers of differential and linear
active s-boxes for Feistel ciphers with conservative SPN (S-P) round function.

Definition 1. ([25]) The branch number B of linear transformation P is defined
by

B = min
x�=0

(wH(x) + wH(P (x))),

where wH(x) denotes the bytewise Hamming weight of x.

Theorem 1. The minimum number of differential/linear active s-boxes in any
eight consecutive rounds is equal or larger than 2B + 1.

Theorem 2. Let ps and qs be the maximum differential and linear probabilities
of all s-boxes, and D and L be the minimum numbers of total differential and
linear active s-boxes, respectively. Then, the maximum differential and linear
characteristic probabilities are bounded by pD

s and qL
s , respectively.

In the case of Camellia, the maximum differential and linear probabilities of
the s-boxes are ps = qs = 2−6. The branch number of the linear transformation
(P -function) is 5, i.e., B = 5. Letting p, q be the maximum differential and linear
characteristic probabilities of Camellia∗ reduced to 16-round, respectively, we
have p ≤ p

2(2B+1)
s = (2−6)22 = 2−132 and q ≤ q

2(2B+1)
s = (2−6)22 = 2−132 from

Theorems 1 and 2. Both probabilities are below the security threshold of 128-bit
block ciphers: 2−128. It follows that there is no effective differential characteristic
or linear characteristic for Camellia∗ reduced to more than 15 rounds. Since FL-
and FL−1-functions are linear for any fixed key, they do not make the average
differential and linear probabilities of the cipher higher. Hence, it is proven that
Camellia offers enough security against differential and linear cryptanalyses.

Note that the result above are based on Theorems 1 and 2. Both theorems
deal with general cases of Feistel ciphers with SPN round function, so we ex-
pect that Camellia is actually more secure than shown by the result above.
As supporting evidence, we counted the number of active s-boxes of Camellia
and Camellia∗ with reduced rounds. The counting algorithm is similar to that
described in [21] except following three items.

– Prepare the table for the number of active s-boxes instead of transition
probability table.

50 Kazumaro Aoki et al.

Table 3. Upper bounds of differential characteristic probability of Camellia

of rounds 1 2 3 4 5 6 7 8 9 10 11 12

Based on 2−12 2−30 2−42 2−66 2−96

Th. 1 and 2 (2) (5) (7) (11) (16)

Camellia 1 2−6 2−12 2−42 2−54 2−66 2−72 2−72 2−78 2−108 2−120 2−132

(0) (1) (2) (7) (9) (11) (12) (12) (13) (18) (20) (22)

Camellia∗ 1 2−6 2−12 2−36 2−54 2−66 2−78 2−90 2−108 2−126 2−132

(0) (1) (2) (6) (9) (11) (13) (15) (18) (21) (22)

Note: The numbers in brackets are the number of active s-boxes.

Table 4. Upper bounds of linear characteristic probability of Camellia

of rounds 1 2 3 4 5 6 7 8 9 10 11 12

Based on 2−12 2−30 2−42 2−66 2−96

Th. 1 and 2 (2) (5) (7) (11) (16)

Camellia 1 2−6 2−12 2−36 2−54 2−66 2−72 2−72 2−78 2−102 2−120 2−132

(0) (1) (2) (6) (9) (11) (12) (12) (13) (17) (20) (22)

Camellia∗ 1 2−6 2−12 2−36 2−54 2−66 2−78 2−84 2−108 2−120 2−132

(0) (1) (2) (6) (9) (11) (13) (14) (18) (20) (22)

Note: The numbers in brackets are the number of active s-boxes.

– Count the number of active s-boxes instead of computing transition proba-
bility.

– FL- and FL−1-functions set all elements to the minimum number of ac-
tive s-boxes in the table. This means that the algorithm gives consideration
to existence of weak subkeys inserted to FL- and FL−1-functions, since
there may be some possibility of connecting every later differential and lin-
ear characteristic with the previous one with the highest probability, which
is equivalent to the minimum number of active s-boxes.

As a result, we confirmed that 12-round Camellia has no differential and
linear characteristic with probability higher than 2−128 (see Tables 3 and 4).

5.2 Truncated Differential and Linear Cryptanalysis

The attacks using truncated differentials were introduced by Knudsen [13]. He
defined them as differentials where only a part of the difference can be predicted.
The notion of truncated differentials introduced by him is wide, but with a
byte-oriented cipher it is natural to study bytewise differentials as truncated
differentials [23].

The maximum differential probability is considered to provide the strict eval-
uation of security against differential cryptanalysis, but computing its value is
impossible in general, since a differential is a set of all differential characteristics
with the same input difference and the same output difference for a Markov ci-
pher [17]. On the other hand, a truncated differential can be regarded as a subset

Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms 51

of the differential characteristics which are exploitable in cryptanalysis. For some
ciphers, e.g., byte-oriented ciphers, the probability of truncated differential can
be computed easily and correctly, and it gives a more strict evaluation than the
maximum differential characteristic probability.

A truncated differential cryptanalysis of reduced-round variants of E2 was
presented by Matsui and Tokita at FSE’99 [23]. Their analysis was based on
the “byte characteristic,” where the values to the difference in a byte are distin-
guished between non-zero and zero. They found a 7-round byte characteristic,
which leads to a possible attack on an 8-round variant of E2 without IT -Function
(the initial transformation) and FT -Function (the final transformation). The
best attack of E2 shown in [24] breaks an 8-round variant of E2 with either IT -
Function or FT -Function using 294 chosen plaintexts. In [24] we also show the
attack which distinguishes a 7-round variant of E2 with IT - and FT -Functions
from a random permutation using 291 chosen plaintexts.

Camellia is a byte-oriented cipher similar to E2, and it is important to eval-
uate its security against truncated differential cryptanalysis. We searched for
truncated differentials using an algorithm similar to the one described in [23,24].
The main difference of the round function between E2 and Camellia is the adop-
tion of the 1-round SPN not the 2-round SPN, i.e., S-P-S. In the search for
truncated differentials of E2, we used about 2−8 as the probability of difference
cancellation in one byte at the XOR of Feistel network. However, the round
function of Camellia doesn’t have the second s-boxes-layer, and the difference
cancellation in plural bytes sometimes occurs with the same probability. Accord-
ingly, we changed the difference cancellation rule at the XOR of Feistel network
in the search algorithm. As a result, Camellia with more than 10 rounds is
indistinguishable from a random permutation, in both cases with/without FL-
/FL−1-function layers.

Next, we introduce a new cryptanalysis called truncated linear cryptanalysis.
Due to the duality between differential and linear cryptanalyses, we can evaluate
security against truncated linear cryptanalysis by using a similar algorithm to
that above. To put it concretely, we can perform the search by replacing the
matrix of P -function with the transposed matrix. As a result, Camellia∗ with
more than 10 rounds is indistinguishable from a random permutation.

5.3 Boomerang Attack

Boomerang attack [26] requires two differentials. Let the probability of the dif-
ferentials be p∆ and p∇. An boomerang attack that is superior than exhaustive
key search requires

p∆p∇ ≥ 2−64. (1)

Using Table 3, there is no combination that satisfies (1) for Camellia∗. The
best boomerang probability for Camellia∗ reduced to 8-round is bounded by 2−66

that is obtained by p∆ = 2−12 (3 rounds) and p∇ = 2−54 (5 rounds). Since the
attackable rounds is bounded by much shorter than the specification of Camellia,
18 or 24, Camellia seems secure against a boomerang attack.

52 Kazumaro Aoki et al.

Table 5. Smallest number of unknown coefficients for 128-, 192-, and 256-bit keys

whitening×1 + round×r (r < 4) 1
whitening×1 + round×4 255
More rounds 256

5.4 Higher Order Differential Attack

Higher order differential attack is generally applicable to ciphers that can be
represented as Boolean polynomials of low degree. All intermediate bits in the
encryption process can be represented as Boolean polynomials, i.e., polynomials
GF(2)[x1, x2, . . . , xn] in the bits of the plaintext: {x1, x2, . . . , xn}. In the higher
order differential attack described in [10, Theorem 1], if the intermediate bits
are represented by Boolean polynomials of degree at least d, the (d+1)-th order
differential of the Boolean polynomial becomes 0.

For the degrees of Boolean polynomials of the s-boxes of Camellia, the func-
tions affine equivalent to the inversion function in GF(28) are adopted as the
s-boxes. We confirmed that the degree of the Boolean polynomial of every out-
put bit of the s-boxes is 7 by finding Boolean polynomial for every output bit
of the s-boxes. In Camellia, it is expected that the degree of an intermediate
bit in the encryption process increases as the data pass through many s-boxes.
For example, the degree becomes 73 > 128 after passing through three s-boxes.
Therefore, we expect that higher order differential attacks fail against Camellia
with full rounds.

5.5 Interpolation Attack and Linear Sum Attack

The interpolation attack proposed in [10] is typically applicable to attacking
ciphers that use simple algebraic functions. Linear sum attack [2] is a general-
ization of the interpolation attack.

A practical algorithm that evaluates the security against linear sum attack
was proposed in [2]. We searched for linear relations between any plaintext byte
and any ciphertext byte over GF(28) using the algorithm. Table 5 summarizes the
results, and shows that Camellia is secure against linear sum attack including
interpolation attack. It also implies that Camellia is secure against Square
attack [9] followed by [2, Theorem 3].

5.6 Security of Key Schedule

No Equivalent Keys: Since the set of subkeys generated by the key schedule
contain the original secret key, there is no equivalent set of subkeys generated
from distinct secret keys. Therefore, we expect that there are no distinct secret
keys both of which encrypt each of many plaintexts into the same ciphertext.

Slide Attack: In [6,7] the slide attacks were introduced, based on earlier work
in [5,12]. In particular it was shown that iterated ciphers with identical round

Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms 53

functions, that is, equal structures and equal subkeys in the round functions, are
susceptible to slide attacks.

In Camellia, FL- and FL−1-functions are “inserted” between every 6 rounds
of a Feistel network to provide non-regularity across rounds. Moreover, from the
viewpoint of the key schedule, slide attacks seems to be very unlikely to succeed.

Related-Key Attack: We are convinced that the key schedule of Camellia makes
related-key attacks [5,15] very difficult. In these attacks, an attacker must be
able to get encryptions using several related keys. However, since the subkeys
depend on KA and KB , which are the results of encryption of a secret key, and
if an attacker wants to change the secret key, he can’t get KA and KB desired,
and vice versa, these subkey relations will be very hard to control and predict.

6 Performance

6.1 Software Implementations

Table 6 summarizes the current software implementations of Camellia. The table
shows that Camellia can be efficiently implemented on low-end smart cards, and
32-bit and 64-bit processors. We use the abbreviations M (mega) for 106 and m
(milli) for 10−3 in the table.

6.2 Hardware Performance

We measured the hardware performance of Camellia for 128-bit keys on ASIC
(Application Specific Integrated Circuit) and FPGA (Field Programmable Gate
Array). Table 7 shows the environment of our hardware design and evaluation.
We evaluated hardware performance of the three types: Type 1, Type 2 and
Type 3 logic. The hardware design policy of each type is as follows.

Type 1 Fast implementation from the viewpoint of encryption speed
Type 2 Small implementation from the viewpoint of total logic size
Type 3 Small implementation (special case for FPGA)

Tables 8 through 11 summarize the hardware performance of Camellia for
128-bit keys on ASIC and FPGA.

7 Conclusion

We have presented Camellia, the rationale behind its design, its suitability for
both software and hardware implementation, and the results of our cryptanaly-
ses. For further information, please refer to the specification of Camellia [1] or full
paper, which are available on the Camellia home page: http://info.isl.ntt.
co.jp/camellia/.

The performances shown in this paper leave room for further optimizations.
The latest performance results will be posted on the Camellia home page.

54 Kazumaro Aoki et al.

Table 6. Camellia software performance

Processor Lang. Key Timing [cycles] Dynamic [bytes] Code [bytes] Table
[bits] Setupa (b) Enc.c (d) Setupa Enc.c Setupa Enc.c [bytes]

P IIIe Asm 128 160 (4.4M) 371 (242M) 28 36 1,046 2,150 8,224
192 222 (3.2M) 494 (181M) 28 36 1,469 3,323 8,240
256 226 (3.1M) 494 (181M) 28 36 1,485 3,323 8,240

P IIf Cg 128 263 (1.1M) 577 (67M) 44 64 1,600 3,733 4,128
Alphah Asm 128 118 (5.7M) 339 (252M) 48 48 1,132 3,076 16,528

192 176 (3.7M) 445 (192M) 48 48 1,668 4,000 16,528
256 176 (3.7M) 445 (192M) 48 48 1,676 4,000 16,528
128 158 (4.2M) 326 (262M) 48 48 1,600 2,928 16,512

8051i Asm 128 0 (0) 10217 (10m) 0 32 0 702 288

a Key schedule may be included.
b Seconds for 8051, and keys/s for other processors.
c Numbers of this column is the same as decryption.
d Seconds for 8051, and b/s for other processors.
e Intel Pentium III (700MHz), 256KB on-die L2 cache, FreeBSD 4.0R, 128MB main memory.
f Intel Pentium II (300MHz), 512KB L2 cache, MS-Windows 95, 160MB main memory.
g ANSI C, Microsoft Visual C++ 6 with the optimization options /G6 /Zp16 /ML /Ox /Ob2.
h Alpha 21264 (667MHz), Compaq Tru64 UNIX 4.0F, 2GB main memory.
i Intel 8051 (12MHz; 1 cycle = 12 oscillator periods) simulator on Unix.

Table 7. Hardware evaluation environment (ASIC, FPGA)

Language (ASIC, FPGA) Verilog-HDL
Simulator (ASIC, FPGA) Verilog-XL

Design library (ASIC) Mitsubishi Electric 0.35µ CMOS ASIC library
(FPGA) Xilinx XC4000XL series

Login synthesis (ASIC) Design Compiler version 1998.08
(FPGA) Synplify version 5.3.1 and ALLIANCE version 2.1i

Table 8. Hardware performance (Type 1: [ASIC(0.35µ CMOS)])

Algorithm Area [Gate] Key setup Critical- Throughput
name Enc.&Dec.a Key expan.b Total logicc time [ns] path [ns] [Mb/s]
DES 42,204 12,201 54,405 — 55.11 1161.31

Triple-DES 124,888 23,207 128,147 — 157.09 407.40
MARS 690,654 2,245,096 2,935,754 1740.99 567.49 225.55
RC6 741,641 901,382 1,643,037 2112.26 627.57 203.96

Rijndael 518,508 93,708 612,834 57.39 65.64 1950.03
Serpent 298,533 205,096 503,770 114.07 137.40 931.58
Twofish 200,165 231,682 431,857 16.38 324.80 394.08
Camellia 216,911 55,907 272,819 24.36 109.35 1170.55

a including output registers
b including subkey registers
c including buffers for fan-out adjustment

Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms 55

Table 9. Hardware performance (Type 2: [ASIC(0.35µ CMOS)])

Algorithm Area [Gate] Key setup Critical- Throughput
name Enc.&Dec.a Key sched.b Total logic c time [ns] path [ns] [Mb/s]

Camellia 6,367 4,979 11,350 110.2 27.67 220.28

a including output registers and data selector
b including subkey registers and a part of key expansion logic
c including buffers for fan-out adjustment

Table 10. Hardware performance (Type 2: [FPGA(XC4000XL series)])

Algorithm Total Area [CLBs] Critical-path [ns] Throughput [Mb/s]
Camellia 1,296 78.815 77.34

Table 11. Hardware performance (Type 3: [FPGA(XC4000XL series)])

Algorithm Total Area [CLBs] Critical-path [ns] Throughput [Mb/s]
Camellia 874 49.957 122.01

We have analyzed Camellia and found no important weakness. The cipher has
a conservative design and any practical attacks against Camellia would require
a major breakthrough in the area of cryptanalysis. We think that Camellia is a
very strong cipher, which matches the security of the existing best block ciphers.

References

1. Aoki, Ichikawa, Kanda, Matsui, Moriai, Nakajima, Tokita, “Specification of Camel-
lia — a 128-bit Block Cipher,” http://info.isl.ntt.co.jp/camellia/, 2000.

2. Aoki, “Practical Evaluation of Security against Generalized Interpolation Attack,”
IEICE Transactions on Fundamentals of Electronics, Communications and Com-
puter Sciences, Vol.E83-A, No.1, pp.33–38, 2000.

3. Aoki, Ueda, “Optimized Software Implementations of E2,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, Vol.E83-A,
No.1, pp.101–105, 2000.

4. Biham, Shamir, “Differential Cryptanalysis of the Data Encryption Standard,”
Springer-Verlag, 1993.

5. Biham, “New Types of Cryptanalytic Attacks Using Related Keys,” Journal of
Cryptology, Vol.7, No.4, pp.229–246, Springer-Verlag, 1994.

6. Biryukov, Wagner, “Slide Attacks,” Fast Software Encryption, FSE’99, LNCS
1636, pp.245–259, 1999.

7. Biryukov, Wagner, “Advanced Slide Attacks,” Advances in Cryptology — EURO-
CRYPT2000, LNCS 1807, pp.589–606, 2000.

8. Chabaud, Vaudenay, “Links Between Differential and Linear Cryptanalysis,” Ad-
vances in Cryptology — EUROCRYPT’94, LNCS 950, pp.356–365, 1995.

9. Daemen, Knudsen, Rijmen, “The Block Cipher Square,” Fast Software Encryp-
tion, FSE’97, LNCS 1267, pp.54–68, 1997.

56 Kazumaro Aoki et al.

10. Jakobsen, Knudsen, “The Interpolation Attack on Block Ciphers,” Fast Software
Encryption, FSE’97, LNCS 1267, pp.28–40, 1997.

11. Kanda, “Practical Security Evaluation against Differential and Linear Cryptanaly-
ses for Feistel Ciphers with SPN Round Function,” Selected Areas in Cryptography,
SAC2000, LNCS in this proceeding.

12. Knudsen, “Cryptanalysis of LOKI91,” Advances in Cryptology — AUSCRYPT’92,
LNCS 718, pp.196–208, 1993.

13. Knudsen, “Truncated and Higher Order Differentials,” Fast Software Encryption
— Second International Workshop, LNCS 1008, pp.196–211, 1995.

14. Kanda, Moriai, Aoki, Ueda, Takashima, Ohta, Matsumoto, “E2 — A New 128-Bit
Block Cipher,” IEICE Transactions on Fundamentals of Electronics, Communica-
tions and Computer Sciences, Vol.E83-A, No.1, pp.48–59, 2000.

15. Kelsey, Schneier, Wagner, “Key-Schedule Cryptanalysis of IDEA, G-DES, GOST,
SAFER, and Triple-DES,” Advances in Cryptology — CRYPTO’96, LNCS 1109,
pp.237–251, 1996.

16. Kanda, Takashima, Matsumoto, Aoki, Ohta, “A Strategy for Constructing Fast
Round Functions with Practical Security against Differential and Linear Crypt-
analysis,” Selected Areas in Cryptography, SAC’98, LNCS 1556, pp.264–279, 1999.

17. Lai, Massey, Murphy, “Markov Ciphers and Differential Cryptanalysis,” Advances
in Cryptology — EUROCRYPT’91, LNCS 547, pp.17–38, 1991.

18. Matsui, “Linear Cryptanalysis Method for DES Cipher,” Advances in Cryptology
— EUROCRYPT’93, LNCS 765, pp.386–397, 1994.

19. Matsui, “On Correlation Between the Order of S-boxes and the Strength of DES,”
Advances in Cryptology — EUROCRYPT’94, LNCS 950, pp.366–375, 1995.

20. Matsui, “New Block Encryption Algorithm MISTY,” Fast Software Encryption,
FSE’97, LNCS 1267, pp.54–68, 1997.

21. Matsui, “Differential Path Search of the Block Cipher E2,” Technical report of
IEICE, ISEC99-19, pp.57–64, The Institute of Electronics, Information and Com-
munication Engineers, 1999. (in Japanese)

22. Matsui, Inoue, Yamagishi, Yoshida, “A note on calculation circuits over GF(22n),”
Technical Report of IEICE, IT88-14, The Institute of Electronics, Information and
Communication Engineers, 1988. (in Japanese)

23. Matsui, Tokita, “Cryptanalysis of a Reduced Version of the Block Cipher E2,” Fast
Software Encryption, FSE’99, LNCS 1636, pp.71–80, 1999.

24. Moriai, Sugita, Aoki, Kanda, “Security of E2 against Truncated Differential Crypt-
analysis,” Selected Areas in Cryptography, SAC’99, LNCS 1758, pp.106–117, 2000.

25. Rijmen, Daemon, Preneel, Bosselaers, Win, “The cipher SHARK,” Fast Software
Encryption — Third International Workshop, LNCS 1039, pp.99–111, 1996.

26. Wagner, “The Boomerang Attack,” Fast Software Encryption, FSE’99, LNCS 1636,
pp.156–170, 1999.

	Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms – Design andAnalysis
	Introduction
	Structure of Camellia
	Notations
	Encryption for 128-Bit Keys
	Encryption for 192- and 256-Bit Keys
	Decryption
	Key Schedule

	Components of Camellia
	F-function
	S-function, x-boxes
	P-function
	FL-Function and FL-Function

	Design Rationale
	F-function
	P-function
	x-Boxes
	FL- and FL^-1-functions
	Key Schedule

	Security
	Differential and Linear Cryptanalysis
	Truncated Differential and Linear Cryptanalysis
	Boomerang Attack
	Higher Order Differential Attack
	Interpolation Attack and Linear Sum Attack
	Security of Key Schedule

	Performance
	Software Implementations
	Hardware Performance

	Conclusion
	References

