
Basic Operators for Solving Constraints
via Collaboration of Solvers

Carlos Castro1 and Eric Monfroy2

1 Departamento de Informatica, Universidad Tecnica Federico Santa Marfa
Avenida Espana 1680, Casilla 110-V, Valparafso, Chile

ccastro~inf.utfsm.cl
2 Centrum voor Wiskunde en Informatica, CWI

P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands
Eric.Monfroy~cwi.nl

Abstract. In this paper, we propose a strategy language for designing
schemes of constraint solver collaborations: a set of strategy operators
enables one to design several kinds of collaborations. We exemplify the
use of this language by describing some well known techniques for solv
ing constraints over finite domains and non-linear constraints over real
numbers via collaboration of solvers.

1 Introduction

In constraint programming, the programming process consists of formulating
problems with constraints. Solutions of these so called Constraint Satisfaction
Problems (CSPs) are generated by solvers. Numerous algorithms have been de
veloped for solving CSPs and the resulting technology has been successfully
applied for solving real-life problems. The design and implementation of these
constraint solvers is generally an expensive and tedious task. Thus, the idea of
reusing existing solvers is very interesting, but it also implies that we must have
some tools to integrate them. Even more important, considering that some prob
lems cannot be tackled or efficiently solved with a single solver, we definitively
realize the interest of integrating and making cooperate several solvers [19, 4,
13, 20, 18]. This is called collaboration of solvers [15]. In order to make solvers
collaborate, the need of powerful strategy languages to control their integration
and application has been well recognized [16, 17, 1].

The existing approaches are generally not generic: they consider fixed do
mains (linear constraints [4], non-linear constraints over real numbers [18, 13,
3]), fixed strategies, or fixed scheme of collaboration (sequential [18, 3], asyn
chronous [13]). In the language BALI, collaborations are specified using control
primitives and the constraint system is a parameter. Although BALI is more
generic and flexible, the control capabilities for specifying strategies are not al
ways fine enough [17]. In the system COLETTE [7, 8], a solver is viewed as
a strategy that specifies the order of application of elementary operations ex
pressed by transformation rules.

J.A. Campbell and E. Roanes-Lozano (Eds.): AISC2000, LNAI 1930, pp. 142-156, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Basic Operators for Solving Constraints via Collaboration of Solvers 143

Extending ideas of BALI and COLETTE, we consider collaborations of solvers
as strategies that specify the order of application of component solvers. In [9}, we
propose a strategy language for designing component or elementary constraint
solvers and we exemplify its use by specifying several solvers (such as solvers
for constraints over finite domains and real numbers). In this paper, we present
the application of our language for prototyping constraint solving schemes via
collaboration of solvers.

The main motivation for this work is to propose a general framework in which
one can design component constraint solvers as well as solver collaborations.
This approach makes sense since the design of constraint solvers and the design
of collaborations require similar methods (strategies are often the same: don't
care, fixed point, iteration, parallel, concurrent, ...). In other words, we propose
a language for writing component solvers and designing collaborations of several
solvers at the same level.

This paper is organized as follows: Section 2 presents basic definitions and
notations. In Section 3, we present an overview of our strategy language whereas
in Section 4 we detail its basic operators. In Section 5, we use our language for
solving constraints over finite domains and real numbers via the collaboration
of several solvers. Finally, we conclude in Section 6.

2 Definitions

Definition 1 (Constraint Systems and Constraint Solvers). A constraint
system is a 4-tuple (E, V, V, £) where E is a first-order signature given by a set
of function symbols :Fr; and a set of predicate symbols Pr:, V is a E-structure
(its domain being denoted by IDIJ, V is an infinite denumerable set of variables,
and£ is a set of constraints: a non-empty set of (E, V)-atomic formulae, called
atomic constraints, closed under conjunction and disjunction.

We denote by J_ the unsatisfiable constraint and the true constraint by T.
The set of atomic constraints is denoted by CAt· An assignment is a mapping
a: V-+ IDI. The set of all assignments is denoted by ASS~. An assignment a
extends uniquely to an homomorphism g: T(E, V)-+ IVI. The set of solutions
of a constraint c E .C is the set Solv(c) of assignments a E ASS~ such that g(c)
holds. A constraint c is valid in V (denoted by V f= c) if Solv(c) =ASS~. We
use Var(c) to denote the set of variables from V occurring in the constraint c.

Given a constraint system (E, V, V,£), a solver is a computable function
S : £ -+ C satisfying the correctness and completeness properties, i.e., VC E
£, Solv(S(C)) <; Solv(C) and Solv(C) <; Solv(S(C)). We extend S to a
constraint system (E, V, V, C'), where£<;£', in the following way: V C E £'\£,
S(C) = C. We say that a constraint C is in solved form with respect to S if
S(C) =C.

In order to be able to manipulate specific parts of a constraint, we introduce
the notions of syntactical form and sub-constraint.

144 Carlos Castro and Eric Monfroy

Definition 2 (Syntactical Forms and Sub-constraints). We say that C' is
a syntactical form of C, denoted by C' ~ C, if C' = C modulo the associativity
and commutativity of/\ and V, and the distributivity of/\ on V and of V on /\ 1 .

We say that C' E .C is a sub-constraint of C, denoted by Cic'] • if:

C=C'
or 301 E .C, w E {/\, V}, C = C1wC1

or 301 E .C, w E {/\, v}, C = C1wC1
or 3Ci, C2 E .C, w E {/\, V}, C = C1wC2 and (Ci[C'] or C2[C'J)

A couple (C", C') such that C" is a sub-constraint of C' and C' ~ C is called
an applicant of C. We denote by S:F(C) the finite set of all the syntactical forms
of a constraint C: SF(C) = {C'I C' ~ C}2. We denote by .CA the set of all the
lists of applicants, and by .CC the set of all the lists of constraints. Generally,
we will use LA (respectively LG) to denote a list of applicants (respectively
constraints). We denote by 'P(C x C) the power-set of all the sets of couples
of constraints. Atotn(C) denotes the set of atomic constraints that occur in C:
{clc E .CAt and CrcJ}·

Finally, in order to explicitly handle sub-parts of a constraint, we define the
notions of filter to select specific parts of a constraint, and sorter to classify the
elements of a list w.r.t. a given order 3 .

Definition 3 (Filters and Sorters). Given a constraint system (E, 1J, V, C),
a filter <P is a computable function <P : C - 'P(C x C) such that <P(C) =
{ (C fi, Ci), ... , (C f n, Cn)} for all C E C, where each Ci is a syntactical form
of C and Cfi is a sub-constraint of Ci·

A sorter Sorter, w.r.t. a partial order~. is a computable function Sorter :
::5 x'P(.C x .C) - .CA such that V{(C fit> Ci1), •• ., (C fi,., CiJ} E 'P(C x .C):

1. Sorter(~, {(Cfi1' CiJ, ... , (Ck., Ci ..)}) = [(Cfi, C1), ... , (Cfn, Cn)]
2. Vk E [1, ... , n], 3j E [1, ... , n], Cfi1 = Cfk and Cij =Ck
9. VjE[l, ... ,n-l],Cf;~Cf;+1

The elements of </J(C) are called candidates. We define the filter Id which
returns the initial set of constraints and the order None which returns the initial
list of candidates. Considering the filters </J1 and </J2 on (E, 1J, V, C), then </J1; <P2
defined by <P1(C) n </>2(C) is also a filter on (E, 'D, V,.C) for all C EC.

3 An Overview of the Strategy Language

Most of the application mechanisms that we use in our strategy language are
based on the same technique when applied to a constraint C:

1 We consider that "=" is purely syntactic.
2 The ACD theory defines a finite set of quotient classes that we can effectively filter.
3 These transformations are normally hidden in existing solvers. In [9], we detail ex-

amples of the definition of filters and sorters.

Basic Operators for Solving Constraints via Collaboration of Solvers 145

1. A set SC of candidates is built using the filter </> on C.
2. The set SC is sorted using the partial order ::j. We obtain LG, a sorted list

of candidates.
3. The solver Sis applied to one (e.g., the "best" w.r.t. :::5) or several elements

of LG.
4. Each occurrence of the sub-constraint(s) modified by Sare replaced in their

corresponding (w.r.t. candidates) syntactical form of C.

The idea behind this scheme can be better understood in the following ex
ample. Suppose we are given the CSP over finite domains:

x E [1, ... , 10] /\ y E [1, ... , 5] /\ x ~ y

In order to find a solution we can carry out enumeration as follows:

- We first filter domain constraints in order to obtain a set of candidates:

{(x E [1, ... , 10], x E [I, ... , 10] /\ y E [1, ... , 5] /\ x ~ y),
(yE[l, ... ,5], xE(l, ... ,10] /\ yE(l, ... ,5] /\ x~y)}

- If we want to use the minimum domain criterion, a sorter will return the
following sorted list of candidates:

((yE (1, ... ,5], xE [l, ... ,10) /\ yE [1, ... ,5] /\ x~y),
(x E (1, ... , 10], x E (1, ... , 10] /\ y E [1, ... , 5) /\ x ~ y)]

- Applying a solver to split the "best" domain constraint we obtain:

y E [l, ... , 2] V y E (3, ... , 5), x E [l, ... , 10] /\ y E (1, ... , 5] /\ x ~ y

- After replacing the original constraint in the corresponding syntactical form
we finally obtain:

x E [1, ... , 10] A (y E [l, ... , 2] V y E [3, ... , 5]) A x ~ y

This syntactical form is equivalent to the original set of constraints and once we
activate operators properties we could continue the solving process.

4 The Strategy Language

Now we briefly present several application mechanisms to apply solvers to con
straints. We assume that a solver is applied only once to a given set of constraints.
In the following, we consider given a constraint system CS= (E, 'D, V, C), solvers
81, ... , Sn, filters </>1, ... , </>n, and partial orders ::51, ... , :::5n·

We also use the notion of separators that are mainly defined to manipulate
elements of conjunctions and disjunctions of constraints as elements of lists. A
/_separator 8A is a function 8A : C -+ CC s.t.: V C E £, 3n E N, 8A(C) =
[C1, ... , Cn] where C ~ C1 A ... /\On. Similarly, a v _separator 8v is a function

146 Carlos Castro and Eric Monfroy

6v : .C --> .CC such that: V C E .C, 3n E N, 6v(C) = [01, ... , On] where C ~
01 V ... VCn.

Finally, we use the notion of a constraint property p on a constraint system
(E, V, V, .C) which is a function from constraints to Booleans (i.e., p : .C -->

Boolean).
We use five basic operators that are analogous to function compositions and

that allow to design solvers by combining "basic" functions (non decomposable
solvers), or to create solver collaborations by combining component solvers. Con
sider two solvers Si and Sj. Then, for all C E .C:

- Sf(C) = C (Identity)
- Si; Sj(C) = Sj(Si(C)) (solver concatenation)
- Sf (C) = Sf-1; Si (C) if n > O (solver iteration)
- St(C) = Sf(C) such that s;i+1(C) = Sf(C) (solver fixed-point)
- (Si, Sj) (C) = Si (C) or Sj (C) (solver don't-care)

Property 1. Let Si and Sj be two solvers. Then, Si; Sj, S[', Si, and (Si, Sj) are
solvers.

We also use high level operators: two operators to apply a solver to specific
components of a constraint, two operators to apply several solvers on a con
straint, and two operators to apply a solver on each component of a conjunction
or disjunction of constraints. Note that in the following, substitutions apply to
every occurrence of sub-constraints.

de(Si, ef;)(C): this operator restricts the use of the solver Si to one randomly
chosen sub-constraint of a syntactical form of C (obtained using the filter ef;).
For all C E .C,dc(Si,ef;)(C) = C', where:

- [(Cfi,01), ... ,(Cfn,Cn)] = </>(C)
- if there exists i E [l, ... , n] such that Si (C fi) -=/- C fi, then C' = Ci{ C fi f-4

Si (C fi)}, otherwise C' = C.

best(Si, -::5_, ef;)(C): this operator restricts the use of the solver Si to the best
(w.r.t. the partial order -5.) sub-constraint of a syntactical form of C (obtained
using the filter 4>) that Si is able to modify. For all C E .C, best(Si, j, </>) (C) = C',
where:

- [(Cfi, C1),. . ., (Cfn, Cn)] = Sorter(j, ef;(C))
- if there exists i E [1,. .. ,n], such that Si(Cfi) -=f. Cfi, and Vj E [1, .. .,n]

(Si(Cfj)-=/- Cfj =} i:::; j) then C' = Ci{Cfi f-4 Si(Cfi)}, otherwise C' =C.

pcc(p, (81, ji, </>1), ... , (Sn, -::5.n, </>n))(C): this operator applies once one of the
solvers Si and returns a constraint that verifies the property p. For all C E

.C, pcc(p, [81, -5.1, </>1], ... , [Sn, jn, </>n])(C) = C', where:

Basic Operators for Solving Constraints via Collaboration of Solvers 147

- for all i E [1, ... ,n] [(Cfi,1,Ci,i), ... ,(Cfi,mnCi,m;)] = Sorter(':Si,</>i(C))
- if there exists (i,j) E [l, ... ,n] x [1, ... ,mi] such that p(Si(Cfi,j)), and

Si(Cfi,j) #- Cfi.i then C' = Ci,j{Cfi,J 1-+ Si(Cfi.i)}, otherwise C' =C.

bp((Si, ~1, </>1), ... , (Sn, ~n, </>n))(C): this operator applies n solvers 81, ... , Sn
on n sub-constraints of one syntactical form of the constraint. For all C E
C, bp([Si, j1, </>1], ... , [Sn, jn, </>n])(C) = C', where4:

- for all i E [1, ... , n] [(C fi,1, C"), ... , (C fi.m,, C")] = Sorter(ji, </>i(C))
- for all i E [1, ... , n], if there exists j E [1, ... , mi], s.t. Si(Cfij) # Cfi;, and

for all k < j, Si(Cfik) = Cfik• then ai = {Cfi,i; 1-+ Si(Cfi,i;)}, else O'i = 0.
- C' = C" (]" where (]' = uiE[l, ... ,n] O'i.

/_p(Si,8A)(C): this operator applies (in parallel) the solver Si to several con
juncts (determined by 8") of the constraint C and the final result is obtained by
conjunction of the results computed in parallel. For all C E £, /_p(Si, 8")(C) =
C', where:

- [C1, ... ,Cn] =b°"(C)
- C' = Si(C1) /\ ... /\ Si(Cn)

V_p(Si,8v)(C): this operator is analogous to /_p but 8v determines disjuncts,
and the final result is the disjunction of the results computed in parallel. For all
C E .C, V_p(Si,8v)(C) = C', where:

- [C1, ... , Cn] = 8v(C)
- C' = Si(C1) V ... v Si(Cn)

In spite of its simplicity, the following property is essential because it allows
us to manipulate component functions and solvers at the same level, and thus
to create solver collaboration with the same strategy language.

Property 2. Consider n solvers 81, ... , Sn, n filters </Ji. ... , </>n, n partial orders
~1 , ..• , jn, a constraint property p, separators 8" and 8v. Then, dc(Si, </>),
best(Si,~.</>), pcc(p, (81, ji, </>1), •.. , (Sn, jn, </Jn)), bp((Si, ji, </J1),. ·.,(Sn,
jn, <Pn)), /_p(Si, 81\), and V_p(Si, 8v) are solvers.

5 Some Examples of Solver Collaborations

In this section we exemplify the use of our strategy language specifying solvers
for constraints over finite domains and real numbers.

4 Here we need the list of filters [c/>1 , .•. ,et>,.] to be stable and pairwise disjoint.

148 Carlos Castro and Eric Monfroy

5.1 Solving Constraints over Finite Domains

A CSP P over finite domains is any conjunction of formulae of the form:

/\ (xi E Dxi) /\ C
x,EX

where a domain constraint Xi E Dxi is created for each variable x; occurring in
the constraint C, Dx; being a finite set of values.

Solving this kind of problem can be seen as an interleaving process between
local consistency verification and enumeration. The most widely used level of
consistency verification, Arc-Consistency, can be expressed as the repeated ap
plication of the following transformation rule that reduces the set of possible
values the variables can take.

x; E Dx, /\ c /\ C =::} x; E RD(x; E Dx,, c) /\ c /\ C if RD(x; E D:c,, c) /:- Dx,

where RD(xi E Dx,, c) = {Vi E Dx, I (3 V1 E Dx1 , • •• , Vi-1 E Dx,_ 1 , V;+i E

Dx,+ 1 , ••• ,Vn E Dx.,.): c(vi, ... ,v;, ... ,vn)}.
Then, we define the solver LocalConsistency which applies this rule. In order

to carry out enumeration, we consider the solver SplitDomain which transforms
a domain constraint into a disjunction of two domain constraints if the width of
the original domain is greater than or equal to a "minimal" width e. For finite
domains, Eis generally set to 1. For a.ll c = X E Dx from .C:

- if c E .CDom such that width(c) ~ t:, then

SplitDomain(c) = X E D'x V X E Dx

where Dx = D'x U D'X 5 ,

- otherwise, SplitDomain(c) =c.

In order to select domain constraints, we define the filter </>D that returns all
domain constraints of the form X E D x, where D x specifies the values that the
variable X can take.

We also define the filter </>D/\c/\Ds that returns sub-constraints which are the
conjunction of a domain constraint, an atomic constraint, and a conjunction of
domain constraints, i.e. , an atomic constraint with all the domain constraints
of the variables occurring in it.

Finally, we define the sorter :5Dom that returns the candidate whose domain
constraint is the one with the minimum set of values.

Then, the solver FullLookaheadMinDom, which returns all solutions to a
CSP over finite domains, is defined in the following way:

FullLookaheadMinDom = dc(LocalConsistency, </>DAc/\Ds)*;

(best(SplitDomain, ::5Dom, <PD);
dc(Loc.alConsistency, </>DAc/\Ds)*)*

5 We generally also enforce that D'x n D'X = 0.

Basic Operators for Solving Constraints via Collaboration of Solvers 149

This heuristic firstly enforces local consistency. Then, it carries out an enu
meration step on the variable with the minimum set of remaining values, followed
again by local consistency verification. Local consistency verification is always
carried out on the whole set of constraints.

Using 8var, a /_separator which splits a set of constraints into n variable
disjoint subsets of constraints, the application of FullLookaheadMinDom can be
improved when solving CSPs that can be decomposed:

/_p(FullLookaheadMinDom, 8var)

In this way, we are solving several CSPs in parallel. The obvious advantage
is to deal with simpler problems. The solution to the original problem will be in
the union of the solutions to all subproblems.

5.2 Optimization Problems over Finite Domains

Here, we concentrate on an extension of a CSP called Constraint Satisfaction
Optimization Problem (CSOP). CSOP consists in finding an optimal (i.e., max
imal or minimal) value for a given function, such that the set of constraints
is satisfied [21]. The work of Bockmayr and Kasper [5] seems to be the best
currently available reference that explains the approach generally used by the
constraint solving community to deal with this problem. In this section, we first
explain two approaches for solving CSOPs, and then, we show how they can be
combined, all of that using our strategy language.

A CSOP can be described by a tuple (P, f, lb, ub) representing a CSP, an
optimization function, and the lower and upper bounds of this function. Without
loss of generality, we consider the case of minimization of a function f over
integers. To deal with this problem, we consider two approaches, both of them
requiring an initial step verifying that Sol(C /\ f -:;,_? ub) =f. 0, i.e., there exists a
solution to the constraint C satisfying the additional constraint f $ 1 ub.

The first approach consists in applying the following rule until it cannot be
applied any more:

(P, f, lb, ub) ~ (P, f, lb, a(!)) if a E Sol(C /\ f <1 ub)

Each iteration of this rule tries to decrease the upper bound ub by at least one
unit until an unsatisfiable problem is obtained. That is why we call this technique
satisfiability to unsatisfiability. The minimum value of the function f represents
the upper bound of the last successful application of this rule. Thus, we define
the solver MinSatToUnsat implementing this approach. We do not detail here
this definition, but it is obvious that for solving the CSPs, as it is needed by this
approach, we could use the already defined solver FullLookaheadMtnDom·

The second approach applies the following rules until they cannot be applied
any more:

(P, f, lb, ub) ~ (P, f, lb, a(!)) if a E Sol(C /\ f <1 (Zb~ub))
(P, f, lb, ub) ~ (P, f, (lb~ub), ub) if lb =f. ub and Sol(C /\ f < 1 (Lb~ub)) = 0

150 Carlos Castro and Eric Monfroy

The first rule tries to find a new value for the upper bound ub and reduces,
by at least one-half, the range of possible values of the function f each time a
new solution is obtained6 . The second rule similarly updates the lower bound lb
in the opposite situation. We call this approach binary splitting and we define
the solver M inSplitting implementing it.

Concerning the behavior of these strategies, we can note that the strategy
MinSatToUnsat takes a lot of time for reaching the minimal value off, when
it is located too far from the initial upper bound. On the other hand, applying
the strategy MinSplitting, the same situation happens when the minimal value
of f is close to the initial upper bound. Since it is not evident to know where
the optimal solution is located, an a priori, choice between these approaches is
not possible in the general case. In order to improve the performances of these
two basic solvers, we could make them collaborate in order to profit from the
advantages of both of them, and to avoid their drawbacks.

A first scheme of cooperation between the solvers MinSatToUnsat and
MinSplitting is expressed by the strategy SeqOpt:

SeqOpt = (MinSatToUnsat; MinSplitting)*

Using the strategy SeqOpt both solvers are executed sequentially. Its obvious
disadvantage is leaving a solver inactive, while the other one is working. More
over, due to the exponential complexity of the problem under consideration, the
whole process could be blocked if one solver cannot find a solution. To avoid
this situation, we can think of running them concurrently, updating the current
solution as soon as a new one is available, and stopping the other solver.

ParOpt= (pcc(first, [MinSatToUnsat, None, Id], [MinSplitting, None, Id]))*

We do not filter the initial set of constraints and so we do not have any sorter.
In this case, we are interested in the solver that will be the faster, that is why we
use the first property 7 . Using this strategy, a solver never waits for a solution
coming from the other one. In the extreme case that all solutions are read from
the same elementary solver until the final solution is obtained, the performance
of this new solver, ParOpt, is the same as if one of the elementary solvers runs
independently.

5.3 Combining Symbolic Rewriting and Interval Methods

Here, we consider systems of non-linear equations, and two solvers. Grobner
bases computation [6] (i.e., the gb solver) transforms a set of multivariate poly
nomial equalities into a normal form from which solutions can be derived more

6 Of course, we can think of different ratios. Thus, the first approach can be seen as a
particular case of the second one.

7 Here, since we consider parallel computation, we extend properties of constraints to
properties of constraints and computations.

Basic Operators for Solving Constraints via Collaboration of Solvers 151

easily than from the initial set. The second solver, int, is a propagation-based
numerical solver over the real numbers. We assume that every constraint of the
CSPs we consider can be processed by int.

It is generally very efficient to pre-process a CSP with symbolic rewriting
techniques before applying a propagation-based solver. In fact, the pre-processing
may add redundant constraints (in order to speed-up propagation), simplify
constraints, deduce some univariate constraints (whose solutions can easily be
extracted by propagation), and reduce the variable dependency problem.

Thus, we consider sc, a simple collaboration where Grobner bases compu
tation pre-processes equality constraints before the interval solver is applied on
the whole CSP:

sc = dc(gb, <I>=); int

where the filter <I>= selects equalities of polynomials.
Consider, for example, the following problem:

x 3 - x * y 2 + 2 = 0 /\ x2 - y 2 + 2 = 0 /\ y > 0

Most of the solvers based on propagation require splitting to isolate the
solutions of this CSP. However, using gb (with a lexicographic order x >- y), the
problem becomes

y 2 - 3 = 0 /\ - 1 + x = 0 /\ y > 0

and int can easily isolate solutions.
However, as stressed in [3], Grabner bases computation may require too much

memory and be very time-consuming compared to the speed-up they introduce.
Thus, in [3] the authors propose a trade-off between pruning and computation
time: gb is applied on subsets of the initial CSP, and the union of the resulting
bases and of the constraints that are not rewritten (such as inequalities, and
equalities of non-polynomial expressions) forms the input of the propagation
based solver. We can describe this collaboration as follows:

/_p(dc(gb, <I>=), Opart)i int

where Opart is the /\....separator corresponding to the partitioning of the initial
system introduced in [3].

5.4 The Solvers of CoSAc

CoSAc [18] is a constraint logic progranuning system for non-linear polynomial
equalities and inequalities. The solving mechanism of CoSAc consists of five
heterogeneous solvers working in a distributed environment, and cooperating
through a client/server architecture:

- chdin [11], implemented with CHRs, for solving linear constraints (equali
ties and inequalities),

152 Carlos Castro and Eric Monfroy

- gb [10] for computing Grabner bases (note that this solver is itself based on
a client/server architecture),

- maple_uni for computing roots of a univariate polynomial equality, i.e.,
maple_ uni extracts solutions from one equation, not from a set of equations,

- maple_exp for simplifying and transforming constraints (both this solver and
the previous one are Maple [12] programs), and

- eel for testing closed inequalities using ECLipse [14] features.

Since CoSAc uses several solving strategies, these solvers cooperate in three
collaborations: Sine, S fin and S/in. We now focus on how these collaborations
could be described in a simple way using our control language. The collabora
tions are thus clarified: 1) every constraint cannot be treated by all the solvers,
and using filters, we can make it clear and formalized; 2) distributed applica
tions are implicit and part of the primitive semantics; 3) it becomes clear where
improvements/strategies can be integrated.

Sine is the incremental (in the sense of CoSAc) collaboration, i.e., it is applied
as soon as a new constraint is added to the store. maple_exp transforms (e.g., ex
pands polynomials, and simplify arithmetic expressions) all constraints so eqJin
can propagate information and simplify the set of linear equations (equalities
and inequalities) filtered by <f>=,<,lin:

Sine= maple...exp; dc(eqJin, <f>=,<,lin)

S fin is one of the final solvers of CoSAc. It is applied once to the remaining
constraints. First, constraints are simplified again by (maple..exp) since Sine

iay transform constraints into a syntax gb cannot understand. After computing
:robner bases of the set of non-linear polynomial equalities (filtered by <f>=),

18.l'iables are eliminated (by maple_uni) one by one from univariate polynomials
(filtered by cP=,uni), solutions are propagated, and linearized equations are solved
(eq_lin). This process terminates when each variable has been eliminated or when
there is no more univariate polynomial:

S fin = maple..exp ;
dc(gb,<f>=) ;
(dc(maple_uni, <f>=,uni); dc(eqJin, cP=,<,lin))*

Here, we can see the flexibility and the simplicity of our control language. In
CoSAc, the S fin collaboration is fixed. From its description in our language, we
can notice that maple_uni is applied by a don't care primitive. Some strategies
can easily be introduced to improve the collaboration. In fact, maple_uni could
be applied with a "best" primitive, ordering possible candidates with respect to
the increasing degree of univariate polynomial equations (with a :5.degree sorter).
Using best(maple_uni, ::Sdegree, cP=,uni) variables could be eliminated from lower
degree equations first, and thus less arithmetic errors/roundings could be prop
agated to the system (and that is a weak point of CoSAc). Concerning gb and
eqJin, a "best" primitive would not help since these solvers consider the "max
imal" set of filtered constraints.

Basic Operators for Solving Constraints via Collaboration of Solvers 153

S/ in is an alternative to S fin which is more efficient when eliminations of non
linear variables do not linearize any other constraint and only ground inequalities
have to be checked by eel. We can write it as:

S/in = maple_exp ;
dc(gb, 4>=) ;
(dc(maple_uni, 4>=,uni))* ;
(de(eel, 4><,ground))*

Again, strategies can be introduced since ground inequalities can be checked
simultaneously. Using Done, a /_separator that splits a set of n constraints into
n singletons of atomic constraints, the application of eel is improved:

/_p(dc(eel, 4><,ground), <>one)

We remark that we still need a filter for eel since <>one does not perform any
filtering.

As mentioned in [17], the first solvers of Sf in and S/in can be "factorized":

S'Jin = maple_exp ;
dc(gb, 4>=) ;
pcc(first, [(dc(maple_uni, <I>=, uni); dc(eqJin, 4>=,<,lin))* , None, I dj,

[(dc(maple_uni, <I>=, uni))* ; (de(eel, 4><,ground))*, None, Idj)

The remaining parts of the collaborations are executed concurrently. No fil
tering is needed (Id for both sub-collaborations), and thus we do not have any
sorter (None) since there is only one candidate after filtering, i.e., the initial
set of constraints. We do not impose any property on the result, and we are
interested in the sub-collaboration that will be the faster (first property). Note
that improvements for applying eel and maple_uni still hold in S'Jin.

5.5 Combining Consistencies

Box consistency [2] is a local consistency notion for interval constraints that re
lies on bounds of domains of variables: it is generally implemented as a (local)
splitting of domains combined with the interval Newton method for determining
consistent bounds of intervals. Hull consistency is another notion of consistency,
stronger than box consistency. However, it can only be applied on primitive con
straints that are either part of the original CSP, or are obtained by decomposing
the constraints of the CSP. Then, the reduction of the "decomposed" CSP is
weaker, but also faster. The idea of [2] is to combine these two consistencies in
order to reduce the computation time for enforcing box consistency.

Let us consider Hull and Box, two solvers that respectively enforce hull and
box consistency of a CSP. Then, the combination of [2] can be described by:

(Hull ; Box)*

154 Carlos Castro and Eric Monfroy

Since we can define both solvers and collaboration in our language, we now
specify the Hull and Box solvers:

Box= (dc(box, </>-.p))* and Hull= (dc(hull, </>p))*

where </>p (respectively c/J-.p) filters one primitive (respectively non-primitive)
constraint together with the domain constraints (e.g., x E [a, b]) associated with
each of its variables, box (respectively hull) is a component solver that given a
constraint c enforces box (respectively hull) consistency of c w.r.t. each of its
variables.

We can also consider some inner strategies, such as reducing the variable
with the largest domain. Then, Hull and Box are defined as follows:

Box= (best(box, », <f>..,p))* and Hull= (best(hull,», </>p))*

where "»" selects the candidate with the largest domain.
Note that we could once again decompose these solvers into solvers that en

force box (or hull) consistency of one constraint with respect to one variable.
Note also that (Hull ; Box)* can represent the solver int considered in Sec
tion 5.3. We could also think about some other description of Hull and Box
(e.g., using parallel application of solvers), but then we would not respect any
more the original combination of [2].

6 Conclusions

We have presented a strategy language for solving CSPs via collaboration of
solvers. A key point in this work is the introduction of basic strategy operators
that allow the design of solvers by combining basic functions as well as the col
laboration of solvers by combining component solvers. We have exemplified the
use of this language by the simulation of well-known techniques for solving CSPs
over finite domains and non-linear constraints over real domains. To show the
broad scope of our control language's potential applications, we have designed
several solvers that are considered of different nature (such as propagation based
solvers, optimization over finite domain, and Grobner bases computation). We
are currently working on the implementation of this language in order to evaluate
the real applicability of this framework. From a more theoretical point of view,
we are considering as further work the verification of the termination properties
of the strategy operators.

7 Acknowledgments

We are grateful to the anonymous referees who pointed out very accurate issues
that allowed us to improve our work and the quality of this paper.

Basic Operators for Solving Constraints via Collaboration of Solvers 155

References

[1] F. Arbab and E. Monfroy. Heterogeneous distributed cooperative constraint solv
ing using coordination. ACM Applied Computing Review, 6:4-17, 1999.

[2] F. Benhamou, F. Goualard, L. Granvilliers, and J. Puget. Revising Hull and Box
Consistency. In Proc. of International Conference on Logic Programming, pages
230-244, Las Cruces, USA, 1999. The MIT Press.

[3] F. Benhamou and L. Granvilliers. Combining Local Consistency, Symbolic Rewrit
ing, and Interval Methods. In Proc. of AISMCS, volume 1138 of LNCS, pages
144-159, Steyr, Austria, 1996. Springer-Verlag.

[4] H. Beringer and B. DeBacker. Combinatorial Problem Solving in Constraint
Logic Programming with Cooperative Solvers. In C. Beierle and L. Plfuner, edi
tors, Logic Programming: Formal Methods and Practical Applications, Studies in
Computer Science and Artificial Intelligence. North Holland, 1995.

[5) A. Bockmayr and T. Kasper. A unifying framework for integer and finite domain
constraint programming. Research Report MPI-1-97-2-008, Max Planck Institut
fiir Informatik, Saarbriicken, Germany, Aug. 1997.

[6) B. Buchberger. Grebner Bases: an Algorithmic Method in Polynomial Ideal The
ory. In N. K. Bose, editor, Multidimensional Systems Theory, pages 184-232. D.
Reidel Publishing Company, Dordrecht - Boston - Lancaster, 1985.

[7] C. Castro. Building Constraint Satisfaction Problem Solvers Using Rewrite Rules
and Strategies. Pundamenta Informaticae, 34(3):263-293, June 1998.

[8] C. Castro. COLETTE, Prototyping CSP Solvers Using a Rule-Based Language.
In J. Calmet and J. Plaza, editors, Proc. of The Fourth International Conference
on Artificial Intelligence and Symbolic Computation, AISC'98, volume 1476 of
LNCS, pages 107-119, Plattsburgh, NY, USA, Sept. 1998. Springer-Verlag.

[9] C. Castro and E. Monfroy. A Control Language for Designing Constraint Solvers.
In Proc. of Third International Conference Perspective of System Informatics,
PSI'99, volume 1755 of LNCS, pages 402-415, Novosibirsk, Russia, 2000. Springer
Verlag.

[10) J.-C. Faugere. Resolution des systemes d'equations algebriques. PhD thesis, Uni
versite Paris 6, France, 1994.

[11] T. Friihwirth. Constraint handling rules. In A. Podelski, editor, Constraint
Programming: Basics and Trends, volume 910 of LNCS. Springer-Verlag, 1995.

[12] K. Geddes, G. Connet, and B. Leong. Maple V: Language reference manual.
Springer Verlag, New York, Berlin, Paris, 1991.

(13] P. Marti and M. Rueher. A Distribuited Cooperating Constraints Solving System.
International Journal of Artificial Intelligence Tools, 4(1-2):93-113, 1995.

[14] M. Meier and J. Schimpf. ECLiPSe User Manual. Technical Report ECRC-93-6,
ECRC {European Computer-industry Research Centre), Munich, Germany, 1993.

(15] E. Monfroy. Collaboration de solveurs pour la programmation logique a contraintes.
Phd thesis, Universite Henri Poincare - Nancy 1, France, Nov. 1996. Also available
in english. On-line at: http://www.cwi.nl;-eric/Private/Publications/index.html.

[16] E. Monfroy. An environment for designing/executing constraint solver collabora
tions. ENTCS {Electronic Notes in Theoretical Computer Science), 16{1), 1998.

[17) E. Monfroy. The Constraint Solver Collaboration Language of BALI. In D. Gab
bay and M. de Rijke, editors, Frontiers of Combining Systems 2, volume 7 of
Studies in Logic and Computation, pages 211-230. Research Studies Press/Wiley,
2000.

156 Carlos Castro and Eric Monfroy

[18] E. Monfroy, M. Rusinowitch, and R. Schott. Implementing Non-Linear Con
straints with Cooperative Solvers. In K. M. George, J. H. Carroll, D. Oppen
heim, and J. Hightower, editors, Proc. of ACM Symposium on Applied Computing
(SAC'96), Philadelphia, PA, USA, pages 63-72. ACM Press, February 1996.

[19] G. Nelson and D. C. Oppen. Simplifications by Cooperating Decision Procedures.
ACM Trans. on Programming Languages and Systems, 1(2):245-257, Oct. 1979.

[20] C. Ringeissen. Cooperation of decision procedures for the satisfiability prob
lem. In F. Baader and K. Schulz, editors, Proc. of First Int. Workshop Frontiers
of Combining Systems, ProCoS'96, pages 121-139. Kluwer Academic Publishers,
1996.

[21] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

