
ar
X

iv
:c

s/
01

02
01

0v
1

 [
cs

.C
E

]
 1

0
Fe

b
20

01

The Enhanced Double Digest Problem for DNA

Physical Mapping

Ming-Yang Kao∗ Jared Samet† Wing-Kin Sung‡

October 31, 2018

Abstract

The double digest problem is a common NP-hard approach to constructing physi-

cal maps of DNA sequences. This paper presents a new approach called the enhanced

double digest problem. Although this new problem is also NP-hard, it can be solved

in linear time in certain theoretically interesting cases.

Key words. DNA physical mapping, fast algorithms, graph-theoretic techniques, NP-hardness

1 Introduction

The physical mapping of DNA is a key problem in computational biology [4]. A map of a
DNA sequence consists of the locations of some given small sequences like e.g. GAATTC.
Biologists use such maps in a preparatory step to determine the target DNA sequence [5].

A common technique of constructing maps uses restriction enzymes to cut a DNA
sequence at the positions where a particular short DNA sequence appears. These positions
are called restriction sites. One approach to modeling map construction is the double

digest (DD) problem. Given two restriction enzymes A and B, this approach cuts a
target DNA sequence using enzyme A, enzyme B, and both enzymes, separately. It is a
biology fact that the restriction sites for enzymes A and B do not coincide. Throughout
this paper, we make use of this fact. Let A, B and C be the three multisets of the
lengths of the fragments formed after applying enzyme A, enzyme B and both enzymes
to the target DNA sequence, respectively. Given A, B and C, the DD problem asks for
permutations of the lengths in A and B such that if these sets of lengths are plotted on
top of one another, the lengths of all the resulting subintervals formed due to overlapping
match exactly the lengths in C. See Figure 1 for an example.

∗Department of Computer Science, Yale University, New Haven, CT 06520, USA. Email: kao-ming-

yang@cs.yale.edu. Research supported in part by NSF Grant 9531028.
†Yale College, New Haven, CT 06520, USA. Email: jared.samet@yale.edu.
‡Department of Computer Science, Yale University, New Haven, CT 06520, USA. Email: sung-

ken@cs.yale.edu.

1

http://arxiv.org/abs/cs/0102010v1

151282917 3 6

46 38 6

17 37 12 15 9

()

(b)

(a)

Figure 1: Stripes (a), (b) and (c) show the fragments resulting from the applications of
enzyme A, enzyme B and both enzymes, respectively. In strip (c), the subfragments are
created due to the overlapping between fragments in (a) and those in (b).

Many algorithms [6–8, 10] have been proposed for the DD problem. Stefik [9] gave
the first algorithm using artificial intelligence. Fitch, Smith and Ralph [1] reduced the
DD problem to the set partition problem. Goldstein and Waterman [3] approached this
problem with a stochastic annealing heuristic for the traveling salesman problem. They
also showed that the DD problem is NP-hard by reducing the set partition problem to it.

This paper suggests a new approach, called the enhanced double digest (EDD) problem.
The EDD problem uses A, B, C and some additional length information; see Section 2
for the details of the approach. Although the EDD problem is still NP-hard, we show
that if the lengths in C are all distinct, it can be solved in linear time. We also generalize
the algorithm for the case where the number of duplicates in C is bounded by a constant.
The time complexity of this generalized algorithm remains linear.

Section 2 details the new approach to define the EDD problem formally. Section 3
gives the linear-time algorithm for the case where C is duplicate-free. Also, it generalizes
the algorithm to handle a small number of duplicate lengths. Section 4 proves that the
EDD problem is NP-hard. Section 5 concludes with some directions for further work.

2 Problem formulation

Consider a target DNA sequence and two restriction enzymes A and B.

• By applying enzyme A (respectively, B) to the target DNA sequence, we obtain p

(respectively, q) fragments. Let A = {a1, . . . , ap} (respectively, B = {b1, . . . , bq}) be
the multiset of the lengths of these p (respectively, q) fragments.

• For i = 1, . . . , p, let âi be the fragment corresponding to ai. We apply enzyme B to
the fragment âi and obtain a set of subfragments. Let ABi be the multiset of the
lengths of these subfragments.

• For j = 1, . . . , q, let b̂j be the fragment corresponding to bj . We apply enzyme A to

the fragment b̂j and obtain a set of subfragments. Let BAj be the multiset of the
lengths of these subfragments.

2

For the example in Figure 1, the following length information is gathered:

• A = {a1 = 9, a2 = 12, a3 = 15, a4 = 17, a5 = 37};B = {b1 = 6, b2 = 38, b3 = 46};
• AB1 = {3, 6};AB2 = {12};AB3 = {15};AB4 = {17};AB5 = {8, 29};
• BA1 = {6};BA2 = {3, 8, 12, 15};BA3 = {17, 29}.

It is easily verified that the data found in this way has the following properties:

Fact 1.

1. For i = 1, . . . , p, ai =
∑

c∈ABi
c. For j = 1, . . . , q, bj =

∑
c∈BAj

c.

2.
⋃

i ABi =
⋃

j BAj = C.

3. |C| = |A|+ |B| − 1.

Proof. Straightforward.

Given A,B,AB1, . . . , ABp, BA1, . . . , BAq, the enhanced double digest problem P asks
for a valid permutation (πA, πB) of the elements in A and B such that the following can
be achieved. When the fragments âi for ai ∈ A and b̂j for bj ∈ B are plotted on the same
line according to the order given by πA and πB, a set of subfragments is formed due to
overlapping. The multiset C of the lengths of these subfragments is required to be equal
to ∪p

i=1ABi = ∪q
j=1BAj . In addition,

• for every ai ∈ A (respectively, bj ∈ B), ABi (respectively, BAj) is equal to the

multiset of the lengths of the subfragments which overlap with âi (respectively, b̂j).

Note that an instance of this problem may have no solution or more than one valid
permutation. The algorithms given in Section 3 can recover all valid permutations, if any
exists.

3 An efficient algorithm

Unless otherwise stated, this section assumes that C has no duplicates. Let n = |C|. This
section shows that the EDD problem P can be solved in O(n) time.

Section 3.1 formulates the EDD problem as a graph problem. Section 3.2 describes the
linear-time algorithm. Section 3.3 discusses how to generalize this linear-time algorithm
to the case where C may contain a small number of duplicates.

3.1 A graph representation

Given A,B,AB1, . . . , ABp, BA1, . . . , BAq, we construct an undirected graph G as follows.

• The node set of G = A ∪ B ∪ C.

• For every ai ∈ A and every x ∈ C, (ai, x) ∈ G if x ∈ ABi.

3

3 6 8 12 15 17 29C

3717159 12

A

6 4638

B

(a)

6

B

9

A

6

C

3

C

38

B

8

C

37

A

29

C

46

B

17

C

17

A

(b)

12

C

12

A

15

C

15

A

Figure 2: The graph G in (a) is constructed from the example in Figure 1. G can be
redrawn into a tree as shown in (b). The superscript A,B or C of each node denotes
whether the node belongs to A,B or C.

• For every bj ∈ B and every x ∈ C, (bj , x) ∈ G if x ∈ BAj .

From the definition, we can observe that G satisfies the following lemma.

Lemma 2. G is connected. For each node in A ∪ B, its degree is at least 1 and it is

adjacent to nodes in C only. Also, every node in C connects to exactly one node in A and

one node in B.

Proof. Straightforward based on the assumption that C has no duplicates.

If P has a valid permutation, G has two more properties as stated in Lemma 3.
Figure 2 illustrates an example. A diameter of a tree is a path with the largest number
of edges. A dangler is a 2-node-long path. Given a tree T , a subtree τ of T is said to be
hanged on a path P in T if τ is a tree in the forest T − P .

Lemma 3. If P has a valid permutation, then the following statements hold.

1. G is a tree.

2. For any diameter S of G, the subtrees hanged on S must be danglers.

Proof.

Statement 1. To prove by contradiction, suppose that G contains a cycle D. By the
construction of G, D must be of the form

ai1 , ck1, bj1 , ck2, ai2 , ck3, bj2, ck4, . . . , ck2z , aiz+1
,

4

ba

i

1

b

b

j

1

b

k

2

ba

i

2

b

k

5

b

b

j

2

ba

i

0

b

k

4

ba

i

3

b

k

6

b

b

j

3

b

k

3

b

k

1

Figure 3: In this example, all ai ∈ A, bj ∈ B and ck ∈ C.

where i1 = iz+1; ai1 , . . . , aiz ∈ A; bj1 , . . . , bjz ∈ B; and ck1 , . . . , ck2z ∈ C.

By definition, if ai, ck, bj is a path in G, then âi and b̂j overlap by ĉk in any valid
permutation of P. Thus, for 1 ≤ ℓ ≤ z−1, the existence of the subpath aiℓ , . . . , aiℓ+2

of D

in G means that b̂iℓ overlaps with âiℓ and âiℓ+1
and b̂iℓ+1

overlaps with âiℓ+1
and âiℓ+2

. To

enable both b̂iℓ and b̂iℓ+1
overlap with âiℓ+1

, âiℓ+1
must be in the middle of âiℓ and âiℓ+2

for
1 ≤ ℓ ≤ z − 1. Consequently, for 1 ≤ ℓ ≤ z − 1, âiℓ is in the middle of âi1 and âiz+1

= âi1 ,
which is impossible.

Statement 2. For any diameter S of G, we show that every subtree τ hanged on S

must be a dangler. First, τ must be hanged on S at a node in A ∪ B. Otherwise, if τ is
hanged on S at a node c ∈ C, c has degree greater than 2, contradicting Lemma 2. Then,
τ has more than one node because the root of τ is a node in C and must be of degree 2.
If τ cannot have more than 2 nodes, Statement 2 follows.

To prove by contradiction, suppose that τ has more than two nodes. Without lost of
generality, assume that τ is hanged on S at a node ai0 ∈ A and the root of τ is a node
ck3 ∈ C. Note that ck3 has another neighbour, say bj3 , from B. If τ contains more than
two nodes, bj3 must has a child, say ck6, from C and ck6 must has a child, say ak3 , from
A. Thus, τ must have a root-to-leaf path of length more than 4. Then, the two paths
from ai0 to both ends of S must be of length more than 4. Otherwise, S cannot be a
diameter of G. From those observations, G has the pattern shown in Figure 3. According
to the pattern, b̂j1 , b̂j2 and b̂j3 overlap with âi0 . Therefore, in any valid permutation, one

of b̂j1 , b̂j2 and b̂j3 , say b̂j2 , must be in the middle of the other two fragments and b̂j2 can

only overlap with âi0 . However, according to the pattern in Figure 3, for ℓ = 1, 2, 3, b̂jℓ
overlaps with another fragment âiℓ , reaching a contradiction.

Now, we know that if P has a valid permutation, G satisfies the two properties of
Lemma 3. The remainder of this section show that the converse of this statement is also
true. Suppose that G is a tree with a diameter S such that all the subtrees hanged on S

are danglers. We define πC to be a permutation on C formed by a search defined below.

Dangler-first search: Traverse G starting from one end of S to the other end of S; read

5

off the nodes in C on S; whenever meet any node x with degree greater than 2, read
off the nodes in C in the danglers hanged on S at x in any order and continue to
traverse S.

Lemma 4. The elements in each ABi form a consecutive subsequence in πC. Similarly,

the elements in each BAj form a consecutive subsequence in πC.

Proof. For each i, if ABi contains only one element, then the lemma follows. Otherwise,
ai is of degree at least 2. Then, ai must be on the diameter S. Let c and c′ be elements
in ABi which are the two neighbours of ai on S. The remaining nodes in ABi must be
located in the danglers hanged on S at ai. By dangler-first search, all the elements in
ABi must form a consecutive subsequence in πC . By symmetry, for each j, the elements
in BAj must form a consecutive subsequence in πC .

By Lemma 4, πC can be partitioned into p subintervals such that the rth interval
contains the elements in ABir for r = 1, . . . , p. Let πA be the permutation (ai1 , . . . , aip).
Similarly, πC can be partitioned into q intervals such that the sth interval contains the
elements in BAjs for s = 1, . . . , q. Let πB be the permutation (bj1, . . . , bjq). We call
(πA, πB) the induced permutation of πC .

Lemma 5. The induced permutation (πA, πB) of πC is a valid permutation of P.

Proof. Suppose the lengths from A,B and C are plotted on the same line according to the
order given by πA, πB and πC , respectively. Consider the stripes formed from A and C.
By Fact 1 and Lemma 4, for each i, âi overlaps with ĉ for all c ∈ ABi. By symmetry, for
each j, b̂j overlaps with ĉ for all c ∈ BAj . Then, by the definition of the EDD problem,
(πA, πB) is a valid permutation.

Theorem 6. Given the enhanced double digest problem P and its corresponding graph

G, P has a valid permutation if and only if G satisfies the two properties in Lemma 3.

Proof. The only-if part follows from Lemma 3. The if part follows from Lemma 5.

3.2 A linear-time algorithm for a duplicate-free C

This section describes how to compute a valid permutation of P in O(n) time. The
algorithm is as follows.

Algorithm Enhanced-Double-Digest

1. Construct the graph G corresponding to P.
2. If G does not satisfy the two properties in Lemma 3, then return “no valid permu-

tation”.
3. Find the permutation πC using dangler-first search.
4. Find the induced permutation (πA, πB) of πC .
5. Return (πA, πB).

6

Lemma 7. Algorithm Enhanced-Double-Digest can correctly find a valid permutation in

O(n) time.

Proof. First, by Lemma 5 and Theorem 6, Enhanced-Double-Digest is correct. As for its
time complexity, Step 1 requires O(n) time as G contains 2n edges and we can find each
edge in O(1) time. Step 2 checks whether G satisfies the two properties in Lemma 3. For
property 1, we can determine whether a graph is a tree in O(n) time. For property 2, we
can compute a diameter of a tree in linear time first, then, we verify whether G satisfies
property 2 by detecting whether the subtrees hanged on the diameter are danglers. Thus,
Step 2 requires O(n) time. Step 3 finds πC using dangler-first search. Since the search
scans every node in G once, it runs in O(n) time. Step 4 finds the induced permutation
(πA, πB) of πC in O(n) time. In summary, a valid permutation of P can be computed in
O(n) time.

By modifying Algorithm Enhanced-Double-Digest slightly, we can report all valid
permutations of P. First, observe that the valid permutations of P depend on the possible
permutations πC . There are three cases.

Case 1: G does not have any dangler. Then, there is a unique πC . Thus, the current
algorithm reports all valid permutations of P.

Case 2: G has one set of danglers hanged on one node of its diameter. Then, the
possible permutations πC depend on the permutation of the set of nodes in the danglers
which belong to C. For the example in Figure 2, the possible permutations πC can be
represented by

6, 3, permutation(12, 15), 8, 29, 17.

All valid permutations πA and πB can be represented by 9, permutation(12, 15), 37, 17 and
6, 38, 46, respectively. These valid permutations can be reported by modifying Steps 3
and 4 of the algorithm. The time complexity of the modified algorithm is still O(n).

Case 3: G has k sets of danglers hanged on k respective nodes of its diameter. Then,
the possible permutations πC can be represented similarly, except that each πC contains
k permutation blocks. The above modified algorithm is sufficient to report all valid
permutations of P.

3.3 A general algorithm for C with few duplicates

The algorithm Enchanced-Double-Digest in Section 3.2 can solve the EDD problem if C
contains no duplicates. Here, we give an algorithm which works without this assumption.

First, we consider the following example.

• A = {a1 = 18, a2 = 19};B = {b1 = 4, b2 = 5, b3 = 7, b4 = 8, b5 = 13};
• AB1 = {5, 6, 7};AB2 = {4, 7, 8};
• BA1 = {4};BA2 = {5};BA3 = {7};BA4 = {8};BA5 = {6, 7}.

In this example, there are two 7’s in C = ∪iABi = ∪jBAj . These two 7’s in fact
represent two different subfragments in the target DNA sequence. To distinguish them,
let the copy of 7 in AB1 be 71 and that in AB2 be 72. Since 7 also belongs to BA3

7

4 8 7

1

6 5 7

2

b

3

b

2

b

5

b

4

b

1

a

1

a

2

4 8 7

1

7

2

b

4

b

1

a

1

a

2

b

3

b

2

b

5

65

(a)

(b)

Figure 4: (a) is the case where 71 ∈ BA5 and 72 ∈ BA3; (b) is the case where 71 ∈ BA3

and 72 ∈ BA5.

and BA5, there are two possible combinations, namely, (a) 71 ∈ BA5 and 72 ∈ BA3

and (b) 71 ∈ BA3 and 72 ∈ BA5. Figure 4(a) and 4(b) illustrate the graph G for both
cases; from these two graphs G, we can obtain a valid permutation from combination
(a). Therefore, we can handle duplicates in C by giving them different subscripts. Then,
all the elements in C are different and we can solve the enhanced double digest problem
using the algorithm Enhanced-Double-Digest in Section 3.2. More precisely, we have the
following algorithm.

1. If C contains duplicates, then we assign a unique subscript to each duplicate.
2. For each possible combinations of the subscripts in the duplicates, we execute

Enhanced-Double-Digest to compute a valid permutation.

Let ℓ be the number of duplicates in C. The above algorithm execute Enhanced-
Double-Digest for at most ℓ! time. Therefore, a valid permutation can be computed in
O(ℓ!n) time. Thus, if ℓ is constant, the generalized algorithm still runs in linear time.

4 The enhanced double digest problem is NP-hard

This section proves the NP-hardness of the enhanced double digest problem by a reduction
from the Hamiltonian Path problem [2].

Given an undirected graph H , we show that in polynomial time, we can construct
an EDD instance Q so that H contains a hamiltonian path if and only if Q has a valid
permutation. For ease of prove, we augment H with two new nodes t and z. All nodes
originally in H have edges to t. In addition, we add an edge (t, z) to H . Note that the
original H contains a hamiltonian path if and only if the amended H has a hamiltonian
path. Let ℓ be the number of nodes in H . Assume that the nodes in H are labeled by
{1, 2, . . . , ℓ}. For each node v, let κ(v) be the number of neighbours of v. Let v′ = v + ℓ.

8

The EDD instance Q is given the following length information. Note that this length
information can be constructed from H in polynomial time.

• A = {av | v ∈ H} where az = t′, at = t +
∑

u∈H−{t,z} u
′ and av = v +

∑
(u,v)∈H u′ for

v 6= z, t. Also, ABz = {t′}; ABt = {u′ | u ∈ H − {t, z}} ∪ {t}; and ABv = {u′ |
(u, v) ∈ H} ∪ {v} for v 6= z.

• B = {bv, bv(1), . . . , bv(κ(v)−1) | v ∈ H − {z}} where bv = v + v′ and bv(i) = v′ for all
v ∈ H − {z} and all i ≤ κ(v)− 1. Also, BAv = {v, v′} and BAv(i) = {v′}.

Lemma 8. H has a hamiltonian path if and only if there is a valid permutation for Q.

Proof. The two directions are proved as follows.

Figure 5: The permutations πA and πB of A and B, respectively.

(=⇒) Let u1, u2, . . . , uℓ−2, t, z be a hamiltonian path in H . Let πA and πB be per-
mutations of A and B as shown in Figure 5. It is easy to check that (πA, πB) is a valid
permutation to Q.

(⇐=) Let (πA, πB) be a valid permutation of Q. The remainder of this proof shows
that the ordering of the lengths in πA defines a hamiltonian path in H .

Assume the lengths from A are plotted on a line according to the order given by πA

and similarly, the lengths from B are also plotted on this line according to πB. For each
v ∈ H , the line fragment corresponds to av ∈ A is called âv. For each v ∈ H − {z}, the
line fragment corresponds to bv ∈ B, is called b̂v.

For every v ∈ H − {z}, since BAv = {v, v′}, b̂v overlaps with two consecutive line
fragments from A; in addition, the overlapping regions between b̂v and these two line
fragments must be of length v and v′, respectively. Observe that v ∈ ABv and v 6∈ ABu

for all u 6= v. One of these two fragments, which overlaps with b̂v, must be âv. The other
line fragment can be âu for any u ∈ H with v′ ∈ ABu, i.e., (v, u) ∈ H .

Let πA = (au1
, . . . , aul

). ¿From the above argument, we know that, for every two
consecutive line fragments âi and âi+1, there exists a fragment b̂v (where v is either ui

or ui+1) which overlaps with both âui
and âui+1

. The above argument also implies that
(ui, ui+1) ∈ H . Thus, u1, . . . , uℓ forms a path in H . As u1, . . . , uℓ contains all the ℓ nodes
of H , this path is a hamiltonian path.

9

5 Further research directions

This highly theoretical work can be extended in several directions. One direction is
to design a series of laboratory procedures that can actually produce the input length
information in the required form. Another direction is to consider the problem of more
than 2 digesting enzymes. Using multiple enzymes could help resolve the issue of multiple
solutions that arise when there are danglers or duplicate subfragment lengths. Also, the
extra input may actually make the problem solvable in a shorter period of time. The
third direction is to have a probabilistic analysis of the number of duplicates in C, when
the length of the target DNA sequence is given. It would be the most meaningful to
conduct such analysis under a probabilistic model that is derived specifically for feasible
laboratory procedures. Lastly, this paper does not address the issue of noise in the length
data. From the practical point of view, handling noise effectively is very important.

6 Acknowledgments

We wish to thank the anonymous referees for many helpful suggestions.

References

[1] W. M. Fitch, T. F. Smith, and W. W. Ralph. Mapping the order of DNA restriction
fragments. Gene, 22:19–29, 1983.

[2] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman, New York, NY, 1979.

[3] L. Goldstein and M. S. Waterman. Mapping DNA by stochastic relaxation. Advances
in Applied Mathematics, 8:194–207, 1987.

[4] R. Karp. Mapping of the genome: Some combinatorial problems arising in molecular
biology. In Proceedings of the 25th Annual ACM Symposium on Theory of Computing,
pages 278–285, 1993.

[5] D. Nathans and H. O. Smith. Restriction endonuleases in the analysis and restruc-
turing of DNA molecules. Annual Review of Biochemistry, 44:273–293, 1975.

[6] P. A. Pevzner. DNA physical mapping, flows in networks and minimum cycles mean
in graphs. In S. G. Gindikin, editor, DIMACS Series in Discrete Mathematics and

Theoretical Computer Science 8: Mathematical Methods of Analysis of Biopolymer

Sequences, pages 99–112. American Mathematical Society, Providence, RI, 1992.

[7] P. A. Pevzner. DNA physical mapping and alternating Eulerian cycles in colored
graphs. Algorithmica, 13(1/2):77–105, 1995.

10

[8] W. Schmitt and M. S. Waterman. Multiple solutions of DNA restriction mapping
problems. Advances in Applied Mathematics, 12:412–427, 1991.

[9] M. Stefik. Inferring DNA structure from segmentation data. Artificial Intelligence,
11:85–114, 1978.

[10] M. S. Waterman and J. R. Griggs. Interval graphs and maps of DNA. Bulletin of

Mathematical Biology, 48(2):189–195, 1986.

11

