

Irving, R. W and Manlove, D.F and Scott, S. (2000) The hospitals /
residents problem with ties. In, Halldorsson, M.M., Eds. Proceedings of
SWAT 2000: the 7th Scandinavian Workshop on Algorithm Theory, 5-7
July, 2000 Lecture Notes in Computer Science Vol 1851, pages 259-271,
Bergen, Norway.

http://eprints.gla.ac.uk/archive/00001065/

Glasgow ePrints Service
http://eprints.gla.ac.uk

The Hospitals/Residents Problem with Ties

Robert W. Irving1, David F. Manlove1? and Sandy Scott2

1 Dept. of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland
Email: {rwi,davidm}@dcs.gla.ac.uk

2 Dept. of Mathematics, University of Glasgow, Glasgow G12 8QQ, Scotland
Email: ssc@maths.gla.ac.uk

Abstract. The hospitals/residents problem is an extensively-studied
many-one stable matching problem. Here, we consider the hospitals/
residents problem where ties are allowed in the preference lists. In this
extended setting, a number of natural definitions for a stable matching
arise. We present the first linear-time algorithm for the problem under
the strongest of these criteria, so-called super-stability. Our new results
have applications to large-scale matching schemes, such as the National
Resident Matching Program in the US, and similar schemes elsewhere.

1 Introduction

The Hospitals/Residents problem (HR) [4, 14] is a many-one stable matching
problem which is so-named because of its application to large-scale matching
schemes, such as the National Resident Matching Program in the US [12], the
Canadian Resident Matching Service [1], and the Scottish Pre-registration house
officer Allocations (SPA) matching scheme [6]. Each of these centralised schemes
administers the annual match of graduating medical students to hospital ap-
pointments in its respective country.

An instance of HR involves a set R of residents and a set H of hospitals,
each resident r ∈ R seeking a post at one hospital, and each hospital h ∈ H
having q(h) ≥ 1 posts. Each resident in R ranks a subset of H in strict order,
and each hospital h ∈ H ranks its applicants in strict order. An agent p ∈ R∪H
finds an agent q ∈ R∪H acceptable if q appears on p’s preference list; p finds q
unacceptable otherwise. A matching M is a subset of R×H, where (r, h) ∈ M
implies that (i) r, h find each other acceptable, (ii) r is assigned to at most one
hospital in M , and (iii) at most q(h) residents are assigned to h in M . A matching
M for an instance of HR is stable if M admits no blocking pair. A blocking pair
(r, h) for M is a resident r and hospital h such that (i) r, h find each other
acceptable, (ii) r either is unassigned or prefers h to his assigned hospital in M ,
and (iii) h either is undersubscribed or prefers r to the worst resident assigned to
it in M . If (r, h) form a blocking pair with respect to a matching M , then (r, h)
is said to block M . Also, if (r, h) ∈ M for some stable matching M , then we say

? Supported by Engineering and Physical Sciences Research Council grant number
GR/M13329.

that (r, h) is a stable pair, and r is a stable partner of h (and vice versa). Note
that, in view of the definitions of a matching and a blocking pair, we assume
throughout this paper, without loss of generality, that an agent p finds an agent
q acceptable if and only if q finds p acceptable. We say that the preference list
of a resident r ∈ R (resp. hospital h ∈ H) is complete if r (resp. h) finds all
hospitals in H (resp. residents in R) acceptable.

The classical Stable Marriage problem (SM) [4, 14, 8] is a restriction of HR
in which each hospital has exactly one post, the number of hospitals equals the
number of residents, and all preference lists are complete. For a given instance
I of HR, the Gale/Shapley algorithm for SM [2] may be extended in order to
find a stable matching for I (such a matching in I always exists) in O(mn)
time, where n = |R| and m = |H| [4, Section 1.6.3]. The Gale/Shapley algo-
rithm incorporates a sequence of proposals from one set of agents to the other;
if the residents propose to the hospitals (the resident-oriented algorithm), then
we obtain a stable matching M which is uniquely favourable to the residents:
every resident assigned in M is assigned to his best stable partner, and every
resident unassigned in M is unassigned in any stable matching [4, Section 1.6.3].
Analogously, if the hospitals propose to the residents (the hospital-oriented algo-
rithm), then we obtain a stable matching M which is uniquely favourable to the
hospitals: every hospital h ∈ H is assigned either its q(h) best stable partners, or
a set of fewer than q(h) residents; in the latter case, no other resident is assigned
to h in any stable matching [4, Section 1.6.2].

Although an instance of HR may admit more than one stable matching, every
stable matching has the same size, matches exactly the same set of residents,
and fills exactly the same number of posts at each hospital; indeed any hospital
that is undersubscribed in one stable matching is assigned exactly the same set
of residents in all stable matchings. (These results are collectively known as the
‘Rural Hospitals Theorem’ [12, 3, 13].)

Ties in the preference lists. A natural generalisation of HR occurs when
each agent’s preference list need not be strictly ordered, but may include ties –
we refer to this extension as the Hospitals/Residents problem with Ties (HRT).
When ties are permitted, more than one definition of stability is possible [5].

According to the weakest of these stability notions, a matching M is weakly
stable [5] if M admits no blocking pair3, where a blocking pair (r, h) for M is
a resident r and hospital h such that (i) r, h find each other acceptable, (ii) r
either is unassigned or strictly prefers h to his assigned hospital in M , and (iii)
h either is undersubscribed or strictly prefers r to the worst resident assigned to
it in M . Given an instance I of HRT, the existence of a weakly stable matching
is guaranteed: by breaking the ties in I arbitrarily, we obtain an instance I ′ of
HR, and clearly a stable matching in I ′ is weakly stable in I. Indeed, a converse
of sorts holds, giving the following proposition, whose proof is straightforward
and is omitted.
3 Note that throughout this paper, the form of stability to which the term blocking

pair refers should be clear from the context.

Proposition 1. Let I be an instance of HRT, and let M be a matching in I.
Then M is weakly stable in I if and only if M is stable in some instance I ′ of
HR obtained from I by breaking the ties in I in some way.

However, the weakly stable matchings in I may be of different cardinality, and
each of the problems of finding the maximum or minimum size of weakly stable
matching in an HRT instance is NP-hard, though approximable within a factor
of 2 [7, 10].

A stronger form of stability may be defined as follows: a matching M is
super-stable [5] if M admits no blocking pair, where a blocking pair (r, h) for
M is a resident r and hospital h such that (i) (r, h) /∈ M , (ii) r, h find each
other acceptable, (iii) r either is unassigned or strictly prefers h to his assigned
hospital in M or is indifferent between them, and (iv) h either is undersubscribed
or strictly prefers r to the worst resident assigned to it in M or is indifferent
between them. Clearly a super-stable matching is weakly stable. Additionally,
the super-stability definition gives rise to the following analogue of Proposition
1 (again, the proof is straightforward and is omitted):

Proposition 2. Let I be an instance of HRT, and let M be a matching in I.
Then M is super-stable in I if and only if M is stable in every instance I ′ of
HR obtained from I by breaking the ties in I in some way.

It should be clear that an instance I of HRT may not admit a super-stable match-
ing: as a simple example, suppose that each hospital has just one post, and every
agent’s list is a single tie of length 2. It is the purpose of this paper to present
optimal O(mn) algorithms – linear in the size of the problem instance – for de-
termining whether a given instance of HRT admits a super-stable matching, and
if it does, to construct such a matching. The first algorithm, presented in Section
2, is resident-oriented in that it involves a sequence of proposals from the resi-
dents to the hospitals, and has similar optimality implications for the residents
to those of the resident-oriented algorithm for HR. Also in Section 2, we prove
an analogue of the Rural Hospitals Theorem for HRT. The second algorithm,
presented in Section 3, is the hospital-oriented version, incorporating proposals
from the hospitals to the residents, with analogous optimality implications for
the hospitals to those of the hospital-oriented algorithm for HR.

For space reasons, the majority of our attention is focused on the resident-
oriented algorithm for HRT. It is this algorithm that is likely to be of more
significance to implementors of large-scale matching schemes, since recent pres-
sure from student bodies has ensured that all three matching schemes mentioned
above essentially employ the resident-oriented algorithm for HR.

Applications. Note that permitting ties in the preference lists has important
practical applications. In the context of centralised matching schemes, some
participating hospitals with many applicants have found the task of producing
a strictly ordered preference list difficult, and they have expressed a desire to
include ties in their lists. In such a setting, choosing the weak stability definition
leads to two problems: (i) finding a weakly stable matching that matches as many

residents as possible, and (ii) the possibility of, say, a resident r persuading, by
some means, a hospital h to accept r at the expense of some allocated resident r′,
if h is indifferent between r and r′. The super-stability definition clearly avoids
problem (ii), and additionally guards against problem (i), as is demonstrated by
the following proposition, which is a consequence of Propositions 1 and 2, and
the Rural Hospitals Theorem for HR.

Proposition 3. Let I be an instance of HRT, and suppose that I admits a
super-stable matching M . Then the Rural Hospitals Theorem holds for the set of
weakly stable matchings in I.

Thus Proposition 3 tells us that if a super-stable matching exists, then all weakly
stable matchings are of the same size, and match exactly the same set of res-
idents. Of course, as observed earlier, a super-stable matching need not exist.
Nonetheless, it is arguable that a super-stable matching should be preferred by a
practical matching scheme in cases when one does exist. In Section 4, we address
the issue of the existence of super-stable matchings in an HRT instance.

Previous work. As mentioned above, optimal algorithms for constructing sta-
ble matchings in an instance of HR are known. For the case where ties are
permitted, there is an optimal O(n2) algorithm, due to Irving [5], for determin-
ing whether a given (one-one) instance of Stable Marriage in which preference
lists are complete but may incorporate ties (henceforth SMT) admits a super-
stable matching, and for constructing one if it does, where n is the number of
men and women. However, the problem of formulating such an algorithm for the
(many-one) HRT case has remained open until now.

2 Resident-oriented algorithm for HRT

For a given instance of HRT, Algorithm HRT-Super-Res, shown in Figure 1,
determines whether a super-stable matching exists, and if so will find such a
matching. We shall describe informally the execution of Algorithm HRT-Super-
Res. Before doing so, we make a number of definitions.

For a given instance I of HRT, suppose that (r, h) ∈ M for some super-stable
matching M . Then (r, h) is a super-stable pair, and r is a super-stable partner
of h (and vice versa). The term delete the pair (r, h), implies that r, h are to be
deleted from each other’s preference lists. By the head of a resident’s preference
list, we mean the set of one or more hospitals, tied in his current list (i.e. his
preference list after any deletions have been carried out), which he strictly prefers
to all other hospitals in his list. Similarly, the tail of a hospital’s list refers to the
set of one or more residents, tied in its current list, to whom it strictly prefers
all other residents in its list. By the term reduced lists, we mean the current lists
at the termination of Algorithm HRT-Super-Res.

Algorithm HRT-Super-Res involves a sequence of proposals from the resi-
dents to the hospitals, in the spirit of the resident-oriented Gale/Shapley algo-
rithm for HR. A resident proposes simultaneously to all hospitals at the head

assign each resident to be free;
assign each hospital to be totally unsubscribed;
for each hospital h loop

full(h) := false;
end loop;
while some resident r is free and has a nonempty list loop

for each hospital h at the head of r’s list loop
provisionally assign r to h; {r “proposes” to h}
if h is oversubscribed then (†)

for each resident s′ at the tail of h’s list loop
if s′ is provisionally assigned to h then

break the assignment;
end if;
delete the pair (s′, h);

end loop;
end if;
if h is full then (‡)

full(h) := true;
s := worst resident provisionally assigned to h; {any one, if > 1}
for each strict successor s′ of s on h’s list loop

delete the pair (s′, h);
end loop;

end if;
end loop;

end loop;
if some resident is multiply assigned or
(some hospital h is undersubscribed and full(h)) then

no super-stable matching exists;
else

the assignment relation is a super-stable matching;
end if;

Fig. 1. Algorithm HRT-Super-Res.

of his list, and all proposals are provisionally accepted. If a hospital h becomes
oversubscribed, it turns out that none of h’s worst-placed assignees (there must
be more than one), nor any residents tied with these assignees in h’s list, can
be a super-stable partner of h – such pairs (r, h) are deleted. If a hospital h is
full, then no resident strictly inferior than h’s worst-placed assignee(s) can be
a super-stable partner of h – again such pairs (r, h) are deleted. The proposal
sequence terminates once every resident either is assigned to a hospital or has
an empty list. At this point, it turns out that if a resident is assigned to more
than one hospital, or some hospital is undersubscribed but was previously full,
then no-super-stable matching exists. Otherwise, the assignment relation is a
super-stable matching.

In order to establish the correctness of Algorithm HRT-Super-Res, a number
of lemmas follow. The first three of these deal with the case that the assignment

relation is claimed to be a super-stable matching. In what follows, I is an instance
of HRT, in which R is the set of residents and H is the set of hospitals.

Lemma 1. If, at the termination of the while loop of Algorithm HRT-Super-Res,
the algorithm reports that the assignment relation M is a super-stable matching,
then M is indeed a matching.

Proof. Clearly, no hospital is oversubscribed in M . Also, no resident is multiply
assigned in M , for otherwise the algorithm would have reported that no super-
stable matching exists, a contradiction. ut

Lemma 2. If the pair (r, h) is deleted during an execution of Algorithm HRT-
Super-Res, then that pair cannot block any matching generated by Algorithm
HRT-Super-Res, comprising pairs that are never deleted.

Proof. Let M be a matching generated by Algorithm HRT-Super-Res, com-
prising pairs that are never deleted, and suppose that (r, h) is deleted during
execution of the algorithm. If h is full in M , then h strictly prefers its worst-
placed assignee in M to r, since r is a strict successor of any undeleted entries
in the reduced list of h. Hence (r, h) does not block M in this case. Now suppose
that h is undersubscribed in M . As the pair (r, h) is deleted by the algorithm,
then during some iteration of the while loop, h must have been full. Hence the
algorithm would have reported that no super-stable matching exists rather than
generating M , a contradiction. ut

Lemma 3. If, at the termination of the while loop of Algorithm HRT-Super-Res,
the algorithm reports that the assignment relation M is a super-stable matching,
then M is indeed a super-stable matching.

Proof. By Lemma 1, the assignment relation M is a matching. Now suppose that
M is blocked by some pair (r, h). Then r and h are acceptable to each other, so
that each is on the original preference list of the other. By Lemma 2, the pair
(r, h) has not been deleted. Hence each is on the reduced list of the other.

As the reduced list of r is nonempty, r is assigned to some hospital h′ in M .
Now h′ 6= h, as (r, h) blocks M . If r strictly prefers h to h′, then the pair (r, h)
has been deleted, since h′ is at the head of the reduced list of r, a contradiction.
Thus r is indifferent between h and h′, so that r proposed to h during the
execution of the algorithm. Hence r is assigned to h in M , for otherwise the pair
(r, h) would have been deleted, a contradiction. Thus (r, h) does not block M , a
contradiction. ut

The next lemma shows that Algorithm HRT-Super-Res will never delete a pair
that could belong to some super-stable matching.

Lemma 4. No super-stable pair is ever deleted during an execution of Algorithm
HRT-Super-Res.

Proof. Suppose, for a contradiction, that (r, h) is the first super-stable pair to
be deleted during an execution of Algorithm HRT-Super-Res. Let M be a super-
stable matching in I such that (r, h) ∈ M .

Case (i). Suppose that (r, h) is deleted as a result of h being oversubscribed.
Consider the assignment relation G at point (†) in the same iteration of the
while loop. At this point, some resident s is provisionally assigned to h in G,
where (s, h) /∈ M and h strictly prefers s to r or is indifferent between them,
since (r, h) ∈ M and h cannot be oversubscribed in M . There is no super-stable
matching in which s is assigned to a hospital h′ which he strictly prefers to h.
For otherwise, the super-stable pair (s, h′) would have been deleted before (r, h),
in order for s to propose to h, a contradiction. Thus either s is unassigned in
M , or s is assigned to h′ in M , where s strictly prefers h to h′ or is indifferent
between them. In any of these cases, (s, h) blocks M , a contradiction.

Case (ii). Suppose that (r, h) is deleted as a result of h being full. Consider the
assignment relation G at point (‡) in the same iteration of the while loop. At
this point, some resident s is provisionally assigned to h in G, where (s, h) /∈ M
and h strictly prefers s to r, since (r, h) ∈ M and r is not assigned to h in G. As
in part (i), there is no super-stable matching in which s is assigned a hospital
which he strictly prefers to h. Thus again, (s, h) blocks M , a contradiction. ut

The next two lemmas deal with the case that Algorithm HRT-Super-Res claims
the non-existence of a super-stable matching.

Lemma 5. If, at the termination of the while loop of Algorithm HRT-Super-Res,
some resident is multiply assigned, then I admits no super-stable matching.

Proof. Let G be the assignment relation at the termination of the while loop.
Suppose, for a contradiction, that there exists a super-stable matching M in I.

Firstly, we claim that some hospital must have fewer assignees in M than it
has provisional assignees in G. For, suppose not. Let pG(h) denote the provisional
assignees of hospital h in G, and let pM (h) denote the assignees of hospital h in
M , for any h ∈ H. Then by hypothesis,∑

h∈H

|pM (h)| ≥
∑
h∈H

|pG(h)|. (1)

Now if some resident r is not provisionally assigned to a hospital in G, then the
reduced list of r is empty, so that by Lemma 4, r is unassigned in any super-
stable matching. Thus, letting R1 denote the residents who are provisionally
assigned to at least one hospital in G, and letting R2 denote the residents who
are assigned to a hospital in M , we have |R2| ≤ |R1|. Hence∑

h∈H

|pM (h)| = |R2| ≤ |R1| <
∑
h∈H

|pG(h)|

as some resident is multiply assigned in G, which contradicts Inequality 1. Thus
the claim is established, so that some hospital h has fewer assignees in M than

it has provisional assignees in G. Hence h is undersubscribed in M , since no
hospital is oversubscribed in G. In particular, some resident r is assigned to h
in G but not in M . Thus by Lemma 4, r cannot be assigned to a hospital in M
which he strictly prefers to h. Hence (r, h) blocks M , a contradiction. ut

Lemma 6. If some hospital h became full during the while loop of Algorithm
HRT-Super-Res, and h subsequently ends up undersubscribed at the termination
of the while loop, then I admits no super-stable matching.

Proof. Let G be the assignment relation at the termination of the while loop.
Suppose, for a contradiction, that there exists a super-stable matching M in I.
By Lemma 5, no resident is multiply assigned in G. Let h′ be a hospital which
became full during the while loop and subsequently ends up undersubscribed in
G. Then there is some resident r′ who was provisionally assigned to h′ at some
point during the while loop, but is not assigned to h′ in G. Thus the pair (r′, h′)
was deleted during some iteration of the while loop, so that (r′, h′) /∈ M by
Lemma 4.

Now let pG(h), pM (h), R1, R2 be defined as in the proof of Lemma 5. Firstly,
we claim that if any hospital h is undersubscribed in M , then every resident
provisionally assigned to h in G is also assigned to h in M . For, if some resident
r is assigned to h in G but not in M , then (r, h) blocks M , since h is undersub-
scribed in M , and by Lemma 4, r cannot be assigned to a hospital in M which
he strictly prefers to h.

Secondly, we claim that each hospital has the same number of provisional
assignees in G as it has assignees in M . For, by the first claim, any hospital that
is full in G is also full in M , and any hospital that is undersubscribed in G fills
as many places in M as it does in G. Hence |pM (h)| ≥ |pG(h)| for each h ∈ H.
As in the proof of Lemma 5, we also have∑

h∈H

|pM (h)| = |R2| ≤ |R1| =
∑
h∈H

|pG(h)|

since no resident is multiply assigned in G. Hence |pM (h)| = |pG(h)| for each
h ∈ H.

Thus (r′, h′) blocks M , since h′ is undersubscribed in M by the second claim,
and by Lemma 4, r′ cannot be assigned to a hospital in M which he strictly
prefers to h′. ut

Together, Lemmas 1-6 establish the correctness of Algorithm HRT-Super-Res. In
addition, Lemma 4 implies that there is an optimality property for the partner of
a given assigned resident in any super-stable matching output by the algorithm.
In particular, we have proved:

Theorem 1. For a given instance of HRT, Algorithm HRT-Super-Res deter-
mines whether or not a super-stable matching exists. If such a matching does
exist, all possible executions of the algorithm find one in which every assigned
resident has as good a partner as in any super-stable matching, and every unas-
signed resident is unassigned in all super-stable matchings.

By a suitable choice of data structures, Algorithm HRT-Super-Res can be im-
plemented to run in O(mn) time and space, where m = |H| and n = |R|. The
time bound follows by noting that the number of iterations of the while loop
is bounded by the number of deletions from the preference lists. Note that the
complexity of Algorithm HRT-Super-Res can also be expressed in terms of L,
the total length of all preference lists in the HRT instance: clearly the running
time is then O(L). Since SM is a special case of HRT, the Ω(L) lower bound of
Ng and Hirschberg [11] for SM implies that Algorithm HRT-Super-Res for HRT
is optimal.

We now present the Rural Hospitals Theorem for HRT under super-stability.

Theorem 2. Let I be a given instance of HRT. Then:

1. Each hospital is assigned the same number of residents in all super-stable
matchings.

2. Exactly the same residents are unassigned in all super-stable matchings.
3. Any hospital that is undersubscribed in one super-stable matching is matched

with exactly the same set of residents in all super-stable matchings.

Proof. Let M,M ′ be two super-stable matchings in I. Let I ′ be an instance of HR
obtained from I by resolving the ties in I arbitrarily. Then by Proposition 2, each
of M,M ′ is stable in I ′. By the Rural Hospitals Theorem for stable matchings in
an instance of HR [4, Theorem 1.6.3], each hospital is assigned the same number
of residents in M and M ′, exactly the same residents are unassigned in M and
M ′, and any hospital that is undersubscribed in M is matched with exactly the
same set of residents in M ′. ut

3 Hospital-oriented algorithm for HRT

In this section, we consider the hospital-oriented analogue of Algorithm HRT-
Super-Res, namely Algorithm HRT-Super-Hosp, shown in Figure 2. We begin
by describing the execution of Algorithm HRT-Super-Hosp informally.

Algorithm HRT-Super-Hosp involves a sequence of proposals from the hospi-
tals to the residents, in the spirit of the hospital-oriented Gale/Shapley algorithm
for HR. A hospital h proposes simultaneously to the most preferred resident r
on h’s list not already provisionally assigned to h, and to all other residents
tied with r in h’s list. These proposals are provisionally accepted. If a resident r
becomes multiply assigned and is indifferent between his provisional assignees,
it turns out that neither of r’s provisional assignees, nor any hospitals tied with
them in r’s list, can be a super-stable partner of r – such pairs (r, h′) are deleted.
If a resident r receives a proposal from a hospital h, then no hospital h′ to whom
r strictly prefers h can be a super-stable partner of r – again such pairs (r, h′) are
deleted. The proposal sequence terminates once every hospital is either full or
provisionally assigned to everyone on its current list. At this point, it turns out
that if a hospital is oversubscribed, or some resident is unassigned but was pre-
viously provisionally assigned, then no super-stable matching exists. Otherwise,
the assignment relation is a super-stable matching.

assign each resident to be free;
assign each hospital to be totally unsubscribed;
for each resident r loop

assigned(r) := false;
end loop;
while some hospital h is undersubscribed and
h’s list contains a resident r′ not provisionally assigned to h loop

r′ := most preferred such resident in h’s list; {any one, if > 1}
for each resident r tied with r′ in h’s list loop {including r′}

provisionally assign r to h; { h “proposes” to r}
assigned(r) := true;
if r is multiply assigned and
r is indifferent between his provisional assignees then

for each hospital h′ at the tail of r’s list loop
if r is provisionally assigned to h′ then

break the assignment;
end if;
delete the pair (r, h′);

end loop;
else

for each strict successor h′ of h on r’s list loop
if r is provisionally assigned to h′ then

break the assignment;
end if;
delete the pair (r, h′);

end loop;
end if;

end loop;
end loop;
if (some resident r is not assigned and assigned(r)) or
some hospital is oversubscribed then

no super-stable matching exists;
else

the assignment relation is a super-stable matching;
end if;

Fig. 2. Algorithm HRT-Super-Hosp.

In order to establish the correctness of Algorithm HRT-Super-Hosp, a number
of lemmas follow. We omit the proofs, which use similar techniques to those of
Section 2. We begin by stating the analogues of Lemmas 3 and 4 for Algorithm
HRT-Super-Hosp. In what follows, I is an instance of HRT, in which R is the
set of residents and H is the set of hospitals.

Lemma 7. If, at the termination of the while loop of Algorithm HRT-Super-
Hosp, the algorithm reports that the assignment relation M is a super-stable
matching, then M is indeed a super-stable matching.

Lemma 8. No super-stable pair is ever deleted during an execution of Algorithm
HRT-Super-Hosp.

The next two lemmas deal with the case that Algorithm HRT-Super-Hosp claims
the non-existence of a super-stable matching.

Lemma 9. If, at the termination of the while loop of Algorithm HRT-Super-
Hosp, some hospital is oversubscribed, then I admits no super-stable matching.

Lemma 10. If some resident r became assigned during the while loop of Algo-
rithm HRT-Super-Hosp, and r subsequently ends up unassigned at the termina-
tion of the while loop, then I admits no super-stable matching.

Together, Lemmas 7-10 establish the correctness of Algorithm HRT-Super-Hosp.
In addition, Lemma 8 implies that there is an optimality property for the as-
signees of a given fully-subscribed hospital in any super-stable matching output
by the algorithm. In particular, we have proved:

Theorem 3. For a given instance of HRT, Algorithm HRT-Super-Hosp deter-
mines whether or not a super-stable matching exists. If such a matching does
exist, all possible executions of the algorithm find one in which every hospital
h ∈ H is assigned either its q(h) best super-stable partners, or a set of fewer
than q(h) residents; in the latter case, no other resident is assigned to h in any
super-stable matching.

As is the case for Algorithm HRT-Super-Res, by considering suitable data struc-
tures, Algorithm HRT-Super-Hosp can be implemented to run in O(mn) time
and space, where m = |H| and n = |R|. Again, the time bound follows by noting
that the number of iterations of the while loop is bounded by the number of
deletions from the preference lists. Note that the complexity of Algorithm HRT-
Super-Hosp can also be expressed in terms of L, the total length of all preference
lists in the HRT instance: clearly the running time is then O(L). As is the case
for Algorithm HRT-Super-Res, this time bound is optimal.

4 Existence of super-stable matchings

Algorithm HRT-Super-Res has been implemented and some preliminary experi-
ments have been carried out, in order to give an indication of the likelihood of a
super-stable matching existing in a given HRT instance. There are clearly several
parameters that can be varied in these tests, such as the numbers of residents
and hospitals, the capacities of the hospitals, the lengths of the preference lists,
and the number, position and sizes of the ties. A range of vectors of values for
the aforementioned parameters were considered, and for each vector, a set of
random instances was created, each satisfying the particular constraints on the
instance. Finally, the percentage of instances in each set admitting a super-stable
matching was computed.

Perhaps not surprisingly, the empirical results suggest that the probability of
a super-stable matching existing decreases as the size of the instance increases,

and also decreases as the number and length of the ties increase. However, it
was found that the probability of a super-stable matching existing is likely to
be much higher if the ties occur on one side only, for example in the hospitals’
lists and not in the residents’ lists (further details may be found in [15]). This
is a situation that is likely to occur naturally in practice: for example, in the
context of resident/hospital matching schemes, residents are typically asked to
rank a relatively small number of hospitals, and might find it easier to produce a
strictly ordered preference list than would a large hospital with many applicants.

Due to the large number of different parameters that can be varied in em-
pirical tests, clearly such experiments cannot hope to provide a comprehensive
analysis of the likelihood of a super-stable matching existing in an arbitrary HRT
instance. It remains open to establish theoretical bounds on the probability of a
super-stable matching existing in a given random instance of HRT.

5 Concluding remarks

In this paper we have highlighted the importance of the super-stability criterion
in HRT, with reference to large-scale matching schemes. Current practice in
the SPA scheme, for example, is that hospitals are permitted to express ties in
their preference lists. However, any ties are broken arbitrarily so as to give an
instance with strictly ordered lists. Hence by Proposition 1, the SPA scheme will
produce matchings that can only guarantee to be weakly stable in the original
instance. We suggest that such centralised matching schemes should first search
for a super-stable matching using Algorithm HRT-Super-Res, and only if none
exists should they settle for a weakly stable matching.

We finish with an open problem. A third stability criterion, so-called strong
stability, can be applied to an HRT instance [5]. In the strong stability case, the
definition of a blocking pair is similar to that of the super-stability case, except
that at most one agent in the pair is permitted to express indifference between
the other agent and its (possibly worst) partner(s) in the matching. Clearly a
super-stable matching is strongly stable, and a strongly stable matching is weakly
stable. Additionally, the strong stability and super-stability definitions coincide
if the ties belong to the preference lists of one set of agents only. As is the case
for super-stability, a given instance of HRT may not admit a strongly stable
matching (see [5] for further details). However, there is an O(n4) algorithm,
due to Irving [5], for determining whether a given instance of SMT admits a
strongly stable matching, and for constructing one if it does, where n is the
number of men and women. An extended version of this algorithm, also of O(n4)
complexity, has been formulated by Manlove for SMTI (the variant of SMT in
which preference lists may be incomplete) [9]. We leave open the problem of
constructing a polynomial-time algorithm, or establishing NP-completeness, for
HRT under strong stability.

References

1. Canadian Resident Matching Service. How the matching algorithm works. Web
document available at http://www.carms.ca/algorith.htm.

2. D. Gale and L.S. Shapley. College admissions and the stability of marriage. Amer-
ican Mathematical Monthly, 69:9–15, 1962.

3. D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Dis-
crete Applied Mathematics, 11:223–232, 1985.

4. D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, 1989.

5. R.W. Irving. Stable marriage and indifference. Discrete Applied Mathematics,
48:261–272, 1994.

6. R.W. Irving. Matching medical students to pairs of hospitals: a new variation
on an old theme. In Proceedings of ESA ’98: the Sixth European Symposium on
Algorithms, volume 1461 of Lecture Notes in Computer Science, pages 381–392.
Springer-Verlag, 1998.

7. K. Iwama, D. Manlove, S. Miyazaki, and Y. Morita. Stable marriage with incom-
plete lists and ties. In Proceedings of ICALP ’99: the 26th International Collo-
quium on Automata, Languages, and Programming, volume 1644 of Lecture Notes
in Computer Science, pages 443–452. Springer-Verlag, 1999.

8. D.E. Knuth. Stable Marriage and its Relation to Other Combinatorial Problems,
volume 10 of CRM Proceedings and Lecture Notes. American Mathematical Soci-
ety, 1997. English translation of Mariages Stables, Les Presses de L’Université de
Montréal, 1976.

9. D.F. Manlove. Stable marriage with ties and unacceptable partners. Technical
Report TR-1999-29, University of Glasgow, Department of Computing Science,
January 1999.

10. D.F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants of
stable marriage. Technical Report TR-1999-43, University of Glasgow, Department
of Computing Science, September 1999. Submitted for publication.

11. C. Ng and D.S. Hirschberg. Lower bounds for the stable marriage problem and its
variants. SIAM Journal on Computing, 19:71–77, 1990.

12. A.E. Roth. The evolution of the labor market for medical interns and residents: a
case study in game theory. Journal of Political Economy, 92(6):991–1016, 1984.

13. A.E. Roth. On the allocation of residents to rural hospitals: a general property of
two-sided matching markets. Econometrica, 54:425–427, 1986.

14. A.E. Roth and M.A.O. Sotomayor. Two-sided matching: a study in game-theoretic
modeling and analysis, volume 18 of Econometric Society Monographs. Cambridge
University Press, 1990.

15. S. Scott. Implementation of matching algorithms. Master’s thesis, University of
Glasgow, Department of Computing Science, 1999.

	ManloveSWATOOCover.pdf
	http://eprints.gla.ac.uk/archive/00001065/

