Skip to main content

Optimal Matrix Compression Yields Storage Capacity 1 for Binary Willshaw Associative Memory

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2714))

Abstract

The classical binary Willshaw model of associative memory has an asymptotic storage capacity of ln 2 0.7 which exceeds the capacities of other (e.g., Hopfield-like) models by far. However, its practical use is severely limited, since the asymptotic capacity is reached only for very large numbers n of neurons and for sparse patterns where the number k of one-entries must match a certain optimal value k opt(n) (typically kopt = log n). In this work I demonstrate that optimal compression of the binary memory matrix by a Huffman or Golomb code can increase the asymptotic storage capacity to 1. Moreover, it turns out that this happens for a very broad range of k being either ultra-sparse (e.g., k constant) or moderately-sparse (e.g., k = 325-01). A storage capacity in the range of ln 2 is already achieved for practical numbers of neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentz, H.J., Hagstroem, M., Palm, G.: Information storage and effective data retrieval in sparse matrices. Neural Networks 2 (1989) 289–293

    Article  Google Scholar 

  2. Cover, T.M, Thomas, J.A.: Elements of information theory. Wiley, New York, 1991

    MATH  Google Scholar 

  3. Golomb, S.W.: Run-length encodings. IEEE Transactions on Information Theory 12 (1966) 399–401

    Article  MATH  MathSciNet  Google Scholar 

  4. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79 (1982) 2554–2558

    Article  MathSciNet  Google Scholar 

  5. Hopfield, J.J., Tank, D.W.: Computing with neural circuits. Science 233 (1986) 625–633

    Article  Google Scholar 

  6. Huffman, D.A.: A method for the construction of minimum redundancy codes. Proceedings of the Institute of Radio Engineers 40 (1952) 1098–1101

    Google Scholar 

  7. Knoblauch, A., Palm, G.: Pattern separation and synchronization in spiking associative memories and visual areas. Neural Networks 14 (2001) 763–780

    Article  Google Scholar 

  8. Knoblauch, A., Palm, G.: Scene segmentation by spike synchronization in reciprocally connected visual areas. II. Global assemblies and synchronization on larger space and time scales. Biological Cybernetics 87 (2002) 168–184

    Article  MATH  Google Scholar 

  9. Knoblauch, A., Sommer, F.T., Palm, G.: Willshaw associative memory and matrix compression. in preparation

    Google Scholar 

  10. Kosko, B.: Bidirectional associative memories. IEEE Transactions on Systems, Man, and Cybernetics 18 (1988) 49–60

    Article  MathSciNet  Google Scholar 

  11. Palm, G.: On associative memories. Biological Cybernetics 36 (1980) 19–31

    Article  MATH  Google Scholar 

  12. Palm, G.: Memory capacities of local rules for synaptic modification. A comparative review. Concepts in Neuroscience 2 (1991) 97–128

    Google Scholar 

  13. Rachkovskij, D.A., Kussul, E.M.: Binding and normalization of binary sparse distributed representations by context-dependent thinning. Neural Computation 13 (2001) 411–452

    Article  MATH  Google Scholar 

  14. Schwenker, F., Sommer, F.T., Palm, G.: Iterative retrieval of sparsely coded associative memory patterns. Neural Networks 9 (1996) 445–455

    Article  Google Scholar 

  15. Sommer, F.T., Palm, G.: Improved bidirectional retrieval of sparse patterns stored by Hebbian learning. Neural Networks 12 (1999) 281–297

    Article  Google Scholar 

  16. Steinbuch, K.: Die Lernmatrix. Kybernetik 1 (1961) 36–45

    Article  Google Scholar 

  17. Willshaw, D.J., Buneman, O.P., Longuet-Higgins, H.C.: Non-holographic associative memory. Nature 222 (1969) 960–962

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knoblauch, A. (2003). Optimal Matrix Compression Yields Storage Capacity 1 for Binary Willshaw Associative Memory. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds) Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003. ICANN ICONIP 2003 2003. Lecture Notes in Computer Science, vol 2714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44989-2_39

Download citation

  • DOI: https://doi.org/10.1007/3-540-44989-2_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40408-8

  • Online ISBN: 978-3-540-44989-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics