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Abstract. In this paper, we propose a strategy language for designing 
schemes of constraint solver collaborations: a set of strategy operators 
enables one to design several kinds of collaborations. We exemplify the 
use of this language by describing some well known techniques for solv­
ing constraints over finite domains and non-linear constraints over real 
numbers via collaboration of solvers. 

1 Introduction 

In constraint programming, the programming process consists of formulating 
problems with constraints. Solutions of these so called Constraint Satisfaction 
Problems (CSPs) are generated by solvers. Numerous algorithms have been de­
veloped for solving CSPs and the resulting technology has been successfully 
applied for solving real-life problems. The design and implementation of these 
constraint solvers is generally an expensive and tedious task. Thus, the idea of 
reusing existing solvers is very interesting, but it also implies that we must have 
some tools to integrate them. Even more important, considering that some prob­
lems cannot be tackled or efficiently solved with a single solver, we definitively 
realize the interest of integrating and making cooperate several solvers [19, 4, 
13, 20, 18]. This is called collaboration of solvers [15]. In order to make solvers 
collaborate, the need of powerful strategy languages to control their integration 
and application has been well recognized [16, 17, 1]. 

The existing approaches are generally not generic: they consider fixed do­
mains (linear constraints [4], non-linear constraints over real numbers [18, 13, 
3]), fixed strategies, or fixed scheme of collaboration (sequential [18, 3], asyn­
chronous [13]). In the language BALI, collaborations are specified using control 
primitives and the constraint system is a parameter. Although BALI is more 
generic and flexible, the control capabilities for specifying strategies are not al­
ways fine enough [17]. In the system COLETTE [7, 8], a solver is viewed as 
a strategy that specifies the order of application of elementary operations ex­
pressed by transformation rules. 
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Extending ideas of BALI and COLETTE, we consider collaborations of solvers 
as strategies that specify the order of application of component solvers. In [9}, we 
propose a strategy language for designing component or elementary constraint 
solvers and we exemplify its use by specifying several solvers (such as solvers 
for constraints over finite domains and real numbers). In this paper, we present 
the application of our language for prototyping constraint solving schemes via 
collaboration of solvers. 

The main motivation for this work is to propose a general framework in which 
one can design component constraint solvers as well as solver collaborations. 
This approach makes sense since the design of constraint solvers and the design 
of collaborations require similar methods (strategies are often the same: don't­
care, fixed point, iteration, parallel, concurrent, ... ). In other words, we propose 
a language for writing component solvers and designing collaborations of several 
solvers at the same level. 

This paper is organized as follows: Section 2 presents basic definitions and 
notations. In Section 3, we present an overview of our strategy language whereas 
in Section 4 we detail its basic operators. In Section 5, we use our language for 
solving constraints over finite domains and real numbers via the collaboration 
of several solvers. Finally, we conclude in Section 6. 

2 Definitions 

Definition 1 (Constraint Systems and Constraint Solvers). A constraint 
system is a 4-tuple (E, V, V, £) where E is a first-order signature given by a set 
of function symbols :Fr; and a set of predicate symbols Pr:, V is a E-structure 
(its domain being denoted by IDIJ, V is an infinite denumerable set of variables, 
and£ is a set of constraints: a non-empty set of (E, V)-atomic formulae, called 
atomic constraints, closed under conjunction and disjunction. 

We denote by J_ the unsatisfiable constraint and the true constraint by T. 
The set of atomic constraints is denoted by CAt· An assignment is a mapping 
a: V-+ IDI. The set of all assignments is denoted by ASS~. An assignment a 
extends uniquely to an homomorphism g: T(E, V)-+ IVI. The set of solutions 
of a constraint c E .C is the set Solv(c) of assignments a E ASS~ such that g(c) 
holds. A constraint c is valid in V (denoted by V f= c) if Solv(c) =ASS~. We 
use Var(c) to denote the set of variables from V occurring in the constraint c. 

Given a constraint system (E, V, V,£), a solver is a computable function 
S : £ -+ C satisfying the correctness and completeness properties, i.e., VC E 
£, Solv(S(C)) <; Solv(C) and Solv(C) <; Solv(S(C)). We extend S to a 
constraint system (E, V, V, C'), where£<;£', in the following way: V C E £'\£, 
S(C) = C. We say that a constraint C is in solved form with respect to S if 
S(C) =C. 

In order to be able to manipulate specific parts of a constraint, we introduce 
the notions of syntactical form and sub-constraint. 
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Definition 2 (Syntactical Forms and Sub-constraints). We say that C' is 
a syntactical form of C, denoted by C' ~ C, if C' = C modulo the associativity 
and commutativity of/\ and V, and the distributivity of/\ on V and of V on /\ 1 . 

We say that C' E .C is a sub-constraint of C, denoted by Cic'] • if: 

C=C' 
or 301 E .C, w E {/\, V}, C = C1wC1 

or 301 E .C, w E {/\, v}, C = C1wC1 
or 3Ci, C2 E .C, w E {/\, V}, C = C1wC2 and (Ci[C'] or C2[C'J) 

A couple ( C", C') such that C" is a sub-constraint of C' and C' ~ C is called 
an applicant of C. We denote by S:F(C) the finite set of all the syntactical forms 
of a constraint C: SF(C) = {C'I C' ~ C}2. We denote by .CA the set of all the 
lists of applicants, and by .CC the set of all the lists of constraints. Generally, 
we will use LA (respectively LG) to denote a list of applicants (respectively 
constraints). We denote by 'P(C x C) the power-set of all the sets of couples 
of constraints. Atotn(C) denotes the set of atomic constraints that occur in C: 
{clc E .CAt and CrcJ}· 

Finally, in order to explicitly handle sub-parts of a constraint, we define the 
notions of filter to select specific parts of a constraint, and sorter to classify the 
elements of a list w.r.t. a given order 3 . 

Definition 3 (Filters and Sorters). Given a constraint system (E, 1J, V, C), 
a filter <P is a computable function <P : C - 'P(C x C) such that <P(C) = 
{ ( C fi, Ci), ... , ( C f n, Cn)} for all C E C, where each Ci is a syntactical form 
of C and Cfi is a sub-constraint of Ci· 

A sorter Sorter, w.r.t. a partial order~. is a computable function Sorter : 
::5 x'P(.C x .C) - .CA such that V{( C fit> Ci1 ), •• ., (C fi,., CiJ} E 'P(C x .C): 

1. Sorter(~, {(Cfi1' CiJ, ... , (Ck., Ci .. )}) = [(Cfi, C1), ... , (Cfn, Cn)] 
2. Vk E [1, ... , n], 3j E [1, ... , n], Cfi1 = Cfk and Cij =Ck 
9. VjE[l, ... ,n-l],Cf;~Cf;+1 

The elements of </J( C) are called candidates. We define the filter Id which 
returns the initial set of constraints and the order None which returns the initial 
list of candidates. Considering the filters </J1 and </J2 on ( E, 1J, V, C), then </J1; <P2 
defined by <P1(C) n </>2(C) is also a filter on (E, 'D, V,.C) for all C EC. 

3 An Overview of the Strategy Language 

Most of the application mechanisms that we use in our strategy language are 
based on the same technique when applied to a constraint C: 

1 We consider that "=" is purely syntactic. 
2 The ACD theory defines a finite set of quotient classes that we can effectively filter. 
3 These transformations are normally hidden in existing solvers. In [9], we detail ex-

amples of the definition of filters and sorters. 
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1. A set SC of candidates is built using the filter </> on C. 
2. The set SC is sorted using the partial order ::j. We obtain LG, a sorted list 

of candidates. 
3. The solver Sis applied to one (e.g., the "best" w.r.t. :::5) or several elements 

of LG. 
4. Each occurrence of the sub-constraint(s) modified by Sare replaced in their 

corresponding (w.r.t. candidates) syntactical form of C. 

The idea behind this scheme can be better understood in the following ex­
ample. Suppose we are given the CSP over finite domains: 

x E [1, ... , 10] /\ y E [1, ... , 5] /\ x ~ y 

In order to find a solution we can carry out enumeration as follows: 

- We first filter domain constraints in order to obtain a set of candidates: 

{(x E [1, ... , 10], x E [I, ... , 10] /\ y E [1, ... , 5] /\ x ~ y), 
(yE[l, ... ,5], xE(l, ... ,10] /\ yE(l, ... ,5] /\ x~y)} 

- If we want to use the minimum domain criterion, a sorter will return the 
following sorted list of candidates: 

((yE (1, ... ,5], xE [l, ... ,10) /\ yE [1, ... ,5] /\ x~y), 
(x E (1, ... , 10], x E (1, ... , 10] /\ y E [1, ... , 5) /\ x ~ y)] 

- Applying a solver to split the "best" domain constraint we obtain: 

y E [l, ... , 2] V y E (3, ... , 5), x E [l, ... , 10] /\ y E (1, ... , 5] /\ x ~ y 

- After replacing the original constraint in the corresponding syntactical form 
we finally obtain: 

x E [1, ... , 10] A (y E [l, ... , 2] V y E [3, ... , 5]) A x ~ y 

This syntactical form is equivalent to the original set of constraints and once we 
activate operators properties we could continue the solving process. 

4 The Strategy Language 

Now we briefly present several application mechanisms to apply solvers to con­
straints. We assume that a solver is applied only once to a given set of constraints. 
In the following, we consider given a constraint system CS= (E, 'D, V, C), solvers 
81, ... , Sn, filters </>1, ... , </>n, and partial orders ::51, ... , :::5n· 

We also use the notion of separators that are mainly defined to manipulate 
elements of conjunctions and disjunctions of constraints as elements of lists. A 
/\_separator 8A is a function 8A : C -+ CC s.t.: V C E £, 3n E N, 8A(C) = 
[C1, ... , Cn] where C ~ C1 A ... /\On. Similarly, a v _separator 8v is a function 
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6v : .C --> .CC such that: V C E .C, 3n E N, 6v(C) = [01, ... , On] where C ~ 
01 V ... VCn. 

Finally, we use the notion of a constraint property p on a constraint system 
(E, V, V, .C) which is a function from constraints to Booleans (i.e., p : .C --> 

Boolean). 
We use five basic operators that are analogous to function compositions and 

that allow to design solvers by combining "basic" functions (non decomposable 
solvers), or to create solver collaborations by combining component solvers. Con­
sider two solvers Si and Sj. Then, for all C E .C: 

- Sf(C) = C (Identity) 
- Si; Sj(C) = Sj(Si(C)) (solver concatenation) 
- Sf ( C) = Sf-1; Si ( C) if n > O (solver iteration) 
- St(C) = Sf(C) such that s;i+1(C) = Sf(C) (solver fixed-point) 
- (Si, Sj) ( C) = Si ( C) or Sj ( C) (solver don't-care) 

Property 1. Let Si and Sj be two solvers. Then, Si; Sj, S[', Si, and (Si, Sj) are 
solvers. 

We also use high level operators: two operators to apply a solver to specific 
components of a constraint, two operators to apply several solvers on a con­
straint, and two operators to apply a solver on each component of a conjunction 
or disjunction of constraints. Note that in the following, substitutions apply to 
every occurrence of sub-constraints. 

de( Si, ef;)(C): this operator restricts the use of the solver Si to one randomly 
chosen sub-constraint of a syntactical form of C (obtained using the filter ef;). 
For all C E .C,dc(Si,ef;)(C) = C', where: 

- [(Cfi,01), ... ,(Cfn,Cn)] = </>(C) 
- if there exists i E [l, ... , n] such that Si ( C fi) -=/- C fi, then C' = Ci{ C fi f-4 

Si ( C fi)}, otherwise C' = C. 

best( Si, -::5_, ef;)(C): this operator restricts the use of the solver Si to the best 
(w.r.t. the partial order -5.) sub-constraint of a syntactical form of C (obtained 
using the filter 4>) that Si is able to modify. For all C E .C, best( Si, j, </>) ( C) = C', 
where: 

- [(Cfi, C1),. . ., (Cfn, Cn)] = Sorter(j, ef;(C)) 
- if there exists i E [1,. .. ,n], such that Si(Cfi) -=f. Cfi, and Vj E [1, .. .,n] 

(Si(Cfj)-=/- Cfj =} i:::; j) then C' = Ci{Cfi f-4 Si(Cfi)}, otherwise C' =C. 

pcc(p, (81, ji, </>1), ... , (Sn, -::5.n, </>n))(C): this operator applies once one of the 
solvers Si and returns a constraint that verifies the property p. For all C E 

.C, pcc(p, [81, -5.1, </>1], ... , [Sn, jn, </>n])(C) = C', where: 
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- for all i E [1, ... ,n] [(Cfi,1,Ci,i), ... ,(Cfi,mnCi,m;)] = Sorter(':Si,</>i(C)) 
- if there exists (i,j) E [l, ... ,n] x [1, ... ,mi] such that p(Si(Cfi,j)), and 

Si(Cfi,j) #- Cfi.i then C' = Ci,j{Cfi,J 1-+ Si(Cfi.i)}, otherwise C' =C. 

bp((Si, ~1, </>1), ... , (Sn, ~n, </>n))(C): this operator applies n solvers 81, ... , Sn 
on n sub-constraints of one syntactical form of the constraint. For all C E 
C, bp([Si, j1, </>1], ... , [Sn, jn, </>n])(C) = C', where4: 

- for all i E [1, ... , n] [( C fi,1, C"), ... , ( C fi.m,, C")] = Sorter(ji, </>i(C)) 
- for all i E [1, ... , n], if there exists j E [1, ... , mi], s.t. Si(Cfij) # Cfi;, and 

for all k < j, Si(Cfik) = Cfik• then ai = {Cfi,i; 1-+ Si(Cfi,i;)}, else O'i = 0. 
- C' = C" (]" where (]' = uiE[l, ... ,n] O'i. 

/\_p(Si,8A)(C): this operator applies (in parallel) the solver Si to several con­
juncts (determined by 8") of the constraint C and the final result is obtained by 
conjunction of the results computed in parallel. For all C E £, /\_p(Si, 8")(C) = 
C', where: 

- [C1, ... ,Cn] =b°"(C) 
- C' = Si(C1) /\ ... /\ Si(Cn) 

V_p(Si,8v)(C): this operator is analogous to /\_p but 8v determines disjuncts, 
and the final result is the disjunction of the results computed in parallel. For all 
C E .C, V_p(Si,8v)(C) = C', where: 

- [C1, ... , Cn] = 8v(C) 
- C' = Si(C1) V ... v Si(Cn) 

In spite of its simplicity, the following property is essential because it allows 
us to manipulate component functions and solvers at the same level, and thus 
to create solver collaboration with the same strategy language. 

Property 2. Consider n solvers 81, ... , Sn, n filters </Ji. ... , </>n, n partial orders 
~1 , ..• , jn, a constraint property p, separators 8" and 8v. Then, dc(Si, </>), 
best( Si,~.</>), pcc(p, (81, ji, </>1), •.. , (Sn, jn, </Jn)), bp((Si, ji, </J1),. ·.,(Sn, 
jn, <Pn)), /\_p(Si, 81\), and V_p(Si, 8v) are solvers. 

5 Some Examples of Solver Collaborations 

In this section we exemplify the use of our strategy language specifying solvers 
for constraints over finite domains and real numbers. 

4 Here we need the list of filters [c/>1 , .•. ,et>,.] to be stable and pairwise disjoint. 
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5.1 Solving Constraints over Finite Domains 

A CSP P over finite domains is any conjunction of formulae of the form: 

/\ (xi E Dxi) /\ C 
x,EX 

where a domain constraint Xi E Dxi is created for each variable x; occurring in 
the constraint C, Dx; being a finite set of values. 

Solving this kind of problem can be seen as an interleaving process between 
local consistency verification and enumeration. The most widely used level of 
consistency verification, Arc-Consistency, can be expressed as the repeated ap­
plication of the following transformation rule that reduces the set of possible 
values the variables can take. 

x; E Dx, /\ c /\ C =::} x; E RD(x; E Dx,, c) /\ c /\ C if RD(x; E D:c,, c) /:- Dx, 

where RD(xi E Dx,, c) = {Vi E Dx, I (3 V1 E Dx1 , • •• , Vi-1 E Dx,_ 1 , V;+i E 

Dx,+ 1 , ••• ,Vn E Dx.,.): c(vi, ... ,v;, ... ,vn)}. 
Then, we define the solver LocalConsistency which applies this rule. In order 

to carry out enumeration, we consider the solver SplitDomain which transforms 
a domain constraint into a disjunction of two domain constraints if the width of 
the original domain is greater than or equal to a "minimal" width e. For finite 
domains, Eis generally set to 1. For a.ll c = X E Dx from .C: 

- if c E .CDom such that width(c) ~ t:, then 

SplitDomain(c) = X E D'x V X E Dx 

where Dx = D'x U D'X 5 , 

- otherwise, SplitDomain(c) =c. 

In order to select domain constraints, we define the filter </>D that returns all 
domain constraints of the form X E D x, where D x specifies the values that the 
variable X can take. 

We also define the filter </>D/\c/\Ds that returns sub-constraints which are the 
conjunction of a domain constraint, an atomic constraint, and a conjunction of 
domain constraints, i.e. , an atomic constraint with all the domain constraints 
of the variables occurring in it. 

Finally, we define the sorter :5Dom that returns the candidate whose domain 
constraint is the one with the minimum set of values. 

Then, the solver FullLookaheadMinDom, which returns all solutions to a 
CSP over finite domains, is defined in the following way: 

FullLookaheadMinDom = dc(LocalConsistency, </>DAc/\Ds)*; 

(best(SplitDomain, ::5Dom, <PD); 
dc(Loc.alConsistency, </>DAc/\Ds)*)* 

5 We generally also enforce that D'x n D'X = 0. 
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This heuristic firstly enforces local consistency. Then, it carries out an enu­
meration step on the variable with the minimum set of remaining values, followed 
again by local consistency verification. Local consistency verification is always 
carried out on the whole set of constraints. 

Using 8var, a /\_separator which splits a set of constraints into n variable­
disjoint subsets of constraints, the application of FullLookaheadMinDom can be 
improved when solving CSPs that can be decomposed: 

/\_p(FullLookaheadMinDom, 8var) 

In this way, we are solving several CSPs in parallel. The obvious advantage 
is to deal with simpler problems. The solution to the original problem will be in 
the union of the solutions to all subproblems. 

5.2 Optimization Problems over Finite Domains 

Here, we concentrate on an extension of a CSP called Constraint Satisfaction 
Optimization Problem (CSOP). CSOP consists in finding an optimal (i.e., max­
imal or minimal) value for a given function, such that the set of constraints 
is satisfied [21]. The work of Bockmayr and Kasper [5] seems to be the best 
currently available reference that explains the approach generally used by the 
constraint solving community to deal with this problem. In this section, we first 
explain two approaches for solving CSOPs, and then, we show how they can be 
combined, all of that using our strategy language. 

A CSOP can be described by a tuple (P, f, lb, ub) representing a CSP, an 
optimization function, and the lower and upper bounds of this function. Without 
loss of generality, we consider the case of minimization of a function f over 
integers. To deal with this problem, we consider two approaches, both of them 
requiring an initial step verifying that Sol(C /\ f -:;,_? ub) =f. 0, i.e., there exists a 
solution to the constraint C satisfying the additional constraint f $ 1 ub. 

The first approach consists in applying the following rule until it cannot be 
applied any more: 

(P, f, lb, ub) ~ (P, f, lb, a(!)) if a E Sol(C /\ f <1 ub) 

Each iteration of this rule tries to decrease the upper bound ub by at least one 
unit until an unsatisfiable problem is obtained. That is why we call this technique 
satisfiability to unsatisfiability. The minimum value of the function f represents 
the upper bound of the last successful application of this rule. Thus, we define 
the solver MinSatToUnsat implementing this approach. We do not detail here 
this definition, but it is obvious that for solving the CSPs, as it is needed by this 
approach, we could use the already defined solver FullLookaheadMtnDom· 

The second approach applies the following rules until they cannot be applied 
any more: 

(P, f, lb, ub) ~ (P, f, lb, a(!)) if a E Sol(C /\ f <1 (Zb~ub)) 
(P, f, lb, ub) ~ (P, f, (lb~ub), ub) if lb =f. ub and Sol( C /\ f < 1 (Lb~ub)) = 0 
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The first rule tries to find a new value for the upper bound ub and reduces, 
by at least one-half, the range of possible values of the function f each time a 
new solution is obtained6 . The second rule similarly updates the lower bound lb 
in the opposite situation. We call this approach binary splitting and we define 
the solver M inSplitting implementing it. 

Concerning the behavior of these strategies, we can note that the strategy 
MinSatToUnsat takes a lot of time for reaching the minimal value off, when 
it is located too far from the initial upper bound. On the other hand, applying 
the strategy MinSplitting, the same situation happens when the minimal value 
of f is close to the initial upper bound. Since it is not evident to know where 
the optimal solution is located, an a priori, choice between these approaches is 
not possible in the general case. In order to improve the performances of these 
two basic solvers, we could make them collaborate in order to profit from the 
advantages of both of them, and to avoid their drawbacks. 

A first scheme of cooperation between the solvers MinSatToUnsat and 
MinSplitting is expressed by the strategy SeqOpt: 

SeqOpt = (MinSatToUnsat; MinSplitting)* 

Using the strategy SeqOpt both solvers are executed sequentially. Its obvious 
disadvantage is leaving a solver inactive, while the other one is working. More­
over, due to the exponential complexity of the problem under consideration, the 
whole process could be blocked if one solver cannot find a solution. To avoid 
this situation, we can think of running them concurrently, updating the current 
solution as soon as a new one is available, and stopping the other solver. 

ParOpt= (pcc(first, [MinSatToUnsat, None, Id], [MinSplitting, None, Id]))* 

We do not filter the initial set of constraints and so we do not have any sorter. 
In this case, we are interested in the solver that will be the faster, that is why we 
use the first property 7 . Using this strategy, a solver never waits for a solution 
coming from the other one. In the extreme case that all solutions are read from 
the same elementary solver until the final solution is obtained, the performance 
of this new solver, ParOpt, is the same as if one of the elementary solvers runs 
independently. 

5.3 Combining Symbolic Rewriting and Interval Methods 

Here, we consider systems of non-linear equations, and two solvers. Grobner 
bases computation [6] (i.e., the gb solver) transforms a set of multivariate poly­
nomial equalities into a normal form from which solutions can be derived more 

6 Of course, we can think of different ratios. Thus, the first approach can be seen as a 
particular case of the second one. 

7 Here, since we consider parallel computation, we extend properties of constraints to 
properties of constraints and computations. 
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easily than from the initial set. The second solver, int, is a propagation-based 
numerical solver over the real numbers. We assume that every constraint of the 
CSPs we consider can be processed by int. 

It is generally very efficient to pre-process a CSP with symbolic rewriting 
techniques before applying a propagation-based solver. In fact, the pre-processing 
may add redundant constraints (in order to speed-up propagation), simplify 
constraints, deduce some univariate constraints (whose solutions can easily be 
extracted by propagation), and reduce the variable dependency problem. 

Thus, we consider sc, a simple collaboration where Grobner bases compu­
tation pre-processes equality constraints before the interval solver is applied on 
the whole CSP: 

sc = dc(gb, <I>=); int 

where the filter <I>= selects equalities of polynomials. 
Consider, for example, the following problem: 

x 3 - x * y 2 + 2 = 0 /\ x2 - y 2 + 2 = 0 /\ y > 0 

Most of the solvers based on propagation require splitting to isolate the 
solutions of this CSP. However, using gb (with a lexicographic order x >- y), the 
problem becomes 

y 2 - 3 = 0 /\ - 1 + x = 0 /\ y > 0 

and int can easily isolate solutions. 
However, as stressed in [3], Grabner bases computation may require too much 

memory and be very time-consuming compared to the speed-up they introduce. 
Thus, in [3] the authors propose a trade-off between pruning and computation 
time: gb is applied on subsets of the initial CSP, and the union of the resulting 
bases and of the constraints that are not rewritten (such as inequalities, and 
equalities of non-polynomial expressions) forms the input of the propagation­
based solver. We can describe this collaboration as follows: 

/\_p(dc(gb, <I>=), Opart)i int 

where Opart is the /\....separator corresponding to the partitioning of the initial 
system introduced in [3]. 

5.4 The Solvers of CoSAc 

CoSAc [18] is a constraint logic progranuning system for non-linear polynomial 
equalities and inequalities. The solving mechanism of CoSAc consists of five 
heterogeneous solvers working in a distributed environment, and cooperating 
through a client/server architecture: 

- chdin [11], implemented with CHRs, for solving linear constraints ( equali­
ties and inequalities), 
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- gb [10] for computing Grabner bases (note that this solver is itself based on 
a client/server architecture), 

- maple_uni for computing roots of a univariate polynomial equality, i.e., 
maple_ uni extracts solutions from one equation, not from a set of equations, 

- maple_exp for simplifying and transforming constraints (both this solver and 
the previous one are Maple [12] programs), and 

- eel for testing closed inequalities using ECLipse [14] features. 

Since CoSAc uses several solving strategies, these solvers cooperate in three 
collaborations: Sine, S fin and S/in. We now focus on how these collaborations 
could be described in a simple way using our control language. The collabora­
tions are thus clarified: 1) every constraint cannot be treated by all the solvers, 
and using filters, we can make it clear and formalized; 2) distributed applica­
tions are implicit and part of the primitive semantics; 3) it becomes clear where 
improvements/strategies can be integrated. 

Sine is the incremental (in the sense of CoSAc) collaboration, i.e., it is applied 
as soon as a new constraint is added to the store. maple_exp transforms (e.g., ex­
pands polynomials, and simplify arithmetic expressions) all constraints so eqJin 
can propagate information and simplify the set of linear equations (equalities 
and inequalities) filtered by <f>=,<,lin: 

Sine= maple...exp; dc(eqJin, <f>=,<,lin) 

S fin is one of the final solvers of CoSAc. It is applied once to the remaining 
constraints. First, constraints are simplified again by (maple..exp) since Sine 

iay transform constraints into a syntax gb cannot understand. After computing 
:robner bases of the set of non-linear polynomial equalities (filtered by <f>=), 

18.l'iables are eliminated (by maple_uni) one by one from univariate polynomials 
(filtered by cP=,uni), solutions are propagated, and linearized equations are solved 
(eq_lin). This process terminates when each variable has been eliminated or when 
there is no more univariate polynomial: 

S fin = maple..exp ; 
dc(gb,<f>=) ; 
(dc(maple_uni, <f>=,uni); dc(eqJin, cP=,<,lin))* 

Here, we can see the flexibility and the simplicity of our control language. In 
CoSAc, the S fin collaboration is fixed. From its description in our language, we 
can notice that maple_uni is applied by a don't care primitive. Some strategies 
can easily be introduced to improve the collaboration. In fact, maple_uni could 
be applied with a "best" primitive, ordering possible candidates with respect to 
the increasing degree of univariate polynomial equations (with a :5.degree sorter). 
Using best(maple_uni, ::Sdegree, cP=,uni) variables could be eliminated from lower 
degree equations first, and thus less arithmetic errors/roundings could be prop­
agated to the system (and that is a weak point of CoSAc). Concerning gb and 
eqJin, a "best" primitive would not help since these solvers consider the "max­
imal" set of filtered constraints. 
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S/ in is an alternative to S fin which is more efficient when eliminations of non­
linear variables do not linearize any other constraint and only ground inequalities 
have to be checked by eel. We can write it as: 

S/in = maple_exp ; 
dc(gb, 4>=) ; 
(dc(maple_uni, 4>=,uni))* ; 
(de( eel, 4><,ground) )* 

Again, strategies can be introduced since ground inequalities can be checked 
simultaneously. Using Done, a /\_separator that splits a set of n constraints into 
n singletons of atomic constraints, the application of eel is improved: 

/\_p(dc(eel, 4><,ground), <>one) 

We remark that we still need a filter for eel since <>one does not perform any 
filtering. 

As mentioned in [17], the first solvers of Sf in and S/in can be "factorized": 

S'Jin = maple_exp ; 
dc(gb, 4>=) ; 
pcc(first, [(dc(maple_uni, <I>=, uni); dc(eqJin, 4>=,<,lin))* , None, I dj, 

[(dc(maple_uni, <I>=, uni))* ; (de( eel, 4><,ground))*, None, Idj) 

The remaining parts of the collaborations are executed concurrently. No fil­
tering is needed (Id for both sub-collaborations), and thus we do not have any 
sorter (None) since there is only one candidate after filtering, i.e., the initial 
set of constraints. We do not impose any property on the result, and we are 
interested in the sub-collaboration that will be the faster (first property). Note 
that improvements for applying eel and maple_uni still hold in S'Jin. 

5.5 Combining Consistencies 

Box consistency [2] is a local consistency notion for interval constraints that re­
lies on bounds of domains of variables: it is generally implemented as a (local) 
splitting of domains combined with the interval Newton method for determining 
consistent bounds of intervals. Hull consistency is another notion of consistency, 
stronger than box consistency. However, it can only be applied on primitive con­
straints that are either part of the original CSP, or are obtained by decomposing 
the constraints of the CSP. Then, the reduction of the "decomposed" CSP is 
weaker, but also faster. The idea of [2] is to combine these two consistencies in 
order to reduce the computation time for enforcing box consistency. 

Let us consider Hull and Box, two solvers that respectively enforce hull and 
box consistency of a CSP. Then, the combination of [2] can be described by: 

(Hull ; Box)* 
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Since we can define both solvers and collaboration in our language, we now 
specify the Hull and Box solvers: 

Box= (dc(box, </>-.p))* and Hull= (dc(hull, </>p))* 

where </>p (respectively c/J-.p) filters one primitive (respectively non-primitive) 
constraint together with the domain constraints (e.g., x E [a, b]) associated with 
each of its variables, box (respectively hull) is a component solver that given a 
constraint c enforces box (respectively hull) consistency of c w.r.t. each of its 
variables. 

We can also consider some inner strategies, such as reducing the variable 
with the largest domain. Then, Hull and Box are defined as follows: 

Box= (best(box, », <f>..,p))* and Hull= (best( hull,», </>p))* 

where "»" selects the candidate with the largest domain. 
Note that we could once again decompose these solvers into solvers that en­

force box (or hull) consistency of one constraint with respect to one variable. 
Note also that (Hull ; Box)* can represent the solver int considered in Sec­
tion 5.3. We could also think about some other description of Hull and Box 
(e.g., using parallel application of solvers), but then we would not respect any­
more the original combination of [2]. 

6 Conclusions 

We have presented a strategy language for solving CSPs via collaboration of 
solvers. A key point in this work is the introduction of basic strategy operators 
that allow the design of solvers by combining basic functions as well as the col­
laboration of solvers by combining component solvers. We have exemplified the 
use of this language by the simulation of well-known techniques for solving CSPs 
over finite domains and non-linear constraints over real domains. To show the 
broad scope of our control language's potential applications, we have designed 
several solvers that are considered of different nature (such as propagation based 
solvers, optimization over finite domain, and Grobner bases computation). We 
are currently working on the implementation of this language in order to evaluate 
the real applicability of this framework. From a more theoretical point of view, 
we are considering as further work the verification of the termination properties 
of the strategy operators. 
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