
ar
X

iv
:c

s/
03

11
04

3v
1

 [
cs

.P
L

]
 2

7
N

ov
 2

00
3

Combining Logi Programs and

Monadi Seond Order Logis

by Program Transformation

Fabio Fioravanti

1
, Alberto Pettorossi

2
, Maurizio Proietti

1

(1) IASI-CNR, Viale Manzoni 30, I-00185 Roma, Italy

(2) DISP, University of Roma Tor Vergata, I-00133 Roma, Italy

{fioravanti,adp,proietti}�iasi.rm.nr.it

Abstrat We present a program synthesis method based on unfold/fold

transformation rules whih an be used for deriving terminating de�nite

logi programs from formulas of the Weak Monadi Seond Order theory

of one suessor (WS1S). This synthesis method an also be used as a

proof method whih is a deision proedure for losed formulas of WS1S.

We apply our synthesis method for translating CLP(WS1S) programs

into logi programs and we use it also as a proof method for verifying

safety properties of in�nite state systems.

1 Introdution

The Weak Monadi Seond Order theories of k suessors (WSkS) are theories

of the seond order prediate logi whih express properties of �nite sets of �nite

strings over a k-symbol alphabet (see [?℄ for a survey). Their importane relies

on the fat that they are among the most expressive theories of prediate logi

whih are deidable. These deidability results were proved in the 1960's [?,?℄,

but they were onsidered as purely theoretial results, due to the very high

omplexity of the automata-based deision proedures.

In reent years, however, it has been shown that some Monadi Seond Order

theories an, in fat, be deided by using ad-ho, e�ient tehniques, suh as

BDD's and algorithms for �nite state automata. In partiular, the MONA system

implements these tehniques for the WS1S and WS2S theories [?℄.

The MONA system has been used for the veri�ation of several non-trivial

�nite state systems [?,?℄. However, the Monadi Seond Order theories alone

are not expressive enough to deal with properties of in�nite state systems and,

thus, for the veri�ation of suh systems alternative tehniques have been used,

suh as those based on the embedding of the Monadi Seond Order theories

into more powerful logial frameworks (see, for instane, [?℄).

In a previous paper of ours [?℄ we proposed a veri�ation method for in�nite

state systems based on CLP(WSkS), whih is a onstraint logi programming

language resulting from the embedding of WSkS into logi programs. In order

to perform proofs of properties of in�nite state systems in an automati way

aording to the approah we have proposed, we need a system for onstraint

1

http://arxiv.org/abs/cs/0311043v1

logi programming whih uses a solver for WSkS formulas and, unfortunately,

no suh system is available yet.

In order to overome this di�ulty, in this paper we propose a method for

translating CLP(WS1S) programs into logi programs. This translation is per-

formed by a two step program synthesis method whih produes terminating

de�nite logi programs from WS1S formulas. Step 1 of our synthesis method

onsists in deriving a normal logi program from a WS1S formula, and it is

based on a variant of the Lloyd-Topor transformation [?℄. Step 2 onsists in

applying an unfold/fold transformation strategy to the normal logi program

derived at the end of Step 1, thereby deriving a terminating de�nite logi pro-

gram. Our synthesis method follows the general approah presented in [?,?℄.

We leave it for future researh the translation into logi programs starting from

general CLP(WSkS) programs.

The spei� ontributions of this paper are the following ones.

(1) We provide a synthesis strategy whih is guaranteed to terminate for any

given WS1S formula.

(2) We prove that, when we start from a losedWS1S formula ϕ, our synthesis
strategy produes a program whih is either (i) a unit lause of the form f ←,

where f is a nullary prediate equivalent to the formula ϕ, or (ii) the empty

program. Sine in ase (i) ϕ is true and in ase (ii) ϕ is false, our strategy is also

a deision proedure for WS1S formulas.

(3) We show through a non-trivial example, that our veri�ation method

based on CLP(WS1S) programs is useful for verifying properties of in�nite state

transition systems. In partiular, we prove the safety property of a mutual ex-

lusion protool for a set of proesses whose ardinality may hange over time.

Our veri�ation method requires: (i) the enoding into WS1S formulas of both

the transition relation and the elementary properties of the states of a transition

system, and (ii) the enoding into a CLP(WS1S) program of the safety property

under onsideration. Here we perform our veri�ation task by translating the

CLP(WS1S) program into a de�nite logi program, thereby avoiding the use of

a solver for WS1S formulas. The veri�ation of the safety property has been

performed by using a prototype tool built on top of the MAP transformation

system [?℄.

2 The Weak Monadi Seond Order Theory of One

Suessor

We will onsider a �rst order presentation of the Weak Monadi Seond Order

theory of one suessor (WS1S). This �rst order presentation onsists in writing

formulas of the form n ∈ S, where ∈ is a �rst order prediate symbol (to be

interpreted as membership of a natural number to a �nite set of natural num-

bers), instead of formulas of the form S(n), where S is a prediate variable (to

be interpreted as ranging over �nite sets of natural numbers).

We use a typed �rst order language, with the following two types: nat, de-

noting the set of natural numbers, and set, denoting the set of the �nite sets of

2

natural numbers (for a brief presentation of the typed �rst order logi the reader

may look at [?℄). The alphabet of WS1S onsists of: (i) a set Ivars of individual

variables N,N1, N2, . . . of type nat, (ii) a set Svars of set variables S, S1, S2, . . .
of type set, (iii) the nullary funtion symbol 0 (zero) of type nat, and the unary

funtion symbol s (suessor) of type nat → nat , and (iv) the binary prediate

symbols ≤ of type nat × nat , and ∈ of type nat × set . Ivars ∪ Svars is ranged

over by X,X1, X2, . . . The syntax of WS1S is de�ned by the following grammar:

Individual terms : n ::= 0 | N | s(n)
Atomi formulas : A ::= n1≤n2 | n∈S
Formulas : ϕ ::= A | ¬ϕ | ϕ1 ∧ ϕ2 | ∃N ϕ | ∃S ϕ

When writing formulas we feel free to use also the onnetives ∨, →, ↔ and the

universal quanti�er ∀, as shorthands of the orresponding formulas with ¬, ∧,
and ∃. Given any two individual terms n1 and n2, we will write the formulas

n1=n2, n1 6=n2, and n1<n2 as shorthands of the orresponding formulas using

≤. Notie that, for reasons of simpliity, we have assumed that the symbol ≤ is

primitive, although it is also possible to de�ne it in terms of ∈ [?℄.

An example of a WS1S formula is the following formula µ, with free variables

N and S, whih expresses that N is the maximum number in a �nite set S:

µ : N ∈S ∧ ¬∃N1(N1∈S ∧ ¬N1≤N)

The semantis of WS1S formulas is de�ned by onsidering the following typed

interpretation N :

(i) the domain of the type nat is the set Nat of the natural numbers and the

domain of the type set is the set Pfin(Nat) of all �nite subsets of Nat ;

(ii) the onstant symbol 0 is interpreted as the natural number 0 and the funtion
symbol s is interpreted as the suessor funtion from Nat to Nat ;

(iii) the prediate symbol ≤ is interpreted as the less-or-equal relation on natural

numbers, and the prediate symbol ∈ is interpreted as the membership of a

natural number to a �nite set of natural numbers.

The notion of a variable assignment σ over a typed interpretation is analo-

gous to the untyped ase, exept that σ assigns to a variable an element of the

domain of the type of the variable. The de�nition of the satisfation relation

I |=σ ϕ, where I is a typed interpretation and σ is a variable assignment is also

analogous to the untyped ase, with the only di�erene that when we interpret

an existentially quanti�ed formula we assume that the quanti�ed variable ranges

over the domain of its type. We say that a formula ϕ is true in an interpretation

I, written as I |= ϕ, i� I |=σ ϕ for all variable assignments σ. The problem

of heking whether or not a WS1S formula is true in the interpretation N is

deidable [?℄.

3 Translating WS1S Formulas into Normal Logi

Programs

In this setion we illustrate Step 1 of our method for synthesizing de�nite pro-

grams from WS1S formulas. In this step, starting from a WS1S formula, we de-

3

rive a strati�ed normal logi program [?℄ (simply alled strati�ed programs) by

applying a variant of the Lloyd-Topor transformation, alled typed Lloyd-Topor

transformation. Given a strati�ed program P , we denote by M(P) its perfet

model (whih is equal to its least Herbrand model if P is a de�nite program) [?℄.

Before presenting the typed Lloyd-Topor transformation, we need to intro-

due a de�nite program, alled NatSet, whih axiomatizes: (i) the natural num-

bers, (ii) the �nite sets of natural numbers, (iii) the ordering on natural numbers

(≤), and (iv) the membership of a natural number to a �nite set of natural num-

bers (∈). We represent: (i) a natural number k (≥0) as a ground term of the form

sk(0), and (ii) a set of natural numbers as a �nite, ground list [b0, b1, . . . , bm]
where, for i = 0, . . . ,m, we have that bi is either y or n. A number k belongs

to the set represented by [b0, b1, . . . , bm] i� bk = y. Thus, the �nite, ground lists

[b0, b1, . . . , bm] and [b0, b1, . . . , bm, n, . . . , n] represent the same set. In partiular,

the empty set is represented by any list of the form [n, . . . , n]. The program

NatSet onsists of the following lauses (we adopt in�x notation for ≤ and ∈):

nat(0)← 0≤N ←
nat(s(N))← nat(N) s(N1)≤s(N2)← N1≤N2

set([])← 0∈ [y|S]←
set([y|S])← set(S) s(N)∈ [B|S]← N ∈S
set([n|S])← set(S)

Atoms of the form nat(N) and set(S) are alled type atoms. Now we will establish

a orrespondene between the set of WS1S formulas whih are true in N and the

set of the so-alled expliitly typed WS1S formulas whih are true in the least

Herbrand model M(NatSet) (see Theorem 1 below).

Given a WS1S formula ϕ, the expliitly typed WS1S formula orresponding

to ϕ is the formula ϕτ onstruted as follows. We �rst replae the subformulas

of the form ∃N ψ by ∃N (nat(N)∧ ψ) and the subformulas of the form ∃S ψ by

∃S (set(S)∧ψ), thereby getting a new formula ϕη where every bound (individual

or set) variable ours in a type atom. Then, we get:

ϕτ : nat(N1) ∧ . . . ∧ nat(Nh) ∧ set(S1) ∧ . . . ∧ set(Sk) ∧ ϕη

where N1, . . . , Nh, S1, . . . , Sk are the variables whih our free in ϕ.
For instane, let us onsider again the formula µ whih expresses that N is

the maximum number in a set S. The expliitly typed formula orresponding to

µ is the following formula:

µτ : nat(N) ∧ set(S) ∧N ∈S ∧ ¬∃N1(nat(N1) ∧N1∈S ∧ ¬N1≤N)

For reasons of simpliity, in the following Theorem 1 we identify: (i) a natural

number k (≥ 0) in Nat with the ground term sk(0) representing that number,

and (ii) a �nite set of natural numbers in Pfin(Nat) with any �nite, ground list

representing that set. By using these identi�ations, we an view any variable

assignment over the typed interpretation N also as a variable assignment over

the untyped interpretation M(NatSet) (but not vie versa).

Theorem 1. Let ϕ be a WS1S formula and let ϕτ be the expliitly typed

formula orresponding to ϕ. For every variable assignment σ over N ,

N |=σ ϕ i� M(NatSet) |=σ ϕτ

4

Proof. The proof proeeds by indution on the struture of the formula ϕ.
(i) Suppose that ϕ is of the form n1 ≤ n2. By the de�nition of the satisfation

relation, N |=σ n1 ≤ n2 i� the natural number σ(n1) is less or equal than

the natural number σ(n2). By the de�nition of least Herbrand model and by

using the lauses in NatSet whih de�ne ≤, σ(n1) is less or equal than σ(n2)
i� M(NatSet) |= σ(n1)≤ σ(n2) (here we identify every natural number n with

the ground term sn(0)). It an be shown that M(NatSet) |= nat(σ(n1)) and

M(NatSet) |= nat(σ(n2)). Thus, M(NatSet) |= σ(n1)≤σ(n2) i� M(NatSet) |=σ

nat(n1) ∧ nat(n2) ∧ n1 ≤ n2. Now, the term n1 is either of the form sm1(0) or
of the form sm1(N1), where m1 is a natural number. Similarly, the term n2 is

either of the form sm2(0) or of the form sm2(N), where m2 is a natural number.

We onsider the ase where n1 is sm1(N1) and n2 is sm2(N2). The other ases

are similar and we omit them. It an be shown that, for all natural numbers m,

M(NatSet) |=σ nat(sm(N)) i� M(NatSet) |=σ nat(N). Thus, M(NatSet) |=σ

nat(sm1(N1))∧nat(sm2(N2))∧sm1(N1)≤sm2(N2) i�M(NatSet) |=σ nat(N1)∧
nat(N2) ∧ sm1(N1)≤sm2(N2), that is, M(NatSet) |=σ (n1≤n2)τ .
(ii) The ase where ϕ is of the form n∈ S is similar to Case (i).

(iii) Suppose that ϕ is of the form ¬ψ. By the de�nition of the satisfation

relation and the indution hypothesis, N |=σ ¬ψ i� M(NatSet) |=σ ¬(ψτ).
Sine ψτ is of the form a1(X1) ∧ . . . ∧ ak(Xk) ∧ ψη, where X1, . . . , Xk are the

free variables in ψ and a1(X1), . . . , ak(Xk) are type atoms, by logial equiva-

lene, we get: M(NatSet) |=σ ¬(ψτ) i� M(NatSet) |=σ (a1(X1) ∧ . . .∧ ak(Xk) ∧
¬(ψη)) ∨ ¬(a1(X1) ∧ . . . ∧ ak(Xk)). Finally, sine for all variable assignments σ,
M(NatSet) |=σ a1(X1) ∧ . . . ∧ ak(Xk), we have that M(NatSet) |=σ ¬(ψτ) i�

M(NatSet) |=σ (a1(X1) ∧ . . . ∧ ak(Xk) ∧ ¬(ψη)), that is, M(NatSet) |=σ (¬ψ)τ
(to see this, note that ¬(ψη) is equal to (¬ψ)η).
(iv) The ase where ϕ is of the form ψ1 ∧ ψ2 is similar to Case (iii).

(v) Suppose that ϕ is of the form ∃N1 ψ. By the de�nition of the satisfation

relation and by the indution hypothesis, N |=σ ∃N1 ψ i� there exists n1 in Nat

suh that M(NatSet) |=σ[N1 7→n1] ψτ . Sine ψτ is of the form nat(N1) ∧ . . . ∧
nat(Nh)∧ set(S1)∧ . . .∧ set(Sk)∧ψη, where N1, . . . , Nh, S1, . . . , Sk are the free

variables in ψ, we have that:
there exists n1 in Nat suh that M(NatSet) |=σ[N1 7→n1] ψτ

i� M(NatSet) |=σ ∃N1 (nat(N1) ∧ . . . ∧ nat(Nh) ∧ set(S1) ∧ . . . ∧ set(Sk) ∧ ψη)
i� (by logial equivalene) M(NatSet) |=σ nat(N2) ∧ . . . ∧ nat(Nh) ∧ set(S1) ∧
. . . ∧ set(Sk) ∧ (∃N1 nat(N1) ∧ ψη)
i� (by de�nition of expliitly typed formula) M(NatSet) |=σ (∃N1 ψ)τ .
(vi) The ase where ϕ is of the form ∃S ψ is similar to Case (v). ✷

As a straightforward onsequene of Theorem 1, we have the following result.

Corollary 1. For every losed WS1S formula ϕ, N |= ϕ i� M(NatSet) |= ϕτ .

Notie that the introdution of type atoms is indeed neessary, beause there

are WS1S formulas ϕ suh that N |= ϕ andM(NatSet) 6|= ϕ. For instane, N |=
∀N1∃N2N1 ≤ N2 and M(NatSet) 6|= ∀N1∃N2N1 ≤ N2. Indeed, for a variable

assignment σ over M(NatSet) whih assigns [] to N1, we have M(NatSet) 6|=σ

5

∃N2N1≤N2. (Notie that σ is not a variable assignment over N beause [] is
not a natural number.)

Now we present a variant of the method proposed by Lloyd and Topor [?℄,

alled typed Lloyd-Topor transformation, whih we use for deriving a strati�ed

program from a given WS1S formula ϕ. We need to onsider a lass of formulas

of the form: A ← β, alled statements, where A is an atom, alled the head of

the statement, and β is a formula of the �rst order prediate alulus, alled the

body of the statement. In what follows we write C[γ] to denote a formula where

the subformula γ ours as an outermost onjunt, that is, C[γ] = ψ1 ∧ γ ∧ ψ2

for some subformulas ψ1 and ψ2.

The Typed Lloyd-Topor Transformation.

We are given in input a set of statements, where: (i) we assume without loss of

generality, that the only onnetives and quanti�ers ourring in the body of the

statements are ¬,∧, and ∃, and (ii) X,X1, X2, . . . denote either individual or set
variables.

We perform the following transformation (A) and then the transformation (B):

(A) We repeatedly apply the following rules A.1�A.4 until a set of lauses is

generated:

(A.1) A← C[¬¬γ] is replaed by A← C[γ].

(A.2) A← C[¬(γ ∧ δ)] is replaed by A← C[¬newp(X1, . . . , Xk)]
newp(X1, . . . , Xk)← γ ∧ δ

where newp is a new prediate and X1, . . . , Xk are the variables whih our

free in γ ∧ δ.

(A.3) A← C[¬∃X γ] is replaed by A← C[¬newp(X1, . . . , Xk)]
newp(X1, . . . , Xk)← γ

where newp is a new prediate and X1, . . . , Xk are the variables whih our free

in ∃X γ.

(A.4) A← C[∃X γ] is replaed by A← C[γ{X/X1}]

where X1 is a new variable.

(B) Every lause A← G is replaed by A← Gτ .

Given a WS1S formula ϕ with free variablesX1, . . . , Xn, we denote by Cls(f, ϕτ)
the set of lauses derived by applying the typed Lloyd-Topor transformation

starting from the singleton {f(X1, . . . , Xn)← ϕ}, where f is a new n-ary pred-

iate symbol. By onstrution, NatSet ∪ Cls(f, ϕτ) is a strati�ed program. We

have the following theorem.

Theorem 2. Let ϕ be a WS1S formula with free variables X1, . . . , Xn and let

ϕτ be the expliitly typed formula orresponding to ϕ. For all ground terms

t1, . . . , tn, we have that:

6

M(NatSet) |= ϕτ{X1/t1, . . . , Xn/tn} i�

M(NatSet ∪ Cls(f, ϕτ)) |= f(t1, . . . , tn)

Proof. It is similar to the proofs presented in [?,?℄ and we omit it.

From Theorems 1 and 2 we have the following orollaries.

Corollary 2. For every WS1S formula ϕ with free variables X1, . . . , Xn, and

for every variable assignment σ over the typed interpretation N ,

N |=σ ϕ i� M(NatSet ∪ Cls(f, ϕτ)) |= f(σ(X1), . . . , σ(Xn))

Corollary 3. For every losed WS1S formula ϕ,

N |= ϕ i� M(NatSet ∪ Cls(f, ϕτ)) |= f

Let us onsider again the formula µ we have onsidered above. By applying the

typed Lloyd-Topor transformation starting from the singleton {max(S , N)← µ}
we get the following set of lauses Cls(max , µτ):

max(S , N)← nat(N) ∧ set(S) ∧N ∈S ∧ ¬newp(S,N)
newp(S,N)← nat(N) ∧ nat(N1) ∧ set(S) ∧N1∈S ∧ ¬N1≤N

Unfortunately, the strati�ed programNatSet∪Cls(f, ϕτ) derived from the single-

ton {f(X1, . . . , Xn)← ϕ} is not always satisfatory from a omputational point

of view beause it may not terminate when evaluating the query f(X1, . . . , Xn)
by using SLDNF resolution. (Atually, the above program Cls(max , µτ) whih
omputes the maximum number of a set, terminates for all ground queries, but

in Setion 5 we will give an example where the program derived at the end of

the typed Lloyd-Topor transformation does not terminate.) Similar termination

problems may our by using tabled resolution [?℄, instead of SLDNF resolution.

To overome this problem, we apply to the program NatSet ∪ Cls(f, ϕτ)
the unfold/fold transformation strategy whih we will desribe in Setion 5. In

partiular, by applying this strategy we derive de�nite programs whih terminate

for all ground queries by using LD resolution (that is, SLD resolution with the

leftmost seletion rule).

4 The Transformation Rules

In this setion we desribe the transformation rules whih we use for transforming

strati�ed programs. These rules are a subset of those presented in [?,?℄, and

they are those required for the unfold/fold transformation strategy presented in

Setion 5.

For presenting our rules we need the following notions. A variable in the

body of a lause C is said to be existential i� it does not our in the head of

C. The de�nition of a prediate p in a program P , denoted by Def (p, P), is the
set of the lauses of P whose head prediate is p. The extended de�nition of a

7

prediate p in a program P , denoted by Def ∗(p, P), is the union of the de�nition

of p and the de�nitions of all prediates in P on whih p depends. (See [?℄for

the de�nition of the depends on relation.) A program is propositional i� every

prediate ourring in the program is nullary. Obviously, if P is a propositional

program then, for every prediate p, M(P) |= p is deidable.

A transformation sequene is a sequene P0, . . . , Pn of programs, where for

0≤k≤n−1, program Pk+1 is derived from program Pk by the appliation of one

of the transformation rules R1�R4 listed below. For 0≤k≤n, we onsider the set
Defsk of the lauses introdued by the following rule R1 during the onstrution

of the transformation sequene P0, . . . , Pk.

When onsidering lauses of programs, we will feel free to apply the following

transformations whih preserve the perfet model semantis:

(1) renaming of variables,

(2) rearrangement of the order of the literals in the body of a lause, and

(3) replaement of a onjuntion of literals the form L ∧ L in the body of a

lause by the literal L.

Rule R1. De�nition.We get the new program Pk+1 by adding to program Pk

a lause of the form newp(X1, . . . , Xr)← L1 ∧ . . .∧Lm, where: (i) the prediate

newp is a prediate whih does not our in P0 ∪Defsk, and (ii) X1, . . . , Xr are

distint (individual or set) variables ourring in L1 ∧ . . . ∧ Lm.

Rule R2. Unfolding. Let C be a renamed apart lause in Pk of the form:

H ← G1 ∧ L ∧ G2, where L is either the atom A or the negated atom ¬A. Let
H1 ← B1, . . . , Hm ← Bm, with m≥0, be all lauses of program Pk whose head

is uni�able with A and, for j = 1, . . . ,m, let ϑj the most general uni�er of A
and Hj . We onsider the following two ases.

Case 1: L is A. By unfolding lause C w.r.t. A we derive the new program

Pk+1 = (Pk − {C}) ∪ {(H ← G1 ∧B1 ∧G2)ϑ1, . . . , (H ← G1 ∧Bm ∧G2)ϑm}.
In partiular, ifm=0, that is, if we unfold C w.r.t. an atom whih is not uni�able

with the head of any lause in Pk, then we derive the program Pk+1 by deleting

lause C.

Case 2: L is ¬A. Assume that: (i) A = H1ϑ1 = · · · = Hmϑm, that is, for

j = 1, . . . ,m, A is an instane of Hj , (ii) for j = 1, . . . ,m, Hj ← Bj has no

existential variables, and (iii) Q1∨ . . .∨Qr , with r ≥ 0, is the disjuntive normal

form ofG1∧¬(B1ϑ1∨. . .∨Bmϑm)∧G2. By unfolding lause C w.r.t. ¬A we derive

the new program Pk+1 = (Pk −{C})∪{C1, . . . , Cm}, where for j = 1, . . . , r, Cj

is the lause H ← Qj .

In partiular: (i) if m = 0, that is, A is not uni�able with the head of any lause

in Pk, then we get the new program Pk+1 by deleting ¬A from the body of lause

C, and (ii) if for some j ∈ {1, . . . ,m}, Bj is the empty onjuntion, that is, A is

an instane of the head of a unit lause in Pk, then we derive Pk+1 by deleting

lause C from Pk.

Rule R3. Folding. Let C : H ← G1 ∧ Bϑ ∧ G2 be a renamed apart lause

in Pk and D : Newp ← B be a lause in Defsk. Suppose that for every ex-

istential variable X of D, we have that Xϑ is a variable whih ours neither

8

in {H,G1, G2} nor in the term Y ϑ, for any variable Y ourring in B and dif-

ferent from X . By folding lause C using lause D we derive the new program

Pk+1 = (Pk − {C}) ∪ {H ← G1 ∧ Newp ϑ ∧G2}.

Rule R4. Propositional Simpli�ation. Let p be a prediate suh that

Def ∗(p, Pk) is propositional. If M(Def ∗(p, Pk)) |= p then we derive Pk+1 =
(Pk − Def (p, Pk)) ∪ {p ←}. If M(Def ∗(p, Pk)) |= ¬p then we derive Pk+1 =
(Pk −Def (p, Pk)).

Notie that we an hek whether or not M(P) |= p holds by applying pro-

gram transformation tehniques [?℄ and thus, Rule R4 may be viewed as a derived

rule.

The transformation rules R1�R4 we have introdued above, are olletively

alled unfold/fold transformation rules. We have the following orretness result,

similar to [?℄.

Theorem 3. [Corretness of the Unfold/Fold Transformation Rules℄

Let us assume that during the onstrution of a transformation sequene P0, . . . ,
Pn, eah lause of Defsn whih is used for folding, is unfolded (before or after

its use for folding) w.r.t. an atom whose prediate symbol ours in P0. Then,

M(P0 ∪Defsn) =M(Pn).

Notie that the statement obtained from Theorem 3 by replaing `atom' by

`literal', does not hold [?℄.

5 The Unfold/Fold Synthesis Method

In this setion we present our program synthesis method, alled unfold/fold syn-

thesis method, whih derives a de�nite program from any given WS1S formula.

We show that the synthesis method terminates for all given formulas and also

the derived programs terminate aording to the following notion of program

termination: a program P terminates for a query Q i� every SLD-derivation of

P ∪ {← Q} via any omputation rule is �nite.

The following is an outline of our unfold/fold synthesis method.

The Unfold/Fold Synthesis Method.

Let ϕ be a WS1S formula with free variables X1, . . . , Xn and let ϕτ be the

expliitly typed formula orresponding to ϕ.

Step 1. We apply the typed Lloyd-Topor transformation and we derive a set

Cls(f, ϕτ) of lauses suh that: (i) f is a new n-ary prediate symbol, (ii) NatSet
∪Cls(f, ϕτ) is a strati�ed program, and (iii) for all ground terms t1, . . . , tn,

(1) M(NatSet) |= ϕτ{X1/t1, . . . , Xn/tn} i�

M(NatSet ∪ Cls(f, ϕτ)) |= f(t1, . . . , tn)

Step 2. We apply the unfold/fold transformation strategy (see below) and from

the program NatSet∪Cls(f, ϕτ) we derive a de�nite program TransfP suh that,

for all ground terms t1, . . . , tn,

9

(2.1) M(NatSet ∪ Cls(f, ϕτ)) |= f(t1, . . . , tn) i� M(TransfP) |= f(t1, . . . , tn);
(2.2) TransfP terminates for the query f(t1, . . . , tn).

In order to present the unfold/fold transformation strategy whih we use for

realizing Step 2 of our synthesis method, we introdue the following notions of

regular natset-typed lauses and regular natset-typed de�nitions.

We say that a literal is linear i� eah variable ours at most one in it.

The syntax of regular natset-typed lauses is de�ned by the following grammar

(reall that by N we denote individual variables, by S we denote set variables,

and by X,X1, X2, . . . we denote either individual or set variables):

Head terms : h ::= 0 | s(N) | [] | [y|S] | [n|S]
Clauses : C ::= p(h1, . . . , hk)← | p1(h1, . . . , hk)← p2(X1, . . . , Xm)

where for every lause C, (i) both hd(C) and bd(C) are linear atoms, and

(ii) {X1, . . . , Xm} ⊆ vars(h1, . . . , hk) (that is, C has no existential variables). A

regular natset-typed program is a set of regular natset-typed lauses.

The reader may hek that the program NatSet presented in Setion 3 is

a regular natset-typed program. The following properties are straightforward

onsequenes of the de�nition of regular natset-typed program.

Lemma 1. Let P be a regular natset-typed program. Then:

(i) P terminates for every ground query p(t1, . . . , tn) with n > 0;
(ii) If p is a nullary prediate then Def ∗(p, P) is propositional.

The syntax of natset-typed de�nitions is given by the following grammar:

Individual terms : n ::= 0 | N | s(n)
Terms : t ::= n | S
Type atoms: T ::= nat(N) | set(S)
Literals : L ::= p(t1, . . . , tk) | ¬p(t1, . . . , tk)
De�nitions : D ::= p(X1, . . . , Xk)← T1 ∧ . . . ∧ Tr ∧ L1 ∧ . . . ∧ Lm

where for all de�nitions D, vars(D) ⊆ vars(T1 ∧ . . . ∧ Tr).
A sequene D1, . . . , Ds of natset-typed de�nitions is said to be a hierar-

hy i� for i = 1, . . . , s the prediate appearing in hd(Di) does not our in

D1, . . . , Di−1, bd(Di). Notie that in a hierarhy of natset-typed de�nitions, any

prediate ours in the head of at most one lause.

One an show that given a WS1S formula ϕ the set Cls(f, ϕτ) of lauses de-
rived by applying the typed Lloyd-Topor transformation is a hierarhyD1, . . . , Ds

of natset-typed de�nitions and the last lause Ds is the one de�ning f .

10

The Unfold/Fold Transformation Strategy.

Input : (i) A regular natset-typed program P where for eah nullary prediate

p, Def ∗(p,Transf P) is either the empty set or the singleton {p ←}, and (ii) a

hierarhyD1, . . . , Ds of natset-typed de�nitions suh that no prediate ourring

in P ours also in the head of a lause in D1, . . . , Ds.

Output : A regular natset-typed program TransfP suh that, for all ground terms

t1, . . . , tn,
(2.1) M(P ∪ {D1, . . . , Ds}) |= f(t1, . . . , tn) i� M(TransfP) |= f(t1, . . . , tn);
(2.2) TransfP terminates for the query f(t1, . . . , tn).

TransfP := P ; Defs := ∅;

for i = 1, . . . , s do

Defs := Defs ∪ {Di}; InDefs := {Di};
By the de�nition rule we derive the program TransfP ∪ InDefs.

while InDefs 6= ∅ do

(1) Unfolding. From program TransfP ∪InDefs we derive TransfP ∪U by: (i) ap-

plying the unfolding rule w.r.t. eah atom ourring positively in the body of a

lause in InDefs , thereby deriving TransfP ∪U1, then (ii) applying the unfolding

rule w.r.t. eah negative literal ourring in the body of a lause in U1, thereby

deriving TransfP∪U2, and, �nally, (iii) applying the unfolding rule w.r.t. ground

literals until we derive a program TransfP ∪U suh that no ground literal ours

in the body of a lause of U .

(2) De�nition-Folding. From program TransfP ∪ U we derive TransfP ∪ F ∪
NewDefs as follows. Initially, NewDefs is the empty set. For eah non-unit lause

C: H ← B in U ,
(i) we apply the de�nition rule and we add to NewDefs a lause of the form

newp(X1, . . . , Xk) ← B, where X1, . . . , Xk are the non-existential variables o-

urring in B, unless a variant lause already ours in Defs, modulo the head

prediate symbol and the order and multipliity of the literals in the body, and

(ii) we replae C by the lause derived by folding C w.r.t. B. The folded lause

is an element of F .
No transformation rule is applied to the unit lauses ourring in U and, there-

fore, also these lauses are elements of F .

(3) TransfP := TransfP ∪ F ; Defs := Defs ∪ NewDefs ; InDefs := NewDefs

end while;

Propositional Simpli�ation. For eah prediate p suh that Def ∗(p,TransfP) is
propositional, we apply the propositional simpli�ation rule and

if M(TransfP) |= p
then TransfP := (TransfP −Def (p,TransfP)) ∪ {p←}
else TransfP := (TransfP −Def (p,TransfP))

end for

11

The reader may verify that if we apply the unfold/fold transformation strat-

egy starting from the program NatSet together with the lauses Cls(max , µτ)
whih we have derived above by applying the typed Lloyd-Topor transformation,

we get the following �nal program:

max([y|S], 0)← new1(S)
max([y|S], s(N))← max (S,N)
max([n|S], s(N))← max (S,N)
new1([])←
new1([n|S])← new1(S)

To understand the �rst lause, reall that the empty set is represented by any list

of the form [n, . . . , n]. A more detailed example of appliation of the unfold/fold

transformation strategy will be given later.

In order to prove the orretness and the termination of our unfold/fold

transformation strategy we need the following lemmas whose proofs are mutually

dependent.

Lemma 2. During the appliation of the unfold/fold transformation strategy,

TransfP is a regular natset-typed program.

Proof. Initially, TransfP is the regular natset-typed program P . Now we assume

that TransfP is a regular natset-typed program and we show that after an ex-

eution of the body of the for statement, TransfP is a regular natset-typed

program.

First we prove that after the exeution of the while statement, TransfP is

a regular natset-typed program. In order to prove this, we show that every new

lause E whih is added to TransfP at Point (3) of the strategy is a regular

natset-typed lause.

Clause E is derived from a lause D of InDefs by unfolding (aording to

the Unfolding phase) and by folding (aording to the De�nition-Folding phase).

By Lemma 3, D is a natset-typed de�nition of the form p(X1, . . . , Xk) ← T1 ∧
. . .∧Tr ∧L1∧ . . .∧Lm. By unfolding w.r.t. the type atoms T1, . . . , Tr (aording
to Point (i) of the Unfolding phase) we get lauses of the form p(h1, . . . , hk)←
T ′

1∧. . .∧T
′

r1∧L
′

1∧. . .∧L
′

m, where: (a) h1, . . . , hk are head terms, (b) p(h1, . . . , hk)
is a linear atom (beause X1, . . . , Xk are distint variables), and () for i =
1, . . . ,m, no argument of L′

i is a variable. By the indutive hypothesis TransfP

is a regular natset-typed program and, therefore, by unfolding w.r.t. the literals

L′

1, . . . , L
′

m (aording to Points (ii) and (iii) of the Unfolding phase) we get

lauses of the form D′ : p(h1, . . . , hk)← T ′

1 ∧ . . . ∧ T
′

r1 ∧ L
′′

1 ∧ . . . ∧ L
′′

m1. Either

D′
is a unit lause or, by folding aording to the De�nition-Folding phase, it

is replaed by p(h1, . . . , hk) ← newp(X1, . . . , Xm) where X1, . . . , Xm are the

distint, non-existential variables ourring in bd(D′). Hene, E is either a unit

lause of the form p(h1, . . . , hk) ← or a lause of the form p(h1, . . . , hk) ←
newp(X1, . . . , Xm), where {X1, . . . , Xm} ⊆ vars(h1, . . . , hk). Thus, E is a regular

natset-typed lause.

We onlude the proof by observing that if we apply the propositional simpli-

�ation rule to a natset-typed program, then we derive a natset-typed program,

12

beause by this rule we an only delete lauses or add natset-typed lauses of the

form p←. Thus, after an exeution of the body of the for statement, TransfP

is a regular natset-typed program. ✷

Lemma 3. During the appliation of the unfold/fold transformation strategy,

InDefs is a set of natset-typed de�nitions.

Proof. Let us onsider the i-th exeution of the body of the for statement.

Initially, InDefs is the singleton set {Di} of natset-typed de�nitions. Now we

assume that InDefs is a set of natset-typed de�nitions and we prove that, after

an exeution of the while statement, InDefs is a set of natset-typed de�nitions.

It is enough to show that every new lause E whih is added to InDefs at

Point (3) of the strategy, is a natset-typed de�nition. By the Folding phase

of the strategy, E is a lause of the form newp(X1, . . . , Xk) ← B where B is

the body of a lause derived from a lause D of InDefs by unfolding. By the

indutive hypothesis, D is a natset-typed de�nition of the form p(X1, . . . , Xk)←
T1 ∧ . . . ∧ Tr ∧ L1 ∧ . . . ∧ Lm. By unfolding w.r.t. the type atoms T1, . . . , Tr
(aording to Point (i) of the Unfolding phase) we get lauses of the form D′ :
p(h1, . . . , hk)← T ′

1∧. . .∧T
′

r1∧L
′

1∧. . .∧L
′

m, where vars(D
′) ⊆ vars(T ′

1∧. . .∧T
′

r1).
Sine, by Lemma 2, TransfP is a regular natset-typed program, by unfolding

w.r.t. the literals L′

1, . . . , L
′

m (aording to Points (ii) and (iii) of the Unfolding

phase) we get lauses of the formD′′ : p(h1, . . . , hk)← T ′

1∧. . .∧T
′

r1∧L
′′

1∧. . .∧L
′′

m1

where vars(D′′) ⊆ vars(T ′

1 ∧ . . . ∧ T
′

r1). Thus, E is a natset-typed de�nition of

the form newp(X1, . . . , Xk) ← T ′

1 ∧ . . . ∧ T
′

r1 ∧ L
′′

1 ∧ . . . ∧ L
′′

m1 with vars(E) ⊆
vars(T ′

1 ∧ . . . ∧ T
′

r1).
We onlude the proof by observing that the Propositional Simpli�ation

phase does not hange InDefs , and thus, after the exeution of the body of the

for statement, InDefs is a set of natset-typed de�nitions. ✷

Theorem 4. Let P and D1, . . . , Ds be the input program and the input hier-

arhy, respetively, of the unfold/fold transformation strategy and let TransfP

be the output of the strategy. Then,

(1) TransfP is a natset-typed program;

(2) for every nullary prediate p, Def ∗(p,TransfP) is either ∅ or {p←};

(3) for all ground terms t1, . . . , tn,

(3.1) M(P ∪ {D1, . . . , Ds}) |= f(t1, . . . , tn) i� M(TransfP) |= f(t1, . . . , tn);
(3.2) TransfP terminates for the query f(t1, . . . , tn).

Proof. Point (1) is a straightforward onsequene of Lemma 2.

For Point (2), let us notie that, by Lemma 2, at eah point of the unfold/fold

transformation strategy TransfP is a natset-typed program and therefore, by

Lemma 1, for every nullary prediate p, Def ∗(p,TransfP) is propositional. Sine
the last step of the unfold/fold transformation strategy onsists in applying to

TransfP the propositional simpli�ation rule for eah prediate having a propo-

sitional extended de�nition, Def ∗(p,TransfP) is either ∅ or {p←}.

13

Point (3.1) will be proved by using the orretness of the transformation rules

w.r.t. the Perfet Model semantis (see Theorem 3). Let us �rst notie that the

unfold/fold transformation strategy generates a transformation sequene (see

Setion 4), where: the initial program is P , the �nal program is the �nal value of

TransfP , and the set of lauses introdued by the de�nition rule R1 is the �nal

value of Defs .

To see that our strategy indeed generates a transformation sequene, let us

observe the following fats (A) and (B):

(A) The addition of InDefs to TransfP at the beginning of eah exeution of

the body of the for statement is an appliation of the de�nition rule. Indeed,

for i = 1, . . . s, InDefs = {Di} and, by the hypotheses on the input sequene

D1, . . . , Ds, we have that the head prediate of Di does not our in the urrent

value of P ∪Defs .

(B) When we unfold the lauses of U1 w.r.t. negative literals, we have that:

(B.1) Condition (i) of Case (2) of the unfolding rule (see Setion 4) is satis�ed

beause:

(a) Every lause D of InDefs is a natset-typed de�nition (see Lemma 3) and,

thus, for eah variable X ourring in D there is a type atom of the form a(X)
in bd(D). Sine we unfold the lauses of InDefs w.r.t. all the atoms whih our

positively in the bodies of the lauses in InDefs , and in partiular, w.r.t. type

atoms, every argument of a negative literal in the body of a lause of U1 is of

one of the following forms: 0, s(n), [], [y|S], [n|S].
(b) For eah negative literal ¬p(t1, . . . , tk) in the body of a lause of U1, the

de�nition of p is a subset of the regular natset-typed program TransfP (see

Lemma 2) and, hene, the head of a lause in TransfP is a linear atom of the

form p(h1, . . . , hk), where h1, . . . , hk are head terms (see the de�nition of regular

natset-typed lauses above).

From (a) and (b) it follows that if p(t1, . . . , tk) is uni�able with p(h1, . . . , hk)
then p(t1, . . . , tk) is an instane of p(h1, . . . , hk).
(B.2) Condition (ii) of Case (2) of the unfolding rule is satis�ed beause TransfP

is a regular natset-typed program (see Lemma 2) and, thus, no lause in TransfP

has existential variables.

Now, the transformation sequene onstruted by the unfold/fold transfor-

mation strategy satis�es the hypothesis of Theorem 3. Indeed, let us onsider a

lause D whih is used for folding a lause C. Sine C has been derived at the

end of the Unfolding phase, no ground literal ours in bd(C) and, thus, there
is at least one variable ourring in D. Hene, there is at least one type atom in

bd(D), beause D is a natset-typed de�nition (see Lemma 3). Therefore, during

an appliation of the unfold/fold transformation strategy (before or after the

use of D for folding), D is unfolded w.r.t. a type atom (see Point (i) of the Un-

folding phase). Thus, by Theorem 3, we have that M(P ∪Defs) =M(TransfP),
where by Defs and TransfP we indiate the values of these variables at the end

of the unfold/fold transformation strategy. Observe that Def ∗(f,P ∪ Defs) =
Def ∗(f,P ∪ {D1, . . . , Ds}) and, therefore, M(P ∪ {D1, . . . , Ds}) |= f(t1, . . . , tn)
i� M(P ∪Defs) |= f(t1, . . . , tn) i� M(TransfP) |= f(t1, . . . , tn).

14

Finally, let us prove Point (3.2). We onsider the following two ases:

(n = 0) f is nullary and hene, by Point (2) of this theorem, Def ∗(f,TransfP)
is either ∅ or {f ←}. Thus, TransfP terminates for the query f .

(n > 0) By Point (1) of this theorem, TransfP is a natset-typed program and

thus, by Lemma 1, TransfP terminates for the ground query f(t1, . . . , tn). ✷

Theorem 5. The unfold/fold transformation strategy terminates.

Proof. We have to show that the while statement in the body of the for

statement terminates.

Eah exeution of the Unfolding phase terminates. Indeed, (a) the number of

appliations of the unfolding rule at Points (i) and (ii) is �nite, beause InDefs is

a �nite set of lauses and the body of eah lause has a �nite number of literals,

and (b) at Point (iii) only a �nite number of unfolding steps an be applied

w.r.t. ground literals, beause the program held by TransfP during the Unfolding

phase terminates for every ground query. To see this latter fat, let us notie that,

by Lemma 2, TransfP is a natset-typed program. Thus, by Lemma 1, TransfP

terminates for any ground query p(t1, . . . , tn) with n ≥ 1. For a ground query p,
where p is a nullary prediate, TransfP terminates beause Def ∗(p,Transf P) is
either the empty set or it is the singleton {p ←}. Indeed, this follows from our

assumptions on the input program and from the exeution of the Propositional

Simpli�ation phase after ompletion of the while statement.

Eah exeution of the De�nition-Folding phase terminates beause a �nite

number of lauses are introdued by de�nition and a �nite number of lauses are

folded.

Thus, in order to show that the strategy terminates, it is enough to show

that after a �nite number of exeutions of the body of the while statement,

we get InDefs = ∅. Let Defsj and InDefsj be the values of Defs and InDefs ,

respetively, at the end of the j-th exeution of the body of the while statement.

If the while statement terminates after z exeutions of its body, then, for all

j > z, we de�ne Defsj to be Defsz and InDefsj to be ∅. We have that, for any

j ≥ 1, InDefsj = ∅ i� Defsj−1 = Defsj . Sine for all j ≥ 1, Defsj−1 ⊆ Defsj ,

the termination of the strategy will follow from the following property:

there exists K > 0 suh that, for all j ≥ 1, |Defsj | ≤ K (*)

Let TransfP0, Defs0, and InDefs0 (⊆ Defs0) be the values of TransfP , Defs , and

InDefs , respetively, at the beginning of the exeution of the while statement.

By Lemma 3, for all j ≥ 1, Defsj is a set of natset-typed de�nitions. Property (*)

follows from the fat that, for all D ∈ Defsj , the following holds:

(a) every prediate ourring in bd(D) also ours in TransfP0 ∪ InDefs0;

(b) for every literal L ourring in bd(D),
height(L) ≤ max{height(M) |M is a literal in the body of a lause in Defs0}

where the height of a literal is de�ned as the length of the maximal path from

the root to a leaf of the literal onsidered as a tree;

() |vars(D)| ≤ max{vars(D′) |D′
is a lause in Defs0};

(d) no two lauses in Defsj an be made equal by one or more appliations of the

following transformations: renaming of variables, renaming of head prediates,

15

rearrangement of the order of the literals in the body, and deletion of dupliate

literals.

Reall that bd(D) is equal to bd(E′) where E′
is derived by unfolding (aording

to the Unfolding phase of the strategy) a lause E in TransfP0 ∪ InDefsj and E
belongs to InDefsj .

Now Property (a) is a straightforward onsequene of the de�nition of the un-

folding rule.

Property (b) an be shown as follows. E is of the form newp(X1, . . . , Xk)← T1∧
. . .∧Tr∧L1∧. . .∧Lm. By unfolding w.r.t. the type atoms T1, . . . , Tr (aording to
Point (i) of the Unfolding phase) we get lauses of the form newp(h1, . . . , hk)←
T ′

1 ∧ . . . ∧ T
′

r1 ∧ L
′

1 ∧ . . . ∧ L
′

m, where h1, . . . , hk are head terms and, for all

i ∈ {1, . . . ,m}, height(L′

i) ≤ height(Li) + 1. By Lemma 2, TransfP0 is a regular

natset-typed program and, therefore, by unfolding w.r.t. the literals L′

1, . . . , L
′

m

(aording to Point (ii) of the Unfolding phase) we get lauses of the form

newp(h1, . . . , hk)← T ′

1∧ . . .∧T
′

r1∧L
′′

1 ∧ . . .∧L
′′

m1, where for all i ∈ {1, . . . ,m1},
there exists i1 ∈ {1, . . . ,m}, suh that height (L′′

i) = height(L′

i1)−1. Thus, Prop-
erty (b) follows from the fat that E′

is derived by unfolding w.r.t. ground literals

from a lause of the form newp(h1, . . . , hk)← T ′

1 ∧ . . .∧T
′

r1 ∧L
′′

1 ∧ . . .∧L
′′

m1 and

every unfolding w.r.t. a ground literal does not inrease the height of the other

literals in a lause.

Property () follows from Lemma 2 and the fat that by unfolding a lause E
using regular natset-typed lauses we get lauses E′

where vars(E′) ⊆ vars(E).
To see this, reall that in a regular natset-typed lause C every term has at

most one variable and vars(bd(C)) ⊆ vars(hd(C)) and, thus, by unfolding, a

variable is replaed by a term with at most one variable and no new variables

are introdued.

Finally, Point (d) is a onsequene of Point (i) of the De�nition-Folding phase

of the unfold/fold strategy. ✷

6 Deiding WS1S via the Unfold/Fold Proof Method

In this setion we show that if we start from a losed WS1S formula ϕ, our
synthesis method an be used for heking whether or not N |= ϕ holds and,

thus, our synthesis method works also as a proof method whih is a deision

proedure for losed WS1S formulas.

If ϕ is a losed WS1S formula then the prediate f introdued when on-

struting the set Cls(f, ϕτ), is a nullary prediate. Let TransfP be the program

derived by the unfold/fold transformation strategy starting from the program

NatSet ∪ Cls(f, ϕτ). As already known from Point (2) of Theorem 4, we have

that Def ∗(f,TransfP) is either the empty set or the singleton {f ←}. Thus, we
an deide whether or not N |= ϕ holds by heking whether or not f ← belongs

to TransfP . Sine the unfold/fold transformation strategy always terminates, we

have that our unfold/fold synthesis method is indeed a deision proedure for

losed WS1S formulas. We summarize our proof method as follows.

16

The Unfold/Fold Proof Method.

Let ϕ be a losed WS1S formula.

Step 1. We apply the typed Lloyd-Topor transformation and we derive the set

Cls(f, ϕτ) of lauses.
Step 2. We apply the unfold/fold transformation strategy and from the program

NatSet ∪ Cls(f, ϕτ) we derive a de�nite program TransfP .

If the unit lause f ← belongs to TransfP then N |= ϕ else N |= ¬ϕ.

Now we present a simple example of appliation of our unfold/fold proof

method.

Example 1. (An appliation of the unfold/fold proof method.) Let us onsider

the losed WS1S formula ϕ : ∀X ∃Y X≤Y . By applying the typed Lloyd-Topor

transformation starting from the statement f ← ϕ, we get the following set of

lauses Cls(f, ϕτ):

1. h(X)← nat(X) ∧ nat(Y) ∧X≤Y
2. g ← nat(X) ∧ ¬h(X)
3. f ← ¬g

Now we apply the unfold/fold transformation strategy to the program NatSet
and the following hierarhy of natset-typed de�nitions: lause 1, lause 2, lause 3.

Initially, the program TransfP is NatSet . The transformation strategy proeeds

left-to-right over that hierarhy.

(1) Defs and InDefs are both set to {lause 1}.

(1.1) Unfolding. By unfolding, from lause 1 we get:

4. h(0)←
5. h(0)← nat(Y)
6. h(s(X))← nat(X) ∧ nat(Y) ∧X≤Y

(1.2) De�nition-Folding. In order to fold the body of lause 5 we introdue the

following new lause:

7. new1← nat(Y)

Clause 6 an be folded by using lause 1. By folding lauses 5 and 6 we get:

8. h(0)← new1
9. h(s(X))← h(X)

(1.3) At this point TransfP = NatSet ∪ {lause 4, lause 8, lause 9}, Defs =
{lause 1, lause 7}, and InDefs = {lause 7}.
(1.4) By �rst unfolding lause 7 and then folding using lause 7 itself, we get:

10. new1←
11. new1← new1

No new lause is introdued (i.e., NewDefs = ∅). At this point TransfP =
NatSet ∪ {lause 4, lause 8, lause 9, lause 10, lause 11}, Defs = {lause 3,
lause 7}, and InDefs = ∅. Thus, the while statement terminates.

Sine Def ∗(new1,TransfP) is propositional and M(TransfP) |= new1, by the

propositional simpli�ation rule we have:

17

TransfP = NatSet ∪ {lause 4, lause 8, lause 9, lause 10}.

(2) Defs is set to {lause 1, lause 2, lause 7} and InDefs is set to {lause 2}.

(2.1) Unfolding. By unfolding, from lause 2 we get:

12. g ← nat(X) ∧ ¬h(X)

(Notie that, by unfolding, lause g ← ¬h(0) is deleted.)
(2.2) De�nition-Folding. Clause 12 an be folded by using lause 2 whih ours

in Defs . Thus, no new lause is introdued (i.e., NewDefs = ∅) and by folding

we get:

13. g ← g

(2.3) At this point TransfP = NatSet ∪ {lause 4, lause 8, lause 9, lause 10,
lause 13}, Defs = {lause 1, lause 2, lause 7}, and InDefs = ∅. Thus, the
while statement terminates.

Sine Def ∗(g,TransfP) is propositional and M(TransfP) |= ¬g, by the proposi-

tional simpli�ation rule we delete lause 13 from TransfP and we have:

TransfP = NatSet ∪ {lause 4, lause 8, lause 9, lause 10}.

(3) Defs is set to {lause 1, lause 2, lause 3, lause 7} and InDefs is set to

{lause 3}.

(3.1) Unfolding. By unfolding lause 3 we get:

14. f ←

(Reall that, there is no lause in TransfP with head g.)

(3.2) De�nition-Folding. No transformation steps are performed on lause 14

beause it is a unit lause.

(3.3) At this point TransfP = NatSet ∪ {lause 4, lause 8, lause 9, lause 10,
lause 14}, Defs = {lause 1, lause 2, lause 3, lause 7}, and InDefs = ∅.
The transformation strategy terminates and, sine the �nal program TransfP

inludes the unit lause f ←, we have proved that N |= ∀X ∃Y X≤Y .
We would like to notie that neither SLDNF nor Tabled Resolution (as im-

plemented in the XSB system [?℄) are able to onstrut a refutation of NatSet∪
Cls(f, ϕτ) ∪ {← f} (and thus onstrut a proof of ϕ), where ϕ is the WS1S

formula ∀X ∃Y X ≤ Y . Indeed, from the goal ← f we generate the goal ← ¬g,
and neither SLDNF nor Tabled Resolution are able to infer that ← ¬g sueeds

by deteting that ← g generates an in�nite set of failed derivations. ✷

We would like to mention that some other transformations ould be applied

for enhaning our unfold/fold transformation strategy. In partiular, during the

strategy we may apply the subsumption rule to shorten the transformation pro-

ess by deleting some useless lauses. For instane, in Example 1 we an delete

lause 5 whih is subsumed by lause 4, thereby avoiding the introdution of the

new prediate new1. In some other ases we an drop unneessary type atoms.

For instane, in Example 1 in lause 1 the type atom nat(X) an be dropped

beause it is implied by the atom X≤Y . The program derived at the end of the

exeution of the while statement of the unfold/fold transformation strategy are

nondeterministi, in the sense that an atom with non-variable arguments may be

18

uni�able with the head of several lauses. We an apply the tehnique for deriv-

ing deterministi program presented in [?℄ for deriving deterministi programs

and thus, obtaining smaller programs.

When the unfold/fold transformation strategy is used for program synthesis,

it is often the ase that the above mentioned transformations also improve the

e�ieny of the derived programs.

Finally, we would like to notie that the unfold/fold transformation strategy

an be applied starting from a program P ∪ Cls(f, ϕτ) (instead of NatSet ∪
Cls(f, ϕτ)) where: (i) P is the output of a previous appliation of the strategy,

and (ii) ϕ is a formula built like a WS1S formula, exept that it uses predi-

ates ourring in P (besides ≤ and ∈). Thus, we an synthesize programs (or

onstrut proofs) in a ompositional way, by �rst synthesizing programs for sub-

formulas. We will follow this ompositional methodology in the example of the

following Setion 7.

7 An Appliation to the Veri�ation of In�nite State

Systems: the Dynami Bakery Protool

In this setion we present an example of veri�ation of a safety property of

an in�nite state system by onsidering CLP(WS1S) programs [?℄. As already

mentioned, by applying our unfold/fold synthesis method we will then translate

CLP(WS1S) programs into logi programs.

The syntax of CLP(WS1S) programs is de�ned as follows. We onsider a set of

user-de�ned prediate symbols. A CLP(WS1S) lause is of the form A← ϕ∧G,
where A is an atom, ϕ is a formula of WS1S, G is a goal, and the prediates

ourring in A or in G are all user-de�ned. A CLP(WS1S) program is a set of

CLP(WS1S) lauses. We assume that CLP(WS1S) programs are strati�ed.

Given a CLP(WS1S) program P , we de�ne the semantis of P to be its

perfet model, denoted M(P) (here we extend to CLP(WS1S) programs the

de�nitions whih are given for normal logi programs in [?℄).

Our example onerns the Dynami Bakery protool, alled DBakery for

short, and we prove that it ensures mutual exlusion in a system of proesses

whih share a ommon resoure, even if the number of proesses in the system

hanges during a protool run in a dynami way. The DBakery protool is a

variant of the N-proess Bakery protool [?℄.

In order to give the formal spei�ations of the DBakery protool and its

mutual exlusion property, we will use CLP(WS1S) as we now indiate. The

transition relation between pairs of system states, the initial system state, and

the system states whih are unsafe (that is, the system states where more than

one proess uses the shared resoure) are spei�ed by WS1S formulas. However,

in order to speify the mutual exlusion property we annot use WS1S formulas

only. Indeed, mutual exlusion is a reahability property whih is undeidable

in the ase of in�nite state systems. The approah we follow in this example is

to speify reahability (and, thus, mutual exlusion) as a CLP(WS1S) program

(see the program PDBakery below).

19

Let us �rst desribe the DBakery protool. We assume that every proess is

assoiated with a natural number, alled a ounter, and two distint proesses

have distint ounters. At eah instant in time, the system of proesses is repre-

sented by a pair 〈W,U〉, alled a system state, whereW is the set of the ounters

of the proesses waiting for the resoure, and U is the set of the ounters of the

proesses using the resoure.

A system state 〈W,U〉 is initial i� W ∪ U is the empty set.

The transition relation from a system state 〈W,U〉 to a new system state

〈W ′, U ′〉 is the union of the following three relations:

(T1: reation of a proess)

if W ∪U is empty then 〈W ′, U ′〉 = 〈{0}, ∅〉 else 〈W ′, U ′〉 = 〈W ∪ {m+1}, U〉,

where m is the maximum ounter in W ∪ U ,

(T2: use of the resoure)

if there exists a ounter n in W whih is the minimum ounter in W ∪ U

then 〈W ′, U ′〉 = 〈W−{n}, U ∪ {n}〉,

(T3: release of the resoure)

if there exists a ounter n in U then 〈W ′, U ′〉 = 〈W,U−{n}〉.

The mutual exlusion property holds i� from the initial system state it is not

possible to reah a system state 〈W,U〉 whih is unsafe, that is, suh that U is

a set of at least two ounters.

Let us now give the formal spei�ation of the DBakery protool and its

mutual exlusion property. We �rst introdue the following WS1S formulas (be-

tween parentheses we indiate their meaning):

empty(X) ≡ ¬∃x x∈X
(the set X is empty)

max (X,m) ≡ m∈X ∧ ∀x (x∈X → x≤m)

(m is the maximum in the set X)

min(X,m) ≡ m∈X ∧ ∀x (x∈X → m≤x)
(m is the minimum in the set X)

(Here and in what follows, for reasons of readability, we allow ourselves to use

lower ase letters for individual variables of WS1S formulas.)

A system state 〈W,U〉 is initial i� N |= init(〈W,U〉), where:

init(〈W,U〉) ≡ empty(W) ∧ empty(U)

The transition relation R between system states is de�ned as follows:

〈〈W,U〉 , 〈W ′, U ′〉〉 ∈ R i�

N |= cre(〈W,U〉 , 〈W ′, U ′〉) ∨ use(〈W,U〉 , 〈W ′, U ′〉) ∨ rel(〈W,U〉 , 〈W ′, U ′〉)

where the prediates re, use, and rel de�ne the transition relations T1, T2, and

T3, respetively. We have that:

20

cre(〈W,U〉 , 〈W ′, U ′〉) ≡ U ′=U ∧ ∃Z (Z=W ∪ U∧
((empty(Z) ∧W ′={0})∨
(¬empty(Z) ∧ ∃m (max (Z,m) ∧W ′=W∪{s(m)}))))

use(〈W,U〉 , 〈W ′, U ′〉) ≡ ∃n (n ∈W ∧ ∃Z (Z=W ∪ U ∧min(Z, n))∧
W ′=W−{n} ∧ U ′=U∪{n})

rel(〈W,U〉 , 〈W ′, U ′〉) ≡ W ′=W ∧ ∃n (n ∈ U ∧ U ′=U−{n})

where the subformulas involving the set union (∪), set di�erene (−), and set

equality (=) operators an be expressed as WS1S formulas.

Mutual exlusion holds in a system state 〈W,U〉 i� N |= ¬unsafe(〈W,U〉),
where unsafe(〈W,U〉) ≡ ∃n1 ∃n2 (n1∈U ∧ n2∈U ∧ ¬(n1=n2)), i.e., a system

state 〈W,U〉 is unsafe i� there exist at least two distint ounters in U .
Now we will speify the system states reahed from a given initial system state

by introduing the CLP(WS1S) program PDBakery onsisting of the following

lauses:

reach(S) ← init(S)
reach(S1) ← cre(S, S1) ∧ reach(S)
reach(S1) ← use(S, S1) ∧ reach(S)
reach(S1) ← rel(S, S1) ∧ reach(S)

where init(S), cre(S, S1), use(S, S1), and rel(S, S1) are the WS1S formulas

listed above.

From PDBakery we derive a de�nite program P ′

DBakery by replaing the WS1S

formulas ourring in PDBakery by the orresponding atoms init(S), cre(S, S1),
use(S, S1), and rel(S, S1), and by adding to the program the lauses (not listed

here) de�ning these atoms, whih are derived from the orresponding WS1S for-

mulas listed above, by applying the unfold/fold synthesis method (see Setion 5).

Let us all these lauses Init, Cre, Use, and Rel, respetively.

In order to verify that the DBakery protool ensures mutual exlusion for

every system of proesses whose number dynamially hanges over time, we

have to prove that for every ground term s denoting a �nite set of ounters,

ur(s) 6∈ M(P ′

DBakery ∪ {clause 1}), where lause 1 is the following lause whih

we introdue by the de�nition rule:

1. ur(S) ← unsafe(S) ∧ reach(S)

and unsafe(S) is de�ned by a set, alled Unsafe, of lauses whih are derived from
the orresponding WS1S formula by using the unfold/fold synthesis method.

In order to verify the mutual exlusion property for the DBakery protool

it is enough to show that P ′

DBakery ∪ {clause 1} an be transformed into a new

de�nite program without lauses for ur(S). This transformation an be done,

as we now illustrate, by a straightforward adaptation of the proof tehnique

presented for Constraint Logi Programs in [?℄. In partiular, before performing

folding steps, we will add suitable atoms in the bodies of the lauses to be folded.

We start o� this veri�ation by unfolding lause 1 w.r.t. the atom reah. We

obtain the following lauses:

2. ur(S) ← unsafe(S) ∧ init(S)

21

3. ur(S1) ← unsafe(S1) ∧ cre(S, S1) ∧ reach(S)
4. ur(S1) ← unsafe(S1) ∧ use(S, S1) ∧ reach(S)
5. ur(S1) ← unsafe(S1) ∧ rel(S, S1) ∧ reach(S)

Now we an remove lause 2 beause

M(Unsafe ∪ Init) |= ¬∃S (unsafe(S) ∧ init(S)).

The proof of this fats and the proofs of the other fats we state below, are

performed by applying the unfold/fold proof method of Setion 5. Then, we fold

lauses 3 and 5 by using the de�nition lause 1 and we obtain:

6. ur(S1) ← unsafe(S1) ∧ cre(S, S1) ∧ ur(S)
7. ur(S1) ← unsafe(S1) ∧ rel(S, S1) ∧ ur(S)

Notie that this appliation of the folding rule is justi�ed by the following two

fats:

M(Unsafe ∪Cre) |= ∀S ∀S1 (unsafe(S1) ∧ cre(S, S1) → unsafe(S))
M(Unsafe ∪Rel) |= ∀S ∀S1 (unsafe(S1) ∧ rel(S, S1) → unsafe(S))

so that, before folding, we an add the atom unsafe(S) to the bodies of lauses

3 and 5. Now, sine M(Unsafe ∪ Use) |= ¬∀S ∀S1 (unsafe(S1) ∧ use(S, S1) →
unsafe(S)), lause 4 annot be folded using the de�nition lause 1. Thus, we

introdue the new de�nition lause:

8. p1(S) ← c(S) ∧ reach(S)

where c(〈W,U〉) ≡ ∃n (n∈W ∧∃Z (Z =W∪U ∧min(Z, n))) ∧ ¬empty(U) whih
means that: in the system state 〈W,U〉 there is at least one proess whih uses

the resoure and there exists a proess waiting for the resoure with ounter n
whih is the minimum ounter in W ∪ U .

Notie that, by applying the unfold/fold synthesis method, we may derive a

set, alled Busy (not listed here), of de�nite lauses whih de�ne c(S).
By using lause 8 we fold lause 4, and we obtain:

9. ur(S1) ← unsafe(S1) ∧ use(S, S1) ∧ p1(S)

We proeed by applying the unfolding rule to the newly introdued lause 8,

thereby obtaining:

10. p1(S) ← c(S) ∧ init(S)
11. p1(S1) ← c(S1) ∧ cre(S, S1) ∧ reach(S)
12. p1(S1) ← c(S1) ∧ use(S, S1) ∧ reach(S)
13. p1(S1) ← c(S1) ∧ rel(S, S1) ∧ reach(S)

Clauses 10 and 12 are removed, beause

M(Busy ∪ Init) |= ¬∃S (c(S) ∧ init(S))
M(Busy ∪ Use) |= ¬∃S ∃S1 (c(S1) ∧ use(S, S1))

We fold lauses 11 and 13 by using the de�nition lauses 8 and 1, respetively,

thereby obtaining:

14. p1(S1) ← c(S1) ∧ cre(S, S1) ∧ p1(S)
15. p1(S1) ← c(S1) ∧ rel(S, S1) ∧ ur(S)

Notie that this appliation of the folding rule is justi�ed by the following two

fats:

22

M(Busy ∪ Cre) |= ∀S ∀S1 ((c(S1) ∧ cre(S, S1)) → c(S))
M(Busy ∪ Rel) |= ∀S ∀S1 ((c(S1) ∧ rel(S, S1)) → unsafe(S))

Thus, starting from program P ′

DBakery∪{lause 1} we have derived a new pro-

gram Q onsisting of lauses 6, 7, 14, and 15. Sine all lauses in Def ∗(ur , Q)
are reursive, we have that for every ground term s denoting a �nite set of oun-

ters, ur(s) 6∈ M(Q) and by the orretness of the transformation rules [?℄, we

onlude that mutual exlusion holds for the DBakery protool.

8 Related Work and Conlusions

We have proposed an automati synthesis method based on unfold/fold pro-

gram transformations for translating CLP(WS1S) programs into normal logi

programs. This method an be used for avoiding the use of ad-ho solvers for

WS1S onstraints when onstruting proofs of properties of in�nite state multi-

proess systems.

Our synthesis method follows the general approah presented in [?℄ and it

terminates for any given WS1S formula. No suh termination result was given

in [?℄. In this paper we have also shown that, when we start from a losed WS1S

formula ϕ, our synthesis strategy produes a program whih is either (i) a unit

lause of the form f ←, where f is a nullary prediate equivalent to the formula

ϕ, or (ii) the empty program. Sine in ase (i) ϕ is true and in ase (ii) ϕ is false,

our strategy is also a deision proedure for losed WS1S formulas. This result

extends [?℄ whih presents a deision proedure based on the unfold/fold proof

method for the lausal fragment of the WSkS theory, i.e., the fragment dealing

with universally quanti�ed disjuntions of onjuntions of literals.

Some related methods based on program transformation have been reently

proposed for the veri�ation of in�nite state systems [?,?℄. However, as it is

shown by the example of Setion 7, an important feature of our veri�ation

method is that the number of proesses involved in the protool may hange over

time and other methods �nd it problemati to deal with suh dynami hanges.

In partiular, the tehniques presented in [?℄ for verifying safety properties of

parametrized systems deal with reative systems where the number of proesses

is a parameter whih does not hange over time.

Our method is also related to a number of other methods whih use logi

programming and, more generally, onstraint logi programming for the veri�-

ation of reative systems (see, for instane, [?,?,?,?℄ and [?℄ for a survey). The

main novelty of our approah w.r.t. these methods is that it ombines logi pro-

gramming and monadi seond order logi, thereby modelling in a very diret

way systems with an unbounded (and possibly variable) number of proesses.

Our unfold/fold synthesis method and our unfold/fold proof method have

been implemented by using the MAP transformation system [?℄. Our implemen-

tation is reasonably e�ient for WS1S formulas of small size (see the example

formulas of Setion 7). However, our main onern in the implementation was not

e�ieny and our system should not be ompared with ad-ho, well-established

theorem provers for WS1S formulas based on automata theory, like the MONA

23

system [?℄. Nevertheless, we believe that our tehnique has its novelty and de-

serves to be developed beause, being based on unfold/fold rules, it an easily be

ombined with other tehniques for program derivation, speialization, synthesis,

and veri�ation, whih are also based on unfold/fold transformations.

24

	Combining Logic Programs and Monadic Second Order Logics by Program Transformation

