Skip to main content

Complexity Theory Made Easy

The Formal Language Approach to the Definition of Complexity Classes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2710))

Abstract

In recent years generalized acceptance criteria for different nondeterministic computation models have been examined. Instead of the common definition where an input word is said to be accepted if in the corresponding computation tree an accepting path exists, more general conditions on this tree are used. We survey some recent results from this context, paying particular attention to nondeterministic finite automata as well as nondeterministic polynomial-time Turing machines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Ambos-Spies. Resource-bounded genericity. In S. B. Cooper, T. A. Slaman, and S. S. Wainer, editors, Computability, Enumerability, Unsolvability. Directions in Recursion Theory, volume 224 of London Mathematical Society Lecture Notes, pages 1–59. Cambride University Press, 1996.

    Google Scholar 

  2. D. A. Mix Barrington. Bounded-width polynomial size branching programs recognize exactly those languages in NC1. Journal of Computer and System Sciences, 38:150–164, 1989.

    Article  MathSciNet  Google Scholar 

  3. D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity classes. Theoretical Computer Science, 104:263–283, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I. Texts in Theoretical Computer Science. Springer Verlag, Berlin Heidelberg, 2nd edition, 1995.

    Google Scholar 

  5. C. Bennett and J. Gill. Relative to a random oracle PA ≠ NPA ≠ coNPA with probability 1. SIAM Journal on Computing, 10:96–113, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Baker, J. Gill, and R. Solovay. Relativizations of the P=NP problem. SIAM Journal on Computing, 4:431–442, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Blum and R. Impagliazzo. Generic oracles and oracle classes. In Proceedings 28th IEEE Symposium on Foundations of Computer Science, pages 118–126. IEEE Computer Society Press, 1987.

    Google Scholar 

  8. M. Ben-Or and R. Cleve. Computing algebraic formulas using a constant number of registers. SIAM Journal on Computing, 21:54–58, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. R. Büchi. On a decision method in restricted second-order arithmetic. In Proceedings Logic, Methodology and Philosophy of Sciences 1960, Stanford, CA, 1962. Stanford University Press.

    Google Scholar 

  10. H.-J. Burtschick and H. Vollmer. Lindström quantifiers and leaf language definability. International Journal of Foundations of Computer Science, 9:277–294, 1998.

    Article  Google Scholar 

  11. R. Chang, B. Chor, O. Goldreich, J. Hartmanis, J. Hastad, D. Ranjan, and P. Rohatgi. The random oracle hypothesis is false. Journal of Computer and System Sciences, 49:24–39, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  12. J.-Y. Cai and M. Furst. PSPACE survives constant-width bottlenecks. International Journal of Foundations of Computer Science, 2:67–76, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. Journal of the Association for Computing Machinery, 28:114–133, 1981.

    MATH  MathSciNet  Google Scholar 

  14. H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1 computation. Journal of Computer and System Sciences, 57:200–212, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. A. Cook. Characterizations of pushdown machines in terms of time-bounded computers. Journal of the Association for Computing Machinery, 18:4–18, 1971.

    MATH  MathSciNet  Google Scholar 

  16. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in Mathematical Logic. Springer Verlag, Berlin Heidelberg, 1995.

    Google Scholar 

  17. S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder’s toolkit. In Proceedings 8th Structure in Complexity Theory, pages 120–131. IEEE Computer Society Press, 1993.

    Google Scholar 

  18. J. A. Foster. The generic oracle hypothesis is false. Information Processing Letters, 45:59–62, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Galota, S. Kosub, and H. Vollmer. Generic separations and leaf languages. Mathematical Logic Quarterly, 2003. To appear.

    Google Scholar 

  20. S. Ginsburg and G. Rozenberg. TOL schemes and control sets. Information and Computation, 27:109–125, 1975.

    MATH  MathSciNet  Google Scholar 

  21. M. Galota and H. Vollmer. A generalization of the Büchi-Elgot-Trakhtenbrot-theorem. In Computer Science Logic, Lecture Notes in Computer Science, pages 355–368, Berlin Heidelberg, 2001. Springer Verlag.

    Chapter  Google Scholar 

  22. M. Galota and H. Vollmer. Functions computable in polynomial space. Technical Report 03-18, Electronic Colloqium in Computational Complexity, 2003.

    Google Scholar 

  23. J. Hartmanis and L. Hemachandra. Robust machines accept easy sets. Theoretical Computer Science, 74(2):217–226, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  24. [HLS+93]_U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On the power of polynomial time bit-reductions. In Proceedings 8th Structure in Complexity Theory, pages 200–207, 1993.

    Google Scholar 

  25. U. Hertrampf, H. Vollmer, and K. W.Wagner. On balanced vs. unbalanced computation trees. Mathematical Systems Theory, 29:411–421, 1996.

    MATH  MathSciNet  Google Scholar 

  26. J. Jiao. Some questions concerning circuit counting classes and other low-level complexity classes. Master’s essay, 1992.

    Google Scholar 

  27. B. Jenner, P. McKenzie, and D. Thérien. Logspace and logtime leaf languages. Information and Computation, 129:21–33, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  28. D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume A, pages 67–161. Elsevier, 1990.

    Google Scholar 

  29. S. Kosub, H. Schmitz, and H. Vollmer. Uniform characterizations of complexity classes of functions. International Journal of Foundations of Computer Science, 11(4):525–551, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  30. S. Kurtz. On the random oracle hypothesis. Information and Control, 57:40–47, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  31. R. Ladner. Polynomial space counting problems. SIAM Journal on Computing, 18(6):1087–1097, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  32. C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. In Proceedings 31st Symposium on Foundations of Computer Science, pages 2–10. IEEE Computer Society Press, 1990.

    Google Scholar 

  33. Leaf Languages Homepage. http://www-thi.informatik.uni-hannover.de/forschung/leafl.php.

    Google Scholar 

  34. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.

    MATH  Google Scholar 

  35. C. H. Papadimitriou. Personal communication, 1994.

    Google Scholar 

  36. T. Peichl and H. Vollmer. Finite automata with generalized acceptance criteria. Discrete Mathematics and Theoretical Computer Science, 4:179–192, 2001.

    MATH  MathSciNet  Google Scholar 

  37. H. Rogers Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.

    MATH  Google Scholar 

  38. A. Shamir. IP = PSPACE. Journal of the Association for Computing Machinery, 39:869–877, 1992.

    MATH  MathSciNet  Google Scholar 

  39. I. H. Sudborough. On the tape complexity of deterministic context-free languages. Journal of the Association for Computing Machinery, 25:405–414, 1978.

    MATH  MathSciNet  Google Scholar 

  40. W. Thomas. Classifying regular events in symbolic logic. Journal of Computer and Systems Sciences, 25:360–376, 1982.

    Article  MATH  Google Scholar 

  41. B. A. Trakhtenbrot. Finite automata and logic of monadic predicates. Doklady Akademii Nauk SSSR, 140:326–329, 1961. In Russian.

    Google Scholar 

  42. N. K. Vereshchagin. Relativizable and non-relativizable theorems in the polynomial theory of algorithms. Izvestija Rossijskoj Akademii Nauk, 57:51–90, 1993. In Russian.

    Google Scholar 

  43. H. Vollmer. Introduction to Circuit Complexity — A Uniform Approach. Texts in Theoretical Computer Science. Springer Verlag, Berlin Heidelberg, 1999.

    Google Scholar 

  44. H. Vollmer. Uniform characterizations of complexity classes. Complexity Theory Column 23, ACM-SIGACT News, 30(1):17–27, 1999.

    Article  Google Scholar 

  45. H. Vollmer. A generalized quantifier concept in computational complexity theory. In J. Väänänen, editor, Generalized Quantifiers and Computation, volume 1754 of Lecture Notes in Computer Science, pages 99–123. Springer Verlag, Berlin Heidelberg, 2000. An extended version appeared in J. Vogel and K. W. Wagner, editors, Komplexität, Graphen und Automaten, Gerd Wechsung zum 60. Geburtstag, Jena, 1999.

    Google Scholar 

  46. H. Vollmer and K. W.Wagner. Measure one results in computational complexity theory. In D.-Z. Du and K.-I. Ko, editors, Advances in Algorithms, Languages, and Complexity. Kluwer Academic Publishers, 1997.

    Google Scholar 

  47. S. Yu. Regular languages. In R. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume I, chapter 2, pages 41–110. Springer Verlag, Berlin Heidelberg, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vollmer, H. (2003). Complexity Theory Made Easy. In: Ésik, Z., Fülöp, Z. (eds) Developments in Language Theory. DLT 2003. Lecture Notes in Computer Science, vol 2710. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45007-6_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45007-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40434-7

  • Online ISBN: 978-3-540-45007-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics