
Theoretical Computer Science 327 (2004) 225–239
www.elsevier.com/locate/tcs

Synchronizing monotonic automata

D.S. Ananichev, M.V. Volkov∗
Department of Mathematics and Mechanics, Ural State University, 620083 Ekaterinburg, Russia

Received 1 October 2003; received in revised form 30 March 2004; accepted 31 March 2004

Abstract

We show that if the state setQ of a synchronizing automatonA= 〈Q,�, �〉 admits a linear order
such that for each lettera ∈ � the transformation�(_, a) ofQpreserves this order, thenA possesses
a reset word of length|Q| − 1. We also consider two natural generalizations of the notion of a reset
word and provide for them results of a similar flavour.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Synchronizing automata; Order preserving transformation; Monotonic automata; Rank of a word;
Interval rank of a word

1. Motivation and overview

Let A = 〈Q,�, �〉 be a DFA (deterministic finite automaton), whereQ denotes the
state set,� stands for the input alphabet, and� : Q × � → Q is the transition function
defining an action of the letters in� onQ. The action extends in a unique way to an action
Q × �∗ → Q of the free monoid�∗ over�; the latter action is still denoted by�. The
automatonA is calledsynchronizingif there exists a wordw ∈ �∗ whose action resetsA,
that is, leaves the automaton in one particular state no matter which state inQ it started at:
�(q,w) = �(q ′, w) for all q, q ′ ∈ Q. Any wordw with this property is said to be areset
word for the automaton.
Fig. 1 shows an example of a synchronizing automaton with 4 states. The reader can

easily verify that the wordab3ab3a resets the automaton leaving it in the state 2. With
somewhat more effort one can also check thatab3ab3a is the shortest reset word for this
automaton.

∗ Corresponding author.
E-mail addresses:dmitry.ananichev@usu.ru(D.S. Ananichev),mikhail.volkov@usu.ru(M.V. Volkov).

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.03.068

http://www.elsevier.com/locate/tcs
mailto:dmitry.ananichev@usu.ru
mailto:mikhail.volkov@usu.ru

226 D.S. Ananichev, M.V. Volkov / Theoretical Computer Science 327 (2004) 225–239

1
a,b

2

a

b b

b
4 3

aa

Fig. 1. A synchronizing automaton.

Fig. 2. A polygonal detail.

Fig. 3. Four possible orientations.

For a mathematician, the notion of a synchronizing automaton is pretty natural by itself
but we would like to mention here that it is also of interest for various applications, for
instance, forroboticsor, more precisely,robotic manipulationwhich deals with part han-
dling problems in industrial automation such as part feeding, fixturing, loading, assembly
and packing (and which is therefore of utmost and direct practical importance). Of course,
there exists vast literature about the role that synchronizing automata play in these matters
(tracing back to Natarajan’s pioneering papers[10,11]) but we prefer to explain the idea of
using such automata on the following simple example.
Suppose that one of the parts of a certain device has the shape shown on Fig.2. Such

parts arrive at manufacturing sites in boxes and they need to be sorted and oriented before
assembly. For simplicity, assume that only four initial orientations of the part are possible,
namely, the ones shown on Fig.3.
Further, suppose that prior the assembly the detail should take the “bump-left” orientation

(the second one in Fig.3). Thus, one needs a device that puts the detail in the prescribed
position independently of its initial orientation.
Of course, there are many ways to design such an orienter but practical considerations

favour methods which require little or no sensing, employ simple devices, and are as robust

D.S. Ananichev, M.V. Volkov / Theoretical Computer Science 327 (2004) 225–239 227

Fig. 4. The action of the obstacles.

as possible. For our particular case, these goals can be achieved as follows.We put details to
be oriented on a conveyer belt which takes them to the assembly point and let the stream of
the details encounter a series of passive obstacles placed along the belt. We need two type
of obstacles: high and low. A high obstacle should be high enough in order that any detail
on the belt encounters this obstacle by its rightmost low angle (we assume that the belt is
moving from left to right). Being curried by the belt, the detail then is forced to turn 90◦
clockwise. A low obstacle has the same effect whenever the detail is in the “bump-down”
orientation (the first one in Fig.3); otherwise it does not touch the detail which therefore
passes by without changing the orientation.
The schemeonFig.4summarizes how theaforementionedobstacles effect the orientation

of the detail. The reader immediately recognizes the synchronizing automaton from Fig.1.
Remembering that its shortest reset word is the wordab3ab3a, we conclude that the series
of obstacles

low − HIGH − HIGH − HIGH − low − HIGH − HIGH − HIGH − low

yields the desired sensorless orienter.
Another, perhaps, evenmore striking application of synchronizing automata is connected

with biocomputing. Mastering a simple illustrating example from this area is not that easy
(one need to be acquainted at least with some rudiments of molecular biology) so we just
refer to recent experiments (see[2,3]) in which DNA molecules have been used as both
hardware and software for constructing finite automata of nanoscaling size. For instance,
the authors of[3] have produced a “soup of automata”, that is, a solution containing 3×1012

identical automata/�l.All thesemolecular automata canwork in parallel on different inputs,
thusendingup indifferentandunpredictablestates. Incontrast toanelectronic computer, one
cannot reset such a systemby just pressing a button; instead, in order to synchronously bring
each automaton to its “ready-to-restart” state, one should spice the soup with (sufficiently
many copies of) a DNA molecule whose nucleotide sequence encodes a reset word.
Clearly, from the viewpoint of the above applications (as well as frommathematical point

of view) it is rather natural to ask how long a reset word for a given synchronizing automaton
may be. This question is very intriguing as it remains open for 40 years. In 1964,Černý[4]
produced for eachna synchronizing automaton withn states whose shortest reset word has
length(n−1)2 (the automaton on Fig.1 is Černý’s example forn = 4) and conjectured that
these automata represent the worst possible case, that is, every synchronizing automaton
withnstates can be reset by aword of length(n−1)2. By now this simply looking conjecture

228 D.S. Ananichev, M.V. Volkov / Theoretical Computer Science 327 (2004) 225–239

is arguably themost longstandingopenproblem in the theoryof finiteautomata. It is however
confirmed for several special types of automata. Instead of an attempt to overview and to
analyze all related results, we refer to the recent survey[9] and mention here only three
typical examples involving restrictions of rather different sorts.
In Kari’s elegant paper[8] the restriction has been imposed on the underlying digraphs

of automata in question, namely,Černý’s conjecture has been verified for automata with
Eulerian digraphs. In contrast, Dubuc[5] has proved the conjecture under the assumption
that there isa letter that actson thestatesetQasacyclicpermutationoforder|Q|.Acondition
of yet another type has been used by Eppstein[6] who has confirmeďCerný’s conjecture for
automatawhose states can be arranged in some cyclic order which is preserved by the action
of each letter in�. Eppstein (whose interest in synchronizing automata was motivated by
their robotics applications) has called those automatamonotonic; we will refer to them as
to orientedautomata since we prefer to save the term ‘monotonic’ for a somewhat stronger
notion which is in fact the object of the present paper.
We call a DFAA = 〈Q,�, �〉 monotonicif its state setQ admits a linear order�

such that for each lettera ∈ � the transformation�(_, a) of Q preserves� in the sense
that�(q, a)��(q ′, a) wheneverq�q ′. It is clear that monotonic automata form a (proper)
subclass of the class of oriented automata, and therefore, by Eppstein’s result any synchro-
nizing monotonic automaton withn states possesses a reset word of length(n − 1)2. We
will radically improve this upper bound by showing that such an automaton can be in fact
reset by a word of lengthn − 1. It is easy to see that the latter bound is already exact.
(Observe that for general oriented automata the bound(n − 1)2 is exact: for eachn�3
Černý has constructed in[4] ann-state synchronizing automaton whose shortest reset word
is of length(n− 1)2, and one can easily check that all these automata are oriented.)
In fact, we will prove a much stronger result in the flavour of Pin’s generalization[12,13]

of Černý’s conjecture. Given a DFAA = 〈Q,�, �〉, we define therank of a wordw ∈ �∗
as the cardinality of the image of the transformation�(_, w) of the setQ. (Thus, in this
terminology reset words are precisely words of rank 1.) In 1978 Pin conjectured that for
everyk, if ann-state automaton admits a word of rank at mostk, then it has also a word with
rankatmostkandof length(n−k)2. Pin[12,13]hasproved the conjecture forn−k = 1,2,3
but Kari [7] has found a remarkable counter example in the casen − k = 4. It is not yet
clear if the conjecture holds true for some restricted classes of automata such as, say, the
class of oriented automata. For monotonic automata, however, the situation is completely
clarified by the following

Theorem 1. LetA be a monotonic DFA with n states and let k satisfy1�k�n. If there is
a word of rank at most k with respect toA, then some word of length at mostn − k also
has rank at most k with respect toA.

The proof (which, being elementary in its essence, is not easy) is presented in Section 2.
In Section 3 we discuss a related problem arising when one replaces the above notion of
the rank by a similar notion of the interval rank. Given a monotonic DFAA = 〈Q,�, �〉,
we define theinterval rankof a wordw ∈ �∗ as the cardinality of the least interval of
the chain〈Q, �〉 containing the image of the transformation�(_, w). Thus, when looking
for a word of low interval rank, we aim at compressing the state set of an automaton into

D.S. Ananichev, M.V. Volkov / Theoretical Computer Science 327 (2004) 225–239 229

a certain small interval; in other words, if we have several copies of the automaton, each
being in a distinct initial state, then applying such a word we can make the behaviour of all
the copies be ‘almost the same’.
It is to be expected that compressing to small intervals would require more effort than

compressing to just small subsets that can be scattered over the state set in an arbitrary way.
We provide a series of examples showing that no linear function of the sizen of the state
set can serve as an upper bound for the length of a word of interval rank 2 (Propositions 1
and 2). This strongly contrasts with Theorem 1. On the other hand, we give a quadratic
upper bound for the length of a word of interval rankk for anykwith 2�k�n:

Theorem 2. LetA be a monotonic DFA with n states and let k satisfy2�k�n. If there
is a word of interval rank at most k with respect toA, then some word of length at most
(n− k)(n− k − 1)/2+ 1 also has interval rank at most k with respect toA.

A further series of examples (Propositions 3 and 4) serves to show that this upper bound
is exact for all ‘sufficiently large’k, that is, for allk��n/2�.
We mention that the results of Section 3 essentially improve the bounds published in the

proceedings version[1] of the present paper.

2. Proof of Theorem 1

Of course, without any loss wemay assume that the state setQof our monotonic automa-
tonA = 〈Q,�, �〉 is the set{1,2, . . . , n} of the firstn positive integers and that the linear
order� onQ is the usual order 1< 2 < · · · < n. Forx, y ∈ Q with x�y we denote by
[x, y] the interval{x, x+1, x+2, . . . , y}. Then for any non-empty subsetX ⊆ Qwe have
X ⊆ [min(X),max(X)]wheremax(X) andmin(X) stand respectively for themaximal and
the minimal elements ofX. Given a wordw ∈ �∗ and non-empty subsetX ⊆ Q, we write
X.w for the set{�(x,w) | x ∈ X}. Also observe that since the composition of order pre-
serving transformations is order preserving, all transformations�(_, w) wherew ∈ �∗ are
order preserving. We say that a subsetX ⊆ Q is invariantwith respect to a transformation
� of the setQ if X� ⊆ X.

Lemma 1. Let X be a non-empty subset of Q such thatmax(X.w)� max(X) for some
w ∈ �∗.Then for eachp ∈ [max(X.w),max(X)] there exists a wordD(X,w, p) of length
at mostmax(X)− p such thatmax(X.D(X,w, p))�p.

Proof. If p = max(X), then the empty word satisfies all the properties to be fulfilled by
the wordD(X,w, p). Therefore for the rest of the proof we may assume thatp < max(X)
and, therefore, max(X.w) < max(X). Take an arbitraryq in the interval[max(X.w) + 1,
max(X)].We want to show that there is a letter�(q) ∈ � such that�(q, �(q)) < q. Arguing
by contradiction, suppose that for someq ∈ [max(X.w)+1,max(X)] we have�(q, a)�q
for all lettersa ∈ �. Since all transformations�(_, a) are order preserving, this wouldmean
that the intervalY = [q, n] is invariant with respect to all these transformations whence it
is also invariant with respect to all transformations�(_, w) with w ∈ �∗. But max(X) ∈ Y
while �(max(X),w) = max(X.w) /∈ Y , a contradiction.

230 D.S. Ananichev, M.V. Volkov / Theoretical Computer Science 327 (2004) 225–239

Fig. 5. Intervals in the proof of Theorem 1.

Now we construct a sequence of words as follows: letu1 = �(max(X)) and, as long
as�(max(X), ui) > p, let ui+1 = ui�(�(max(X), ui)). Observe that by the construc-
tion the length of the wordui equalsi and the last wordus in the sequence must satisfy
�(max(X), us)�p. Besides that we haves� max(X)− p because by the construction

max(X) > �(max(X), u1) > �(max(X), u2) > · · · > �(max(X), us−1) > p.

Thus, the wordus can be chosen to play the role ofD(X,w, p) from the formulation of the
lemma. �

By symmetry, we also have the following dual statement:

Lemma 2. Let X be a non-empty subset of Q such thatmin(X.w)� min(X) for some
w ∈ �∗. Then for eachp ∈ [min(X),min(X.w)] there exists a wordU(X,w, p) of length
at mostp − min(X) such thatmin(X.U(X,w, p))�p.

Now we can begin with the proof of Theorem 1. We induct onnwith the induction base
n = 1 being obvious. Thus, suppose thatn > 1 and consider the setX = {min(Q.w) |
w ∈ �∗, |Q.w|�k}. (This set is not empty because by the condition of the theorem there
exists a word of rank�k with respect toA.) Letm = max(X) and letv ∈ �∗ be such that
min(Q.v) = m and|Q.v|�k.
Consider the intervalY = [1,m]. It is invariant with respect to all transformations

�(_, w), w ∈ �∗. Indeed, arguing by contradiction, suppose that there areq ∈ Y and
w ∈ �∗ such that�(q,w) > m. Since the transformation�(_, w) is order preserving,
min(Q.vw) = �(m,w)��(q,w) > m. At the same time,|Q.vw|� |Q.v|�k whence
min(Q.vw) belongs to the setX. This contradicts the choice ofm.
Now consider the setZ = {q ∈ Q | �(q,w)�m for somew ∈ �∗}. Observe thatZ is an

interval and thatY ⊆ Z since forq ∈ Y the empty word can serve asw with �(q,w)�m.
Therefore max(Z)�m. Fix a wordu ∈ �∗ such that�(max(Z), u)�m. Then�(q, u)�m
for eachq ∈ Z as the transformation�(_, u) is order preserving.
Finally, consider the intervalT = [max(Z)+1, n] = Q\Z. It is invariant with respect to

all transformations�(_, w),w ∈ �∗. Indeed, suppose that thereexistq ∈ T andw ∈ �∗ such
that�(q,w)� max(Z). This means that�(q,wu)�m whenceq ∈ Z, in a contradiction to
the choice ofq.
Fig. 5 should help the reader to keep track of the relative location of the intervals intro-

duced so far. We have also depicted the actions of the wordsu andv introduced above on
the states max(Z) and 1, respectively.

D.S. Ananichev, M.V. Volkov / Theoretical Computer Science 327 (2004) 225–239 231

Now consider the statep ∈ Q defined as follows:

p =
{
k − |T | if |T | +m�k,
m if |T | +m > k.

(1)

Observe thatm�p�n − |T | = max(Z). Therefore we can apply Lemma 1 to the set
Z, the statep and the wordu ∈ �∗. Let w1 = D(Z, u, p); then the length ofw1 is at
most max(Z) − p and max(Z.w1)�p. ThereforeZ.w1 = (Q \ T).w1 ⊆ [1, p]. Since
the intervalT is invariant with respect to�(_, w1), we conclude thatQ.w1 ⊆ [1, p] ∪ T .
From (1) we see that in the case when|T | +m�k the length of wordw1 does not exceed
max(Z)− k+|T | = n− k and|Q.w1|�q+|T | = k.We have thus found a word of length
at mostn− k and rank at mostkwith respect toA. This means that for the rest of the proof
we may assume that|T | + m > k andp = m. In particular, the length ofw1 is at most
max(Z)−m andQ.w1 ⊆ Y ∪ T .
Consider the following stater ∈ Q:

r =
{
m+ 1+ |T | − k if |T | + 1�k,
m if |T | + 1> k.

(2)

Clearly, 1�r�m, and we can apply Lemma 2 to the setQ, the stater and the wordv. Let
w2 = U(Q, v, r). The length ofw is atmostr−min(Q) = r−1 and�(1, w2)�r. Since the
intervalY = [1,m] is invariant with respect to�(_, w2), we conclude thatY.w2 ⊆ [r,m].
From (2) we see that in the case when|T | + 1�k the length of the wordw1w2 does not
exceedmax(Z)−m+r−1 = max(Z)+|T |−k = n−k and|Q.w1w2|�m−r+1+|T | = k.
Again we have found a word of length at mostn − k and rank at mostk. Thus, from now
on we assume that|T | + 1 > k andr = m. This means thatQ.w1w2 ⊆ {m} ∪ T and the
length of the wordw1w2 is at most(max(Z)−m)+ (m− 1) = max(Z)− 1.
Consider now the automatonAT = 〈T ,�, �T 〉 where�T is � restricted to the setT ×�.

We have observed that the setT is invariant with respect to all transformations�(_, w),
w ∈ �∗, whenceAT is a DFA, which obviously is monotonic. We claim that there is a
word of rank at mostk − 1 with respect toAT . Indeed, suppose that|T .w|�k for each
wordw ∈ �∗. SinceT ∩ Y = ∅ and bothT andYare invariant, we obtainT .w ∩ Y.w = ∅
for everyw ∈ �∗. Therefore

|Q.w|� |Y.w| + |T .w|�1+ k > k.

This contradicts to the condition that there exists a word of rank at mostk with respect to
the automatonA.
We see that we are in a position to apply the induction assumption to the automatonAT .

Hence there exists a wordw3 ∈ �∗ of length at most

|T | − (k − 1) = n− max(Z)− k + 1

such that|T .w3|�k−1. Then thewordw1w2w3 has the length atmost(max(Z)−1)+(n−
max(Z)−k+1) = n−k andQ.w1w2w3 ⊆ {�(m,w3)}∪T .w3 whence|Q.w1w2w3|�1+
|T .w3| = k. �

For the sake of completeness we mention that it is pretty easy to find examples show-
ing that the upper boundn − k for the length of a word of rank�k with respect to a

232 D.S. Ananichev, M.V. Volkov / Theoretical Computer Science 327 (2004) 225–239

monotonic automaton is tight. Givenn andkwith 1�k�n, one can consider, for instance,
the automaton on the set{1,2, . . . , n}with the input alphabet{a} and the transition function

�(i, a) =
{
i − 1 if i > k,

i if i�k.

Clearly, the wordan−k is the shortest word of rank�k with respect to this automaton.

3. Compressing to intervals

We start with presenting a series of examples of monotonic automataA�, where� =
2,3, . . ., that cannot be efficiently compressed to a 2-element interval. The state setQ� of
the automatonA� consists of 2�+ 1 elements and can be conveniently identified with the
chain

− � < 1− � < · · · < −1< 0< 1< · · · < �. (3)

The input alphabet� ofA� contains three lettersA, B andC. The action of the letterA on
the setQ� is defined as follows:

�(j, A) =
{
�− 1 if j�0,
−� if j < 0.

(4)

The action of the letterB is defined as follows:

�(j, B) =
{
j − 1 if 0 < j < �,

j in all other cases.
(5)

The action of the letterC is defined as follows:

�(j, C) =

� if 0 < j��,
�− 1 if j = 0,
−1 if j = −1,
j + 1 if − ��j < −1.

(6)

Fig. 6 shows the action of� onQ� for � = 4.

Fig. 6. The automatonA4.

D.S. Ananichev, M.V. Volkov / Theoretical Computer Science 327 (2004) 225–239 233

It is easy to see that the actions (4)–(6) preserve the ordering (3) of the setQ�, and
therefore,A� = 〈Q�,�, �〉 is a monotonic DFA. The intervals[−�,−1] and [0, �] are
invariant with respect to the action of�. Therefore, for any wordw ∈ �∗, the setQ�.w

contains at least two states: a negative state and a non-negative one, whence the rank ofw

is at least 2. Clearly, words of rank 2 exist: for instance, the wordA is such. The interval
rank of the word is however 2� because�(_, A) = {−�, �−1}. Still we have the following.

Proposition 1. There exists a word over� whose interval rank with respect to the
automatonA� is equal to2.

Proof. For eachmsuch that 1�m�� consider the intervalIm = [−m,0]. By the definition
of the actions ofB andCwe have

Im. CB
�−1 ⊆ [1−m,0] = Im−1,

for eachm = 2, . . . , �. On the other hand, we see that

Q.AB�−1 ⊆ [−�,0] = I�,

and therefore,

Q.AB�−1(CB�−1)�−1 ⊆ I1 = [−1,0].
Thus, the interval rank of the wordW� = AB�−1(CB�−1)�−1 is at most 2. As we observed
above, the rank of any word with respect to the automatonA� is at least 2 whence the
interval rank ofW� is precisely 2. �

The length of the wordW� is equal to�2. This is in fact the best possible result as our
next proposition shows.

Proposition 2. The length of any wordv ∈ �∗ whose interval rank with respect to the
automatonA� is 2 is at least�2.

Proof. As alreadymentioned, the intervals[−�,−1] and[0, �] are invariant with respect to
the action of�. Therefore the only interval of size 2 to which the setQ� can be compressed
is the interval[−1,0] and we must have[−�,−1].v = {−1} and[0, �].v = {0}. Another
consequence of this observation is thatQ.uA = {−�, �− 1} for any wordu ∈ �∗.
Any wordvof interval rank 2 with respect to the automatonA� must contain at least one

occurrence of the letterAbecauseA is the only letter that moves the state�. We find the last
occurrence of the letterA in v and represent this word in the form

v = u1Au2,

where the suffixu2 does not containA. The last observation from the previous paragraph
means that the wordw = Au2 also has interval rank 2.

234 D.S. Ananichev, M.V. Volkov / Theoretical Computer Science 327 (2004) 225–239

One readily calculates the actions of the following words on the state 0:

�(0, ABk) = �(0, CBk) =
{
�− k − 1 if k < �− 1,
0 if k��− 1,

�(0, ABkC) = �(0, CBkC) =
{
� if k < �− 1,
�− 1 if k��− 1.

Since the wordu2 does not move the state�, we conclude from these formulas that the
wordw contains no factors of the kindABkC andCBkC where 0�k < �− 1. (We notice
that if �(0, u) = � for some wordu ∈ �∗ then�(q, u) = � for anyq�0.) Therefore, this
word has the form:

w = ABk1CBk2 · · ·CBks where k1, . . . ks−1��− 1.

In addition, �(0, w) = 0 whence�(0, CBks) = 0, and therefore, we must also have
ks��− 1.
Now we observe that the only letter that moves the negative states up isC and an appli-

cation ofCmoves each negative state up at most by 1. This means that in order to move
the state−� to the state−1 the wordwmust have at least� − 1 occurrences of the letter
C, that is,s��. Hence the length ofw is at least�2 and, of course, the length of the wordv
we started with is at least�2 as well. �
Recall that the number of states of the automatonA� is equal to 2� + 1. Thus,

Propositions 1 and 2 show that for any oddn�5 there exists a monotonic DFA withn
states for which the shortest word of interval rank 2 is of length(n − 1)2/4. On the other
hand, Theorem 2 (formulated in Section 1) gives the upper bound(n− k)(n− k−1)/2+1
for the lengths of words of interval rankk�2 in monotonic automata.We proceed with the
proof of this theorem.
Thus, letA = 〈Q,�, �〉 be a monotonic DFA withn states. Consider the automatonI

whose states are the intervals of the chain〈Q, �〉. The automatonI has the same input
alphabet� and the transition function�′ defined by the rule: for eachI being an interval of
〈Q, �〉 and for each lettera ∈ �

�′(I, a) = [min(I.a),max(I.a)].
It is easy to see that the existence of a word of interval rank at mostk with respect to
A implies that there is a path inI from the intervalQ to an interval of size at most
k. Conversely, if we read the consecutive labels of a minimum length path fromQ to an
interval of size at mostk in the automatonI then we get a word of minimum length with
interval rank at mostk with respect toA. Thus, it remains to estimate the length of such
a path. Clearly, a minimum length path fromQ to an interval of size at mostk passes only
through intervals of sizek+1, . . . , n−1 between its extreme points and visit each of these
intermediate intervals at most once. Therefore the length of such a path exceeds the number
of the intervals of sizek + 1, . . . , n− 1 at most by one, and this gives us the upper bound
(n− k)(n− k + 1)/2.
Now we are going to slightly improve this upper bound.We say that an intervalI ⊆ Q is

extremeif it contains one of the two extreme states of the chain〈Q, �〉. It is easy to calculate
that there are 2(n−k)−1 extreme intervals of size at leastk+1 and(n−k−1)(n−k−2)/2

D.S. Ananichev, M.V. Volkov / Theoretical Computer Science 327 (2004) 225–239 235

non-extreme intervals of this size. Take the last extreme intervalYin the shortest path fromQ
to an interval of size atmostk in the automatonI. The rest of the path afterYpasses through
non-extreme intervals only whence its length does not exceed(n−k−1)(n−k−2)/2+1.
Therefore we can represent the shortest word of rank at mostk as a product of two words
w1w2, where�

′(Q,w1) = Y and the length ofw2 is at most(n− k−1)(n− k−2)/2+1.
Letm denote the size of the intervalY. First assume thatm�k + 1 andY contains the

minimum ofQ.Apply Lemma 1 to the setQand the wordw1 (in the symmetric case whenY
contains the maximum ofQwe use Lemma 2). It gives us a wordw′

1 = D(Q,w1,max(Y))
of length at mostn − m such that max(Q.w′

1)� max(Y). Since the intervalY is extreme,
the last inequality implies thatQ.w′

1 ⊆ Y . Therefore the productw′
1w2 also has rank at

mostk and the length of this word is at most

(n− k − 1)(n− k − 2)

2
+ 1+ n−m � (n− k − 1)(n− k − 2)

2
+ n− k

= (n− k)(n− k − 1)

2
+ 1.

Finally, if m = k then already the wordw′
1 is of rank at mostk and its length does not

exceedn− k�(n− k)(n− k − 1)/2+ 1. �

For k = 2 there is a significant gap between the lower bound provided by Propositions
1 and 2 and the upper bound of Theorem 2. We use the next series of examples in order to
show that fork��n/2� the bound of Theorem 2 is tight. The series consists of the automata
B�, � = 3,4,The state setQ� of the automatonB� is the chain (3). The input alphabet
�� ofB� contains three groups of letters. The first group consists of�− 1 ‘non-increasing’
lettersB1, . . . , B�−1 whose action on the setQ� is defined as follows:

�(j, Bi) =

j − 1 if j = �− i,

−i − 1 if − i − 1< j < 0 andi �= 1,
j in all other cases.

(7)

The second group consists of� − 1 ‘non-decreasing’ lettersC1, . . . , C�−1 that act on the
state set by the rule

�(j, Ci) =

j + 1 if j = i − �− 1
�− 1 if 0�j < i

� if i�j < �

j in all other cases.

(8)

Finally, we need a ‘special’ letterAwhose action is described by the rule

�(j, A) =
{
�− 1 if j�0,
−� if j < 0

(9)

(the same as the rule (4) in the definition of the automatonA�). Fig.7 shows the action of
�� onQ� for � = 4.
It is clear that actions (7)–(9) preserve the ordering (3) of the setQ� whenceB� =

〈Q�,��, �〉 is a monotonic DFA.

236 D.S. Ananichev, M.V. Volkov / Theoretical Computer Science 327 (2004) 225–239

Fig. 7. The automatonB4.

Proposition 3. There exists a word over�� whose interval rank with respect to the au-
tomatonB� is at most�.

Proof. Consider the word

wm = B1B2 · · ·BmC�−m
for m = 1, . . . , �− 1. It is straightforward to verify that

�(�− 1, wm) = �− 1 and�(−m− 1, wm) = −m.
Denote the productw�−1w�−2 · · ·w1 byw. Then we see that

�(�− 1, w) = �− 1 and�(−�,w) = −1,

and therefore,

�(�, AwB1) = �− 2 and�(−�,AwB1) = −1.

This means that

Q.AwB1 ⊆ [−1, �− 2], Q.AwB1�[0, �− 2], Q.AwB1�[−1, �− 3].
Thus, the interval rank of the wordW = AwB1 with respect to the automatonB� is equal
to �. �

Since the length of the wordwm is equal tom+ 1, it is easy to calculate that the length
of the word

W = Aw�−1w�−2 · · ·w1B1

is equal to(�+ 1)�/2+ 1. Our next proposition shows thatW is in fact a word of interval
rank� with the minimum possible length.

Proposition 4. The length of any wordw ∈ �∗
� whose interval rank with respect to the

automatonB� is at most� is at least(�+ 1)�/2+ 1.

Proof. The intervals[−�,−1] and [0, �] are invariant with respect to the action of��.
Therefore, for any wordu ∈ �∗

� , the setQ�.u contains a negative state and a non-negative
one. This implies thatQ.uA = {−�, �− 1} for any wordu ∈ �∗

� .

D.S. Ananichev, M.V. Volkov / Theoretical Computer Science 327 (2004) 225–239 237

Another consequence of the above observation is that for any wordw with interval rank
at most� the states�, �− 1 and−� do not belong to the setQ�.w. SinceA is the only letter
that moves the state�, it must occur in the wordw. We find the last occurrence ofA in w
and representw as

w = u1Au2,

where the suffixu2 does not containA. The observation from the previous paragraph implies
that the interval rank of the wordv = Au2 does not exceed�. Therefore ifv = a1a2 . . . am
(a1, a2, . . . , am ∈ ��) is a shortest word of interval rank�� with respect to the automaton
B�, thena1 = A andaj �= A for all j = 2, . . . , m. Letvi = a1 · · · ai be the prefix of length
i of the wordv, i = 1, . . . , m. We denote the setQ.vi by Ii . Observe thatIi ⊆ [−�, �− 1]
for all i becausea1 = A, A does not occur ina2 . . . am, and� /∈ Q.v.

Now we notice that the last letter of the wordv is B1. Indeed,Ci cannot be the last
letter because[0, �].Ci = {� − 1, �} but neither� − 1 nor � are inQ.v. Let am = Bi .
The wordvm−1 has interval rank at least� + 1, therefore the letterBi must move the
state max(Q.vm−1) down. Since the only positive state moved byBi is � − i, we have
max(Q.v) = �− i − 1. Then from the fact that the interval rank ofv does not exceed� we
conclude that min(Q.v)� − i. This is only possible ifi = 1 because each letterBi with
i > 1 sends every negative state below−i.
Thus,v = Aa2 . . . am−1B1. ThereforeQ.v = {−1, �− 2} andQ.vm−1 = {−1, �− 1}.
For eachk ∈ [1, �− 1], let�(k) be the least number such that the setsIi for all i��(k)

are contained in the interval[−k, � − 1]. From the fact stated in the previous paragraph it
follows that the numbers�(k) are indeed well defined. Clearly, we have

�(�− 1)��(�− 2)� · · · ��(2)��(1).

Observe that if�(k) = s thenas = C�−k. Indeed, by the choice ofswe must have

Is−1�[−k, �− 1] and Is−1.as = Is ⊆ [−k, �− 1].
Thefirst conditionshows thatmin(Is−1) < −kwhencemin(Is−1)�−k−1while thesecond
one implies that�(min(Is−1), as) = min(Is)� − k. Since the transformation�(_, as) is
order preserving, we have that�(−k − 1, as)� − k. The only letter in�� satisfying this
property isC�−k. In particular,

�(�− 1) < �(�− 2) < · · · < �(2) < �(1).

Nowwe estimate the difference�(k−1)−�(k) for eachk ∈ [2, �−1]. Let�(k) = s and
�(k − 1) = t . By the previous observationas = C�−k andat = C�−k+1. Since� /∈ Q.vt ,
from the definition of the action ofC�−k+1 we see that max(Q.vt−1)��− k. On the other
hand, max(Q.vs) = �−1. Thismeans that the wordas+1as+2 . . . at−1 moves the state�−1
at leastk − 1 position down, but any letter from�� moves any positive state at most one
step down. Hence�(k − 1)− �(k)�k.
Let �(�) = 1. A similar argument (that uses the fact thata1 = A) shows that�(�− 1)−

�(�)��.

238 D.S. Ananichev, M.V. Volkov / Theoretical Computer Science 327 (2004) 225–239

Now we estimate�(1):

�(1) = �(�)+
�∑
k=2
(�(k − 1)− �(k))�1+

�∑
k=2

k = (�+ 1)�

2
.

We already know that the last letter ofv is notC�−1 butB1. This means that the length of
the wordv is at least(�+ 1)�/2+ 1. �

Now if we take an oddnand letk = (n−1)/2, then we conclude from Proposition 4 that
the shortest word of interval rankkwith respect to monotonic automataBk has the length

(k + 1)k

2
+ 1 = (2k + 1− k)(2k + 1− k − 1)

2
+ 1 = (n− k)(n− k − 1)

2
+ 1.

We see that this lower bound coincides with the upper bound from Theorem 2.
In order to show that the upper bound of Theorem 2 is tight for an arbitraryn�5 and

for any k��n/2�, we can proceed as follows. Lets = k − �n/2�. Now if n is odd, let
� = (n− 1)/2− s and consider the automatonB�. It has 2�+ 1 = n− 2s states.We insert
2s new states between the states−1 and 0 of the automatonB� and let all letters from�� fix
these new states. Then the proofs of Propositions 3 and 4 apply showing that the modified
automaton withn states admits a word of interval rank� + 2s = k and that the minimum
length of such a word is equal to

(�+ 1)�

2
+ 1 = (n− k)(n− k − 1)

2
+ 1.

If n is even, consider the automatonB� for � = n/2− s − 1. This automaton has 2�+ 1 =
n − 2s − 1 states, and we get an automaton withn states by inserting 2s + 1 new states
between the states−1 and 0 and letting all letters from�� fix these new states. Again it
is easy to see that the minimum length of any word of interval rank� + 2s + 1 = k with
respect to the modified automaton is equal to(n− k)(n− k − 1)/2+ 1.

Acknowledgements

Several useful comments of the anonymous referees of the proceedings version[1] of this
paper are gratefully acknowledged. The authors acknowledge support from the Education
Ministry of Russian Federation, Grants E02-1.0-143 and 04.01.059, the Russian Founda-
tion for Basic Research, Grant 01-01-00258, the President Program of Leading Scientific
Schools, Grant 2227.2003.1, and the INTAS (through Network Project 99-1224 “Combina-
torial and Geometric Theory of Groups and Semigroups and its Applications to Computer
Science”).

References

[1] D.S. Ananichev, M.V. Volkov, Synchronizing monotonic automata, Developments in language theory, 7th
Internat. Conf., Szeged, 2003, Lect. Notes Comput. Sci. 2710 (2003) 111–121.

D.S. Ananichev, M.V. Volkov / Theoretical Computer Science 327 (2004) 225–239 239

[2] Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, E. Shapiro, DNA molecule provides a computing machine
with both data and fuel, Proc. Nat. Acad. Sci. USA 100 (2003) 2191–2196.

[3] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, E. Shapiro, Programmable and autonomous
computing machine made of biomolecules, Nature 414 (1) (2001) 430–434.

[4] J. Černý, Poznámka k homogénnym eksperimentom s konecnými automatami, Mat.-Fyz. Cas. Slovensk.
Akad. Vied. 14 (1964) 208–216 (in Slovak).

[5] L. Dubuc, Sur les automates circulaires et la conjecture deČerný, Rairo Inform. Theor. Appl. 32 (1998)
21–34 (in French).

[6] D. Eppstein, Reset sequences for monotonic automata, SIAM J. Comput. 19 (1990) 500–510.
[7] J. Kari, A counter example to a conjecture concerning synchronizing words in finite automata, EATCS Bull.

73 (2001) 146.
[8] J. Kari, Synchronizing finite automata on Eulerian digraphs, Math. Foundations Comput. Sci., 26th Internat.

Symp., Marianske Lazne, Lect. Notes Comput. Sci. 2136 (2001) 432–438.
[9] A. Mateescu, A. Salomaa, Many-valued truth functions,Černý’s conjecture and road coloring, EATCS Bull.

68 (1999) 134–150.
[10] B.K. Natarajan, An algorithmic approach to the automated design of parts orienters, Proc. 27thAnnu. Symp.

Foundations Comput. Sci., IEEE, 1986, pp. 132–142.
[11] B.K. Natarajan, Some paradigms for the automated design of parts feeders, Internat. J. Robot. Res. 8 (6)

(1989) 89–109.
[12] J.-E. Pin, Le problème de la Synchronisation, Contribution à l’Étude de la Conjecture deČerný, Thèse de

3éme cycle, Paris, 1978 (in French).
[13] J.-E. Pin, Sur les mots synchronisants dans un automate fini, Elektronische Informationverarbeitung und

Kybernetik 14 (1978) 283–289 (in French).

	Synchronizing monotonic automata
	Motivation and overview
	Proof of Theorem 1
	Compressing to intervals
	Acknowledgements
	References

