Combining Logic Programs and Monadic Second Order Logics by Program Transformation

Fabio Fioravanti ${ }^{1}$, Alberto Pettorossi ${ }^{2}$, Maurizio Proietti ${ }^{1}$
(1) IASI-CNR, Viale Manzoni 30, I-00185 Roma, Italy
(2) DISP, University of Roma Tor Vergata, I-00133 Roma, Italy
\{fioravanti,adp, proietti\}@iasi.rm.cnr.it

Abstract

We present a program synthesis method based on unfold/fold transformation rules which can be used for deriving terminating definite logic programs from formulas of the Weak Monadic Second Order theory of one successor (WS1S). This synthesis method can also be used as a proof method which is a decision procedure for closed formulas of WS1S. We apply our synthesis method for translating CLP(WS1S) programs into logic programs and we use it also as a proof method for verifying safety properties of infinite state systems.

1 Introduction

The Weak Monadic Second Order theories of k successors (WSkS) are theories of the second order predicate logic which express properties of finite sets of finite strings over a k-symbol alphabet (see [?] for a survey). Their importance relies on the fact that they are among the most expressive theories of predicate logic which are decidable. These decidability results were proved in the 1960's [?,?], but they were considered as purely theoretical results, due to the very high complexity of the automata-based decision procedures.

In recent years, however, it has been shown that some Monadic Second Order theories can, in fact, be decided by using ad-hoc, efficient techniques, such as BDD's and algorithms for finite state automata. In particular, the MONA system implements these techniques for the WS1S and WS2S theories [?].

The MONA system has been used for the verification of several non-trivial finite state systems [?,?]. However, the Monadic Second Order theories alone are not expressive enough to deal with properties of infinite state systems and, thus, for the verification of such systems alternative techniques have been used, such as those based on the embedding of the Monadic Second Order theories into more powerful logical frameworks (see, for instance, [?]).

In a previous paper of ours [?] we proposed a verification method for infinite state systems based on CLP(WSkS), which is a constraint logic programming language resulting from the embedding of WSkS into logic programs. In order to perform proofs of properties of infinite state systems in an automatic way according to the approach we have proposed, we need a system for constraint
logic programming which uses a solver for WSkS formulas and, unfortunately, no such system is available yet.

In order to overcome this difficulty, in this paper we propose a method for translating CLP(WS1S) programs into logic programs. This translation is performed by a two step program synthesis method which produces terminating definite logic programs from WS1S formulas. Step 1 of our synthesis method consists in deriving a normal logic program from a WS1S formula, and it is based on a variant of the Lloyd-Topor transformation [?]. Step 2 consists in applying an unfold/fold transformation strategy to the normal logic program derived at the end of Step 1, thereby deriving a terminating definite logic program. Our synthesis method follows the general approach presented in [?,?]. We leave it for future research the translation into logic programs starting from general CLP(WSkS) programs.

The specific contributions of this paper are the following ones.
(1) We provide a synthesis strategy which is guaranteed to terminate for any given WS1S formula.
(2) We prove that, when we start from a closed WS1S formula φ, our synthesis strategy produces a program which is either (i) a unit clause of the form $f \leftarrow$, where f is a nullary predicate equivalent to the formula φ, or (ii) the empty program. Since in case (i) φ is true and in case (ii) φ is false, our strategy is also a decision procedure for WS1S formulas.
(3) We show through a non-trivial example, that our verification method based on CLP(WS1S) programs is useful for verifying properties of infinite state transition systems. In particular, we prove the safety property of a mutual exclusion protocol for a set of processes whose cardinality may change over time. Our verification method requires: (i) the encoding into WS1S formulas of both the transition relation and the elementary properties of the states of a transition system, and (ii) the encoding into a CLP(WS1S) program of the safety property under consideration. Here we perform our verification task by translating the CLP(WS1S) program into a definite logic program, thereby avoiding the use of a solver for WS1S formulas. The verification of the safety property has been performed by using a prototype tool built on top of the MAP transformation system [?].

2 The Weak Monadic Second Order Theory of One Successor

We will consider a first order presentation of the Weak Monadic Second Order theory of one successor (WS1S). This first order presentation consists in writing formulas of the form $n \in S$, where \in is a first order predicate symbol (to be interpreted as membership of a natural number to a finite set of natural numbers), instead of formulas of the form $S(n)$, where S is a predicate variable (to be interpreted as ranging over finite sets of natural numbers).

We use a typed first order language, with the following two types: nat, denoting the set of natural numbers, and set, denoting the set of the finite sets of
natural numbers (for a brief presentation of the typed first order logic the reader may look at [?]). The alphabet of WS1S consists of: (i) a set Ivars of individual variables N, N_{1}, N_{2}, \ldots of type nat, (ii) a set Svars of set variables S, S_{1}, S_{2}, \ldots of type set, (iii) the nullary function symbol 0 (zero) of type nat, and the unary function symbol s (successor) of type nat \rightarrow nat, and (iv) the binary predicate symbols \leq of type nat \times nat, and \in of type nat \times set. Ivars \cup Svars is ranged over by X, X_{1}, X_{2}, \ldots The syntax of WS1S is defined by the following grammar:

$$
\begin{array}{ll}
\text { Individual terms: } & n::=0|N| s(n) \\
\text { Atomic formulas: } & A::=n_{1} \leq n_{2} \mid n \in S \\
\text { Formulas: } & \varphi::=A|\neg \varphi| \varphi_{1} \wedge \varphi_{2}|\exists N \varphi| \exists S \varphi
\end{array}
$$

When writing formulas we feel free to use also the connectives \vee, \rightarrow, \leftrightarrow and the universal quantifier \forall, as shorthands of the corresponding formulas with \neg, \wedge, and \exists. Given any two individual terms n_{1} and n_{2}, we will write the formulas $n_{1}=n_{2}, n_{1} \neq n_{2}$, and $n_{1}<n_{2}$ as shorthands of the corresponding formulas using \leq. Notice that, for reasons of simplicity, we have assumed that the symbol \leq is primitive, although it is also possible to define it in terms of $\in[?]$.

An example of a WS1S formula is the following formula μ, with free variables N and S, which expresses that N is the maximum number in a finite set S :

$$
\mu: N \in S \wedge \neg \exists N_{1}\left(N_{1} \in S \wedge \neg N_{1} \leq N\right)
$$

The semantics of WS1S formulas is defined by considering the following typed interpretation \mathcal{N} :
(i) the domain of the type nat is the set $N a t$ of the natural numbers and the domain of the type set is the set $P_{\text {fin }}(N a t)$ of all finite subsets of Nat;
(ii) the constant symbol 0 is interpreted as the natural number 0 and the function symbol s is interpreted as the successor function from Nat to Nat;
(iii) the predicate symbol \leq is interpreted as the less-or-equal relation on natural numbers, and the predicate symbol \in is interpreted as the membership of a natural number to a finite set of natural numbers.

The notion of a variable assignment σ over a typed interpretation is analogous to the untyped case, except that σ assigns to a variable an element of the domain of the type of the variable. The definition of the satisfaction relation $I \models_{\sigma} \varphi$, where I is a typed interpretation and σ is a variable assignment is also analogous to the untyped case, with the only difference that when we interpret an existentially quantified formula we assume that the quantified variable ranges over the domain of its type. We say that a formula φ is true in an interpretation I, written as $I \models \varphi$, iff $I \models_{\sigma} \varphi$ for all variable assignments σ. The problem of checking whether or not a WS1S formula is true in the interpretation \mathcal{N} is decidable [?].

3 Translating WS1S Formulas into Normal Logic Programs

In this section we illustrate Step 1 of our method for synthesizing definite programs from WS1S formulas. In this step, starting from a WS1S formula, we de-
rive a stratified normal logic program [?] (simply called stratified programs) by applying a variant of the Lloyd-Topor transformation, called typed Lloyd-Topor transformation. Given a stratified program P, we denote by $M(P)$ its perfect model (which is equal to its least Herbrand model if P is a definite program) [?].

Before presenting the typed Lloyd-Topor transformation, we need to introduce a definite program, called NatSet, which axiomatizes: (i) the natural numbers, (ii) the finite sets of natural numbers, (iii) the ordering on natural numbers (\leq), and (iv) the membership of a natural number to a finite set of natural numbers (\in). We represent: (i) a natural number $k(\geq 0)$ as a ground term of the form $s^{k}(0)$, and (ii) a set of natural numbers as a finite, ground list $\left[b_{0}, b_{1}, \ldots, b_{m}\right]$ where, for $i=0, \ldots, m$, we have that b_{i} is either y or n. A number k belongs to the set represented by $\left[b_{0}, b_{1}, \ldots, b_{m}\right]$ iff $b_{k}=\mathrm{y}$. Thus, the finite, ground lists $\left[b_{0}, b_{1}, \ldots, b_{m}\right]$ and $\left[b_{0}, b_{1}, \ldots, b_{m}, \mathbf{n}, \ldots, \mathrm{n}\right]$ represent the same set. In particular, the empty set is represented by any list of the form $[\mathrm{n}, \ldots, \mathrm{n}]$. The program NatSet consists of the following clauses (we adopt infix notation for \leq and \in):

$$
\begin{array}{ll}
\operatorname{nat}(0) \leftarrow & 0 \leq N \leftarrow \\
\operatorname{nat}(s(N)) \leftarrow \operatorname{nat}(N) & s\left(N_{1}\right) \leq s\left(N_{2}\right) \leftarrow N_{1} \leq N_{2} \\
\operatorname{set}([]) \leftarrow & 0 \in[\mathrm{y} \mid S] \leftarrow \\
\operatorname{set}([\mathrm{y} \mid S]) \leftarrow \operatorname{set}(S) & s(N) \in[B \mid S] \leftarrow N \in S \\
\operatorname{set}([\mathrm{n} \mid S]) \leftarrow \operatorname{set}(S) &
\end{array}
$$

Atoms of the form $\operatorname{nat}(N)$ and $\operatorname{set}(S)$ are called type atoms. Now we will establish a correspondence between the set of WS1S formulas which are true in \mathcal{N} and the set of the so-called explicitly typed WS1S formulas which are true in the least Herbrand model M (NatSet) (see Theorem 1 below).

Given a WS1S formula φ, the explicitly typed WS1S formula corresponding to φ is the formula φ_{τ} constructed as follows. We first replace the subformulas of the form $\exists N \psi$ by $\exists N(\operatorname{nat}(N) \wedge \psi)$ and the subformulas of the form $\exists S \psi$ by $\exists S(\operatorname{set}(S) \wedge \psi)$, thereby getting a new formula φ_{η} where every bound (individual or set) variable occurs in a type atom. Then, we get:

$$
\varphi_{\tau}: \operatorname{nat}\left(N_{1}\right) \wedge \ldots \wedge \operatorname{nat}\left(N_{h}\right) \wedge \operatorname{set}\left(S_{1}\right) \wedge \ldots \wedge \operatorname{set}\left(S_{k}\right) \wedge \varphi_{\eta}
$$

where $N_{1}, \ldots, N_{h}, S_{1}, \ldots, S_{k}$ are the variables which occur free in φ.
For instance, let us consider again the formula μ which expresses that N is the maximum number in a set S. The explicitly typed formula corresponding to μ is the following formula:

$$
\mu_{\tau}: \operatorname{nat}(N) \wedge \operatorname{set}(S) \wedge N \in S \wedge \neg \exists N_{1}\left(\operatorname{nat}\left(N_{1}\right) \wedge N_{1} \in S \wedge \neg N_{1} \leq N\right)
$$

For reasons of simplicity, in the following Theorem 1 we identify: (i) a natural number $k(\geq 0)$ in Nat with the ground term $s^{k}(0)$ representing that number, and (ii) a finite set of natural numbers in $P_{f i n}(N a t)$ with any finite, ground list representing that set. By using these identifications, we can view any variable assignment over the typed interpretation \mathcal{N} also as a variable assignment over the untyped interpretation M (NatSet) (but not vice versa).

Theorem 1. Let φ be a WS1S formula and let φ_{τ} be the explicitly typed formula corresponding to φ. For every variable assignment σ over \mathcal{N},

$$
\mathcal{N} \models_{\sigma} \varphi \text { iff } M(\text { NatSet }) \models_{\sigma} \varphi_{\tau}
$$

Proof. The proof proceeds by induction on the structure of the formula φ.
(i) Suppose that φ is of the form $n_{1} \leq n_{2}$. By the definition of the satisfaction relation, $\mathcal{N} \models_{\sigma} n_{1} \leq n_{2}$ iff the natural number $\sigma\left(n_{1}\right)$ is less or equal than the natural number $\sigma\left(n_{2}\right)$. By the definition of least Herbrand model and by using the clauses in NatSet which define $\leq, \sigma\left(n_{1}\right)$ is less or equal than $\sigma\left(n_{2}\right)$ iff $M($ NatSet $) \models \sigma\left(n_{1}\right) \leq \sigma\left(n_{2}\right)$ (here we identify every natural number n with the ground term $\left.s^{n}(0)\right)$. It can be shown that $M($ NatSet $) \models \operatorname{nat}\left(\sigma\left(n_{1}\right)\right)$ and $M($ NatSet $) \models \operatorname{nat}\left(\sigma\left(n_{2}\right)\right)$. Thus, $M($ NatSet $) \models \sigma\left(n_{1}\right) \leq \sigma\left(n_{2}\right)$ iff $M($ NatSet $) \models_{\sigma}$ $n a t\left(n_{1}\right) \wedge \operatorname{nat}\left(n_{2}\right) \wedge n_{1} \leq n_{2}$. Now, the term n_{1} is either of the form $s^{m 1}(0)$ or of the form $s^{m 1}\left(N_{1}\right)$, where $m 1$ is a natural number. Similarly, the term n_{2} is either of the form $s^{m 2}(0)$ or of the form $s^{m 2}(N)$, where $m 2$ is a natural number. We consider the case where n_{1} is $s^{m 1}\left(N_{1}\right)$ and n_{2} is $s^{m 2}\left(N_{2}\right)$. The other cases are similar and we omit them. It can be shown that, for all natural numbers m, $M($ NatSet $) \models_{\sigma} \operatorname{nat}\left(s^{m}(N)\right)$ iff $M($ NatSet $) \models_{\sigma} \operatorname{nat}(N)$. Thus, $M($ NatSet $) \models_{\sigma}$ $\operatorname{nat}\left(s^{m 1}\left(N_{1}\right)\right) \wedge \operatorname{nat}\left(s^{m 2}\left(N_{2}\right)\right) \wedge s^{m 1}\left(N_{1}\right) \leq s^{m 2}\left(N_{2}\right)$ iff M(NatSet $) \models_{\sigma} \operatorname{nat}\left(N_{1}\right) \wedge$ $\operatorname{nat}\left(N_{2}\right) \wedge s^{m 1}\left(N_{1}\right) \leq s^{m 2}\left(N_{2}\right)$, that is, $M($ NatSet $) \models_{\sigma}\left(n_{1} \leq n_{2}\right)_{\tau}$.
(ii) The case where φ is of the form $n \in S$ is similar to Case (i).
(iii) Suppose that φ is of the form $\neg \psi$. By the definition of the satisfaction relation and the induction hypothesis, $\mathcal{N} \models_{\sigma} \neg \psi$ iff $M($ NatSet $) \models_{\sigma} \neg\left(\psi_{\tau}\right)$. Since ψ_{τ} is of the form $a_{1}\left(X_{1}\right) \wedge \ldots \wedge a_{k}\left(X_{k}\right) \wedge \psi_{\eta}$, where X_{1}, \ldots, X_{k} are the free variables in ψ and $a_{1}\left(X_{1}\right), \ldots, a_{k}\left(X_{k}\right)$ are type atoms, by logical equivalence, we get: $M($ NatSet $) \models_{\sigma} \neg\left(\psi_{\tau}\right)$ iff $M($ NatSet $) \models_{\sigma}\left(a_{1}\left(X_{1}\right) \wedge \ldots \wedge a_{k}\left(X_{k}\right) \wedge\right.$ $\left.\neg\left(\psi_{\eta}\right)\right) \vee \neg\left(a_{1}\left(X_{1}\right) \wedge \ldots \wedge a_{k}\left(X_{k}\right)\right)$. Finally, since for all variable assignments σ, $M($ NatSet $) \models_{\sigma} a_{1}\left(X_{1}\right) \wedge \ldots \wedge a_{k}\left(X_{k}\right)$, we have that $M(N a t S e t) \models_{\sigma} \neg\left(\psi_{\tau}\right)$ iff $M($ NatSet $) \models_{\sigma}\left(a_{1}\left(X_{1}\right) \wedge \ldots \wedge a_{k}\left(X_{k}\right) \wedge \neg\left(\psi_{\eta}\right)\right)$, that is, $M($ NatSet $) \models_{\sigma}(\neg \psi)_{\tau}$ (to see this, note that $\neg\left(\psi_{\eta}\right)$ is equal to $\left.(\neg \psi)_{\eta}\right)$.
(iv) The case where φ is of the form $\psi_{1} \wedge \psi_{2}$ is similar to Case (iii).
(v) Suppose that φ is of the form $\exists N_{1} \psi$. By the definition of the satisfaction relation and by the induction hypothesis, $\mathcal{N} \models_{\sigma} \exists N_{1} \psi$ iff there exists n_{1} in Nat such that $M($ NatSet $) \models_{\sigma\left[N_{1} \mapsto n_{1}\right]} \psi_{\tau}$. Since ψ_{τ} is of the form $\operatorname{nat}\left(N_{1}\right) \wedge \ldots \wedge$ $\operatorname{nat}\left(N_{h}\right) \wedge \operatorname{set}\left(S_{1}\right) \wedge \ldots \wedge \operatorname{set}\left(S_{k}\right) \wedge \psi_{\eta}$, where $N_{1}, \ldots, N_{h}, S_{1}, \ldots, S_{k}$ are the free variables in ψ, we have that:
there exists n_{1} in Nat such that $M($ NatSet $) \models_{\sigma\left[N_{1} \mapsto n_{1}\right]} \psi_{\tau}$ iff $M(N a t S e t) \not \models_{\sigma} \exists N_{1}\left(\operatorname{nat}\left(N_{1}\right) \wedge \ldots \wedge \operatorname{nat}\left(N_{h}\right) \wedge \operatorname{set}\left(S_{1}\right) \wedge \ldots \wedge \operatorname{set}\left(S_{k}\right) \wedge \psi_{\eta}\right)$
iff (by logical equivalence) $M(N a t S e t) \models_{\sigma} \operatorname{nat}\left(N_{2}\right) \wedge \ldots \wedge \operatorname{nat}\left(N_{h}\right) \wedge \operatorname{set}\left(S_{1}\right) \wedge$ $\ldots \wedge \operatorname{set}\left(S_{k}\right) \wedge\left(\exists N_{1} \operatorname{nat}\left(N_{1}\right) \wedge \psi_{\eta}\right)$
iff (by definition of explicitly typed formula) $M($ NatSet $) \models_{\sigma}\left(\exists N_{1} \psi\right)_{\tau}$.
(vi) The case where φ is of the form $\exists S \psi$ is similar to Case (v).

As a straightforward consequence of Theorem we have the following result.
Corollary 1. For every closed WS1S formula $\varphi, \mathcal{N} \models \varphi$ iff $M($ NatSet $) \models \varphi_{\tau}$.
Notice that the introduction of type atoms is indeed necessary, because there are WS1S formulas φ such that $\mathcal{N} \models \varphi$ and $M($ NatSet $) \not \models \varphi$. For instance, $\mathcal{N} \models$ $\forall N_{1} \exists N_{2} N_{1} \leq N_{2}$ and $M($ NatSet $) \not \models \forall N_{1} \exists N_{2} N_{1} \leq N_{2}$. Indeed, for a variable assignment σ over $M($ NatSet $)$ which assigns [] to N_{1}, we have $M($ NatSet $) \not \vDash_{\sigma}$
$\exists N_{2} N_{1} \leq N_{2}$. (Notice that σ is not a variable assignment over \mathcal{N} because [] is not a natural number.)

Now we present a variant of the method proposed by Lloyd and Topor [?], called typed Lloyd-Topor transformation, which we use for deriving a stratified program from a given WS1S formula φ. We need to consider a class of formulas of the form: $A \leftarrow \beta$, called statements, where A is an atom, called the head of the statement, and β is a formula of the first order predicate calculus, called the body of the statement. In what follows we write $C[\gamma]$ to denote a formula where the subformula γ occurs as an outermost conjunct, that is, $C[\gamma]=\psi_{1} \wedge \gamma \wedge \psi_{2}$ for some subformulas ψ_{1} and ψ_{2}.

The Typed Lloyd-Topor Transformation.

We are given in input a set of statements, where: (i) we assume without loss of generality, that the only connectives and quantifiers occurring in the body of the statements are \neg, \wedge, and \exists, and (ii) X, X_{1}, X_{2}, \ldots denote either individual or set variables.
We perform the following transformation (A) and then the transformation (B):
(A) We repeatedly apply the following rules A.1-A. 4 until a set of clauses is generated:
(A.1) $A \leftarrow C[\neg \neg \gamma]$ is replaced by $A \leftarrow C[\gamma]$.
(A.2) $A \leftarrow C[\neg(\gamma \wedge \delta)]$ is replaced by $A \leftarrow C\left[\neg\right.$ newp $\left.\left(X_{1}, \ldots, X_{k}\right)\right]$
newp $\left(X_{1}, \ldots, X_{k}\right) \leftarrow \gamma \wedge \delta$
where newp is a new predicate and X_{1}, \ldots, X_{k} are the variables which occur free in $\gamma \wedge \delta$.
(A.3) $A \leftarrow C[\neg \exists X \gamma]$ is replaced by $A \leftarrow C\left[\neg\right.$ newp $\left.\left(X_{1}, \ldots, X_{k}\right)\right]$ $\operatorname{newp}\left(X_{1}, \ldots, X_{k}\right) \leftarrow \gamma$
where newp is a new predicate and X_{1}, \ldots, X_{k} are the variables which occur free in $\exists X \gamma$.
(A.4) $A \leftarrow C[\exists X \gamma]$ is replaced by $A \leftarrow C\left[\gamma\left\{X / X_{1}\right\}\right]$
where X_{1} is a new variable.
(B) Every clause $A \leftarrow G$ is replaced by $A \leftarrow G_{\tau}$.

Given a WS1S formula φ with free variables X_{1}, \ldots, X_{n}, we denote by $\operatorname{Cls}\left(f, \varphi_{\tau}\right)$ the set of clauses derived by applying the typed Lloyd-Topor transformation starting from the singleton $\left\{f\left(X_{1}, \ldots, X_{n}\right) \leftarrow \varphi\right\}$, where f is a new n-ary predicate symbol. By construction, $N a t S e t \cup \operatorname{Cls}\left(f, \varphi_{\tau}\right)$ is a stratified program. We have the following theorem.

Theorem 2. Let φ be a WS1S formula with free variables X_{1}, \ldots, X_{n} and let φ_{τ} be the explicitly typed formula corresponding to φ. For all ground terms t_{1}, \ldots, t_{n}, we have that:

$$
\begin{gathered}
M(\text { NatSet }) \models \varphi_{\tau}\left\{X_{1} / t_{1}, \ldots, X_{n} / t_{n}\right\} \quad \text { iff } \\
M\left(\text { NatSet } \cup \operatorname{Cls}\left(f, \varphi_{\tau}\right)\right) \models f\left(t_{1}, \ldots, t_{n}\right)
\end{gathered}
$$

Proof. It is similar to the proofs presented in [?,?] and we omit it.
From Theorems 1 and 2 we have the following corollaries.
Corollary 2. For every WS1S formula φ with free variables X_{1}, \ldots, X_{n}, and for every variable assignment σ over the typed interpretation \mathcal{N},

$$
\mathcal{N} \models_{\sigma} \varphi \text { iff } M\left(N a t S e t \cup \operatorname{Cls}\left(f, \varphi_{\tau}\right)\right) \models f\left(\sigma\left(X_{1}\right), \ldots, \sigma\left(X_{n}\right)\right)
$$

Corollary 3. For every closed WS1S formula φ,

$$
\mathcal{N} \models \varphi \text { iff } M\left(N a t S e t \cup C l s\left(f, \varphi_{\tau}\right)\right) \models f
$$

Let us consider again the formula μ we have considered above. By applying the typed Lloyd-Topor transformation starting from the singleton $\{\max (S, N) \leftarrow \mu\}$ we get the following set of clauses $C l s\left(\max , \mu_{\tau}\right)$:
$\max (S, N) \leftarrow \operatorname{nat}(N) \wedge \operatorname{set}(S) \wedge N \in S \wedge \neg \operatorname{newp}(S, N)$
$\operatorname{newp}(S, N) \leftarrow \operatorname{nat}(N) \wedge \operatorname{nat}\left(N_{1}\right) \wedge \operatorname{set}(S) \wedge N_{1} \in S \wedge \neg N_{1} \leq N$
Unfortunately, the stratified program $\operatorname{NatSet} \cup C l s\left(f, \varphi_{\tau}\right)$ derived from the singleton $\left\{f\left(X_{1}, \ldots, X_{n}\right) \leftarrow \varphi\right\}$ is not always satisfactory from a computational point of view because it may not terminate when evaluating the query $f\left(X_{1}, \ldots, X_{n}\right)$ by using SLDNF resolution. (Actually, the above program $C l s\left(\max , \mu_{\tau}\right)$ which computes the maximum number of a set, terminates for all ground queries, but in Section 5 we will give an example where the program derived at the end of the typed Lloyd-Topor transformation does not terminate.) Similar termination problems may occur by using tabled resolution [?], instead of SLDNF resolution.

To overcome this problem, we apply to the program NatSet $\cup \operatorname{Cls}\left(f, \varphi_{\tau}\right)$ the unfold/fold transformation strategy which we will describe in Section [5] In particular, by applying this strategy we derive definite programs which terminate for all ground queries by using LD resolution (that is, SLD resolution with the leftmost selection rule).

4 The Transformation Rules

In this section we describe the transformation rules which we use for transforming stratified programs. These rules are a subset of those presented in [?,?], and they are those required for the unfold/fold transformation strategy presented in Section 5

For presenting our rules we need the following notions. A variable in the body of a clause C is said to be existential iff it does not occur in the head of C. The definition of a predicate p in a program P, denoted by $\operatorname{Def}(p, P)$, is the set of the clauses of P whose head predicate is p. The extended definition of a
predicate p in a program P, denoted by $D e f^{*}(p, P)$, is the union of the definition of p and the definitions of all predicates in P on which p depends. (See [?]for the definition of the depends on relation.) A program is propositional iff every predicate occurring in the program is nullary. Obviously, if P is a propositional program then, for every predicate $p, M(P) \models p$ is decidable.

A transformation sequence is a sequence P_{0}, \ldots, P_{n} of programs, where for $0 \leq k \leq n-1$, program P_{k+1} is derived from program P_{k} by the application of one of the transformation rules R1-R4 listed below. For $0 \leq k \leq n$, we consider the set $D e f s_{k}$ of the clauses introduced by the following rule R1 during the construction of the transformation sequence P_{0}, \ldots, P_{k}.

When considering clauses of programs, we will feel free to apply the following transformations which preserve the perfect model semantics:
(1) renaming of variables,
(2) rearrangement of the order of the literals in the body of a clause, and
(3) replacement of a conjunction of literals the form $L \wedge L$ in the body of a clause by the literal L.

Rule R1. Definition. We get the new program P_{k+1} by adding to program P_{k} a clause of the form $\operatorname{newp}\left(X_{1}, \ldots, X_{r}\right) \leftarrow L_{1} \wedge \ldots \wedge L_{m}$, where: (i) the predicate newp is a predicate which does not occur in $P_{0} \cup D e f s_{k}$, and (ii) X_{1}, \ldots, X_{r} are distinct (individual or set) variables occurring in $L_{1} \wedge \ldots \wedge L_{m}$.
Rule R2. Unfolding. Let C be a renamed apart clause in P_{k} of the form: $H \leftarrow G_{1} \wedge L \wedge G_{2}$, where L is either the atom A or the negated atom $\neg A$. Let $H_{1} \leftarrow B_{1}, \ldots, H_{m} \leftarrow B_{m}$, with $m \geq 0$, be all clauses of program P_{k} whose head is unifiable with A and, for $j=1, \ldots, m$, let ϑ_{j} the most general unifier of A and H_{j}. We consider the following two cases.
Case 1: L is A. By unfolding clause C w.r.t. A we derive the new program $P_{k+1}=\left(P_{k}-\{C\}\right) \cup\left\{\left(H \leftarrow G_{1} \wedge B_{1} \wedge G_{2}\right) \vartheta_{1}, \ldots,\left(H \leftarrow G_{1} \wedge B_{m} \wedge G_{2}\right) \vartheta_{m}\right\}$.
In particular, if $m=0$, that is, if we unfold C w.r.t. an atom which is not unifiable with the head of any clause in P_{k}, then we derive the program P_{k+1} by deleting clause C.
Case 2: L is $\neg A$. Assume that: (i) $A=H_{1} \vartheta_{1}=\cdots=H_{m} \vartheta_{m}$, that is, for $j=1, \ldots, m, A$ is an instance of H_{j}, (ii) for $j=1, \ldots, m, H_{j} \leftarrow B_{j}$ has no existential variables, and (iii) $Q_{1} \vee \ldots \vee Q_{r}$, with $r \geq 0$, is the disjunctive normal form of $G_{1} \wedge \neg\left(B_{1} \vartheta_{1} \vee \ldots \vee B_{m} \vartheta_{m}\right) \wedge G_{2}$. By unfolding clause C w.r.t. $\neg A$ we derive the new program $P_{k+1}=\left(P_{k}-\{C\}\right) \cup\left\{C_{1}, \ldots, C_{m}\right\}$, where for $j=1, \ldots, r, C_{j}$ is the clause $H \leftarrow Q_{j}$.
In particular: (i) if $m=0$, that is, A is not unifiable with the head of any clause in P_{k}, then we get the new program P_{k+1} by deleting $\neg A$ from the body of clause C, and (ii) if for some $j \in\{1, \ldots, m\}, B_{j}$ is the empty conjunction, that is, A is an instance of the head of a unit clause in P_{k}, then we derive P_{k+1} by deleting clause C from P_{k}.

Rule R3. Folding. Let $C: H \leftarrow G_{1} \wedge B \vartheta \wedge G_{2}$ be a renamed apart clause in P_{k} and $D:$ Newp $\leftarrow B$ be a clause in $D e f s_{k}$. Suppose that for every existential variable X of D, we have that $X \vartheta$ is a variable which occurs neither
in $\left\{H, G_{1}, G_{2}\right\}$ nor in the term $Y \vartheta$, for any variable Y occurring in B and different from X. By folding clause C using clause D we derive the new program $P_{k+1}=\left(P_{k}-\{C\}\right) \cup\left\{H \leftarrow G_{1} \wedge N e w p \vartheta \wedge G_{2}\right\}$.
Rule R4. Propositional Simplification. Let p be a predicate such that $D e f^{*}\left(p, P_{k}\right)$ is propositional. If $M\left(\operatorname{Def}{ }^{*}\left(p, P_{k}\right)\right) \models p$ then we derive $P_{k+1}=$ $\left(P_{k}-\operatorname{Def}\left(p, P_{k}\right)\right) \cup\{p \leftarrow\}$. If $M\left(\operatorname{Def}^{*}\left(p, P_{k}\right)\right) \models \neg p$ then we derive $P_{k+1}=$ $\left(P_{k}-\operatorname{Def}\left(p, P_{k}\right)\right)$.

Notice that we can check whether or not $M(P) \models p$ holds by applying program transformation techniques [?] and thus, Rule R4 may be viewed as a derived rule.

The transformation rules R1-R4 we have introduced above, are collectively called unfold/fold transformation rules. We have the following correctness result, similar to [?].

Theorem 3. [Correctness of the Unfold/Fold Transformation Rules] Let us assume that during the construction of a transformation sequence P_{0}, \ldots, P_{n}, each clause of $D e f s_{n}$ which is used for folding, is unfolded (before or after its use for folding) w.r.t. an atom whose predicate symbol occurs in P_{0}. Then,

$$
M\left(P_{0} \cup D e f s_{n}\right)=M\left(P_{n}\right)
$$

Notice that the statement obtained from Theorem 3 by replacing 'atom' by 'literal', does not hold [?].

5 The Unfold/Fold Synthesis Method

In this section we present our program synthesis method, called unfold/fold synthesis method, which derives a definite program from any given WS1S formula. We show that the synthesis method terminates for all given formulas and also the derived programs terminate according to the following notion of program termination: a program P terminates for a query Q iff every SLD-derivation of $P \cup\{\leftarrow Q\}$ via any computation rule is finite.

The following is an outline of our unfold/fold synthesis method.

The Unfold/Fold Synthesis Method.

Let φ be a WS1S formula with free variables X_{1}, \ldots, X_{n} and let φ_{τ} be the explicitly typed formula corresponding to φ.
Step 1. We apply the typed Lloyd-Topor transformation and we derive a set $\operatorname{Cls}\left(f, \varphi_{\tau}\right)$ of clauses such that: (i) f is a new n-ary predicate symbol, (ii) NatSet $\cup C l s\left(f, \varphi_{\tau}\right)$ is a stratified program, and (iii) for all ground terms t_{1}, \ldots, t_{n},
(1) $M($ NatSet $) \models \varphi_{\tau}\left\{X_{1} / t_{1}, \ldots, X_{n} / t_{n}\right\}$ iff $M\left(N a t S e t \cup C l s\left(f, \varphi_{\tau}\right)\right) \models f\left(t_{1}, \ldots, t_{n}\right)$
Step 2. We apply the unfold/fold transformation strategy (see below) and from the program NatSet $\cup \operatorname{Cls}\left(f, \varphi_{\tau}\right)$ we derive a definite program TransfP such that, for all ground terms t_{1}, \ldots, t_{n},
(2.1) $M\left(\right.$ NatSet $\left.\cup C l s\left(f, \varphi_{\tau}\right)\right) \models f\left(t_{1}, \ldots, t_{n}\right)$ iff $M(\operatorname{TransfP}) \models f\left(t_{1}, \ldots, t_{n}\right)$;
(2.2) TransfP terminates for the query $f\left(t_{1}, \ldots, t_{n}\right)$.

In order to present the unfold/fold transformation strategy which we use for realizing Step 2 of our synthesis method, we introduce the following notions of regular natset-typed clauses and regular natset-typed definitions.

We say that a literal is linear iff each variable occurs at most once in it. The syntax of regular natset-typed clauses is defined by the following grammar (recall that by N we denote individual variables, by S we denote set variables, and by X, X_{1}, X_{2}, \ldots we denote either individual or set variables):

Head terms: $h::=0|s(N)|[]|[y \mid S]|[\mathrm{n} \mid S]$
Clauses: $\quad C::=p\left(h_{1}, \ldots, h_{k}\right) \leftarrow \mid p_{1}\left(h_{1}, \ldots, h_{k}\right) \leftarrow p_{2}\left(X_{1}, \ldots, X_{m}\right)$
where for every clause C, (i) both $h d(C)$ and $b d(C)$ are linear atoms, and (ii) $\left\{X_{1}, \ldots, X_{m}\right\} \subseteq \operatorname{vars}\left(h_{1}, \ldots, h_{k}\right)$ (that is, C has no existential variables). A regular natset-typed program is a set of regular natset-typed clauses.

The reader may check that the program NatSet presented in Section 3 is a regular natset-typed program. The following properties are straightforward consequences of the definition of regular natset-typed program.

Lemma 1. Let P be a regular natset-typed program. Then:
(i) P terminates for every ground query $p\left(t_{1}, \ldots, t_{n}\right)$ with $n>0$;
(ii) If p is a nullary predicate then $\operatorname{Def}^{*}(p, P)$ is propositional.

The syntax of natset-typed definitions is given by the following grammar:
Individual terms: $n::=0|N| s(n)$
Terms: $\quad t::=n \mid S$
Type atoms: $\quad T::=\operatorname{nat}(N) \mid \operatorname{set}(S)$
Literals: $\quad L::=p\left(t_{1}, \ldots, t_{k}\right) \mid \neg p\left(t_{1}, \ldots, t_{k}\right)$
Definitions: $\quad D::=p\left(X_{1}, \ldots, X_{k}\right) \leftarrow T_{1} \wedge \ldots \wedge T_{r} \wedge L_{1} \wedge \ldots \wedge L_{m}$
where for all definitions $D, \operatorname{vars}(D) \subseteq \operatorname{vars}\left(T_{1} \wedge \ldots \wedge T_{r}\right)$.
A sequence D_{1}, \ldots, D_{s} of natset-typed definitions is said to be a hierarchy iff for $i=1, \ldots, s$ the predicate appearing in $h d\left(D_{i}\right)$ does not occur in $D_{1}, \ldots, D_{i-1}, b d\left(D_{i}\right)$. Notice that in a hierarchy of natset-typed definitions, any predicate occurs in the head of at most one clause.

One can show that given a WS1S formula φ the set $\operatorname{Cls}\left(f, \varphi_{\tau}\right)$ of clauses derived by applying the typed Lloyd-Topor transformation is a hierarchy D_{1}, \ldots, D_{s} of natset-typed definitions and the last clause D_{s} is the one defining f.

The Unfold/Fold Transformation Strategy.

Input: (i) A regular natset-typed program P where for each nullary predicate $p, D e f^{*}(p, \operatorname{Transf} P)$ is either the empty set or the singleton $\{p \leftarrow\}$, and (ii) a hierarchy D_{1}, \ldots, D_{s} of natset-typed definitions such that no predicate occurring in P occurs also in the head of a clause in D_{1}, \ldots, D_{s}.
Output: A regular natset-typed program TransfP such that, for all ground terms t_{1}, \ldots, t_{n},
(2.1) $M\left(P \cup\left\{D_{1}, \ldots, D_{s}\right\}\right) \models f\left(t_{1}, \ldots, t_{n}\right)$ iff $M($ Transf $P) \models f\left(t_{1}, \ldots, t_{n}\right)$;
(2.2) TransfP terminates for the query $f\left(t_{1}, \ldots, t_{n}\right)$.

TransfP $:=P ;$ Defs $:=\emptyset ;$
FOR $i=1, \ldots, s$ DO
Defs $:=$ Defs $\cup\left\{D_{i}\right\} ; \quad$ InDefs $:=\left\{D_{i}\right\} ;$
By the definition rule we derive the program TransfP \cup InDefs.
while InDefs $\neq \emptyset$ DO
(1) Unfolding. From program TransfP $\cup I n D e f s$ we derive Transf $P \cup U$ by: (i) applying the unfolding rule w.r.t. each atom occurring positively in the body of a clause in InDefs, thereby deriving $\operatorname{Transf} P \cup U_{1}$, then (ii) applying the unfolding rule w.r.t. each negative literal occurring in the body of a clause in U_{1}, thereby deriving Transf $P \cup U_{2}$, and, finally, (iii) applying the unfolding rule w.r.t. ground literals until we derive a program $\operatorname{Transf} P \cup U$ such that no ground literal occurs in the body of a clause of U.
(2) Definition-Folding. From program Transf $P \cup U$ we derive Transf $P \cup F \cup$ NewDefs as follows. Initially, NewDefs is the empty set. For each non-unit clause $C: H \leftarrow B$ in U,
(i) we apply the definition rule and we add to NewDefs a clause of the form newp $\left(X_{1}, \ldots, X_{k}\right) \leftarrow B$, where X_{1}, \ldots, X_{k} are the non-existential variables occurring in B, unless a variant clause already occurs in Defs, modulo the head predicate symbol and the order and multiplicity of the literals in the body, and (ii) we replace C by the clause derived by folding C w.r.t. B. The folded clause is an element of F.
No transformation rule is applied to the unit clauses occurring in U and, therefore, also these clauses are elements of F.
(3) TransfP $:=$ TransfP $\cup F ; \quad$ Defs $:=$ Defs \cup NewDefs; InDefs $:=$ NewDefs

END WHILE;

Propositional Simplification. For each predicate p such that $D e f^{*}(p, \operatorname{Transf} P)$ is propositional, we apply the propositional simplification rule and if $M($ TransfP $) \models p$
then TransfP $:=($ TransfP $-\operatorname{Def}(p, \operatorname{Transf} P)) \cup\{p \leftarrow\}$
else TransfP $:=($ TransfP $-\operatorname{Def}(p$, TransfP $))$
END FOR

The reader may verify that if we apply the unfold/fold transformation strategy starting from the program NatSet together with the clauses Cls $\left(\max , \mu_{\tau}\right)$ which we have derived above by applying the typed Lloyd-Topor transformation, we get the following final program:

```
\(\max ([\mathrm{y} \mid S], 0) \leftarrow \operatorname{new} 1(S)\)
\(\max ([\mathrm{y} \mid S], s(N)) \leftarrow \max (S, N)\)
\(\max ([\mathrm{n} \mid S], s(N)) \leftarrow \max (S, N)\)
new1 \(([]) \leftarrow\)
new1 \(([\mathrm{n} \mid S]) \leftarrow\) new \(1(S)\)
```

To understand the first clause, recall that the empty set is represented by any list of the form $[\mathrm{n}, \ldots, \mathrm{n}]$. A more detailed example of application of the unfold/fold transformation strategy will be given later.

In order to prove the correctness and the termination of our unfold/fold transformation strategy we need the following lemmas whose proofs are mutually dependent.

Lemma 2. During the application of the unfold/fold transformation strategy, TransfP is a regular natset-typed program.

Proof. Initially, TransfP is the regular natset-typed program P. Now we assume that TransfP is a regular natset-typed program and we show that after an execution of the body of the FOR statement, TransfP is a regular natset-typed program.

First we prove that after the execution of the While statement, TransfP is a regular natset-typed program. In order to prove this, we show that every new clause E which is added to TransfP at Point (3) of the strategy is a regular natset-typed clause.

Clause E is derived from a clause D of InDefs by unfolding (according to the Unfolding phase) and by folding (according to the Definition-Folding phase). By Lemma 3 D is a natset-typed definition of the form $p\left(X_{1}, \ldots, X_{k}\right) \leftarrow T_{1} \wedge$ $\ldots \wedge T_{r} \wedge L_{1} \wedge \ldots \wedge L_{m}$. By unfolding w.r.t. the type atoms T_{1}, \ldots, T_{r} (according to Point (i) of the Unfolding phase) we get clauses of the form $p\left(h_{1}, \ldots, h_{k}\right) \leftarrow$ $T_{1}^{\prime} \wedge \ldots \wedge T_{r 1}^{\prime} \wedge L_{1}^{\prime} \wedge \ldots \wedge L_{m}^{\prime}$, where: (a) h_{1}, \ldots, h_{k} are head terms, (b) $p\left(h_{1}, \ldots, h_{k}\right)$ is a linear atom (because X_{1}, \ldots, X_{k} are distinct variables), and (c) for $i=$ $1, \ldots, m$, no argument of L_{i}^{\prime} is a variable. By the inductive hypothesis TransfP is a regular natset-typed program and, therefore, by unfolding w.r.t. the literals $L_{1}^{\prime}, \ldots, L_{m}^{\prime}$ (according to Points (ii) and (iii) of the Unfolding phase) we get clauses of the form $D^{\prime}: p\left(h_{1}, \ldots, h_{k}\right) \leftarrow T_{1}^{\prime} \wedge \ldots \wedge T_{r 1}^{\prime} \wedge L_{1}^{\prime \prime} \wedge \ldots \wedge L_{m 1}^{\prime \prime}$. Either D^{\prime} is a unit clause or, by folding according to the Definition-Folding phase, it is replaced by $p\left(h_{1}, \ldots, h_{k}\right) \leftarrow \operatorname{newp}\left(X_{1}, \ldots, X_{m}\right)$ where X_{1}, \ldots, X_{m} are the distinct, non-existential variables occurring in $b d\left(D^{\prime}\right)$. Hence, E is either a unit clause of the form $p\left(h_{1}, \ldots, h_{k}\right) \leftarrow$ or a clause of the form $p\left(h_{1}, \ldots, h_{k}\right) \leftarrow$ $\operatorname{newp}\left(X_{1}, \ldots, X_{m}\right)$, where $\left\{X_{1}, \ldots, X_{m}\right\} \subseteq \operatorname{vars}\left(h_{1}, \ldots, h_{k}\right)$. Thus, E is a regular natset-typed clause.

We conclude the proof by observing that if we apply the propositional simplification rule to a natset-typed program, then we derive a natset-typed program,
because by this rule we can only delete clauses or add natset-typed clauses of the form $p \leftarrow$. Thus, after an execution of the body of the FOR statement, TransfP is a regular natset-typed program.

Lemma 3. During the application of the unfold/fold transformation strategy, InDefs is a set of natset-typed definitions.

Proof. Let us consider the i-th execution of the body of the FOR statement. Initially, InDefs is the singleton set $\left\{D_{i}\right\}$ of natset-typed definitions. Now we assume that InDefs is a set of natset-typed definitions and we prove that, after an execution of the WHILE statement, InDefs is a set of natset-typed definitions. It is enough to show that every new clause E which is added to InDefs at Point (3) of the strategy, is a natset-typed definition. By the Folding phase of the strategy, E is a clause of the form $\operatorname{newp}\left(X_{1}, \ldots, X_{k}\right) \leftarrow B$ where B is the body of a clause derived from a clause D of InDefs by unfolding. By the inductive hypothesis, D is a natset-typed definition of the form $p\left(X_{1}, \ldots, X_{k}\right) \leftarrow$ $T_{1} \wedge \ldots \wedge T_{r} \wedge L_{1} \wedge \ldots \wedge L_{m}$. By unfolding w.r.t. the type atoms T_{1}, \ldots, T_{r} (according to Point (i) of the Unfolding phase) we get clauses of the form D^{\prime} : $p\left(h_{1}, \ldots, h_{k}\right) \leftarrow T_{1}^{\prime} \wedge \ldots \wedge T_{r 1}^{\prime} \wedge L_{1}^{\prime} \wedge \ldots \wedge L_{m}^{\prime}$, where $\operatorname{vars}\left(D^{\prime}\right) \subseteq \operatorname{vars}\left(T_{1}^{\prime} \wedge \ldots \wedge T_{r 1}^{\prime}\right)$. Since, by Lemma 2. TransfP is a regular natset-typed program, by unfolding w.r.t. the literals $L_{1}^{\prime}, \ldots, L_{m}^{\prime}$ (according to Points (ii) and (iii) of the Unfolding phase) we get clauses of the form $D^{\prime \prime}: p\left(h_{1}, \ldots, h_{k}\right) \leftarrow T_{1}^{\prime} \wedge \ldots \wedge T_{r 1}^{\prime} \wedge L_{1}^{\prime \prime} \wedge \ldots \wedge L_{m 1}^{\prime \prime}$ where $\operatorname{vars}\left(D^{\prime \prime}\right) \subseteq \operatorname{vars}\left(T_{1}^{\prime} \wedge \ldots \wedge T_{r 1}^{\prime}\right)$. Thus, E is a natset-typed definition of the form newp $\left(X_{1}, \ldots, X_{k}\right) \leftarrow T_{1}^{\prime} \wedge \ldots \wedge T_{r 1}^{\prime} \wedge L_{1}^{\prime \prime} \wedge \ldots \wedge L_{m 1}^{\prime \prime}$ with $\operatorname{vars}(E) \subseteq$ $\operatorname{vars}\left(T_{1}^{\prime} \wedge \ldots \wedge T_{r 1}^{\prime}\right)$.

We conclude the proof by observing that the Propositional Simplification phase does not change InDefs, and thus, after the execution of the body of the FOR statement, InDefs is a set of natset-typed definitions.

Theorem 4. Let P and D_{1}, \ldots, D_{s} be the input program and the input hierarchy, respectively, of the unfold/fold transformation strategy and let TransfP be the output of the strategy. Then,
(1) TransfP is a natset-typed program;
(2) for every nullary predicate $p, \operatorname{Def}^{*}(p, \operatorname{Transf} P)$ is either \emptyset or $\{p \leftarrow\}$;
(3) for all ground terms t_{1}, \ldots, t_{n},
(3.1) $M\left(P \cup\left\{D_{1}, \ldots, D_{s}\right\}\right) \models f\left(t_{1}, \ldots, t_{n}\right)$ iff $M($ Transf $P) \models f\left(t_{1}, \ldots, t_{n}\right)$;
(3.2) TransfP terminates for the query $f\left(t_{1}, \ldots, t_{n}\right)$.

Proof. Point (1) is a straightforward consequence of Lemma 2,
For Point (2), let us notice that, by Lemma2, at each point of the unfold/fold transformation strategy TransfP is a natset-typed program and therefore, by Lemma for every nullary predicate $p, D e f^{*}(p, \operatorname{Transf} P)$ is propositional. Since the last step of the unfold/fold transformation strategy consists in applying to TransfP the propositional simplification rule for each predicate having a propositional extended definition, $D e f^{*}(p, \operatorname{Transf} P)$ is either \emptyset or $\{p \leftarrow\}$.

Point (3.1) will be proved by using the correctness of the transformation rules w.r.t. the Perfect Model semantics (see Theorem 3). Let us first notice that the unfold/fold transformation strategy generates a transformation sequence (see Section (4), where: the initial program is P, the final program is the final value of TransfP, and the set of clauses introduced by the definition rule R1 is the final value of Defs.

To see that our strategy indeed generates a transformation sequence, let us observe the following facts (A) and (B):
(A) The addition of InDefs to TransfP at the beginning of each execution of the body of the FOR statement is an application of the definition rule. Indeed, for $i=1, \ldots s$, InDefs $=\left\{D_{i}\right\}$ and, by the hypotheses on the input sequence D_{1}, \ldots, D_{s}, we have that the head predicate of D_{i} does not occur in the current value of $P \cup D e f s$.
(B) When we unfold the clauses of U_{1} w.r.t. negative literals, we have that:
(B.1) Condition (i) of Case (2) of the unfolding rule (see Section (4) is satisfied because:
(a) Every clause D of InDefs is a natset-typed definition (see Lemma 3) and, thus, for each variable X occurring in D there is a type atom of the form $a(X)$ in $b d(D)$. Since we unfold the clauses of InDefs w.r.t. all the atoms which occur positively in the bodies of the clauses in InDefs, and in particular, w.r.t. type atoms, every argument of a negative literal in the body of a clause of U_{1} is of one of the following forms: $0, s(n),[],[\mathrm{y} \mid S],[\mathrm{n} \mid S]$.
(b) For each negative literal $\neg p\left(t_{1}, \ldots, t_{k}\right)$ in the body of a clause of U_{1}, the definition of p is a subset of the regular natset-typed program TransfP (see Lemma (2) and, hence, the head of a clause in TransfP is a linear atom of the form $p\left(h_{1}, \ldots, h_{k}\right)$, where h_{1}, \ldots, h_{k} are head terms (see the definition of regular natset-typed clauses above).
From (a) and (b) it follows that if $p\left(t_{1}, \ldots, t_{k}\right)$ is unifiable with $p\left(h_{1}, \ldots, h_{k}\right)$ then $p\left(t_{1}, \ldots, t_{k}\right)$ is an instance of $p\left(h_{1}, \ldots, h_{k}\right)$.
(B.2) Condition (ii) of Case (2) of the unfolding rule is satisfied because TransfP is a regular natset-typed program (see Lemma2) and, thus, no clause in TransfP has existential variables.

Now, the transformation sequence constructed by the unfold/fold transformation strategy satisfies the hypothesis of Theorem 3. Indeed, let us consider a clause D which is used for folding a clause C. Since C has been derived at the end of the Unfolding phase, no ground literal occurs in $b d(C)$ and, thus, there is at least one variable occurring in D. Hence, there is at least one type atom in $b d(D)$, because D is a natset-typed definition (see Lemma 3). Therefore, during an application of the unfold/fold transformation strategy (before or after the use of D for folding), D is unfolded w.r.t. a type atom (see Point (i) of the Unfolding phase). Thus, by Theorem 3] we have that $M(P \cup D e f s)=M($ TransfP $)$, where by Defs and TransfP we indicate the values of these variables at the end of the unfold/fold transformation strategy. Observe that $D e f^{*}(f, P \cup D e f s)=$ $D e f^{*}\left(f, P \cup\left\{D_{1}, \ldots, D_{s}\right\}\right)$ and, therefore, $M\left(P \cup\left\{D_{1}, \ldots, D_{s}\right\}\right) \models f\left(t_{1}, \ldots, t_{n}\right)$ iff $M(P \cup D e f s) \models f\left(t_{1}, \ldots, t_{n}\right)$ iff $M($ TransfP $) \models f\left(t_{1}, \ldots, t_{n}\right)$.

Finally, let us prove Point (3.2). We consider the following two cases:
($n=0$) f is nullary and hence, by Point (2) of this theorem, $D e f^{*}(f$, TransfP $)$ is either \emptyset or $\{f \leftarrow\}$. Thus, TransfP terminates for the query f.
($n>0$) By Point (1) of this theorem, TransfP is a natset-typed program and thus, by Lemma TransfP terminates for the ground query $f\left(t_{1}, \ldots, t_{n}\right)$.

Theorem 5. The unfold/fold transformation strategy terminates.
Proof. We have to show that the while statement in the body of the FOR statement terminates.

Each execution of the Unfolding phase terminates. Indeed, (a) the number of applications of the unfolding rule at Points (i) and (ii) is finite, because InDefs is a finite set of clauses and the body of each clause has a finite number of literals, and (b) at Point (iii) only a finite number of unfolding steps can be applied w.r.t. ground literals, because the program held by TransfP during the Unfolding phase terminates for every ground query. To see this latter fact, let us notice that, by Lemma 2 TransfP is a natset-typed program. Thus, by Lemma 1 TransfP terminates for any ground query $p\left(t_{1}, \ldots, t_{n}\right)$ with $n \geq 1$. For a ground query p, where p is a nullary predicate, TransfP terminates because $D e f^{*}(p, \operatorname{Transf} P)$ is either the empty set or it is the singleton $\{p \leftarrow\}$. Indeed, this follows from our assumptions on the input program and from the execution of the Propositional Simplification phase after completion of the WHILE statement.

Each execution of the Definition-Folding phase terminates because a finite number of clauses are introduced by definition and a finite number of clauses are folded.

Thus, in order to show that the strategy terminates, it is enough to show that after a finite number of executions of the body of the while statement, we get InDefs $=\emptyset$. Let $D e f s_{j}$ and InDefs j_{j} be the values of Defs and InDefs, respectively, at the end of the j-th execution of the body of the while statement. If the WHiLE statement terminates after z executions of its body, then, for all $j>z$, we define $D e f s_{j}$ to be $D e f s_{z}$ and $I n D e f s_{j}$ to be \emptyset. We have that, for any $j \geq 1$, InDefs $_{j}=\emptyset$ iff Defs $_{j-1}=$ Defs $_{j}$. Since for all $j \geq 1, D e f s_{j-1} \subseteq$ Defs $_{j}$, the termination of the strategy will follow from the following property:

$$
\text { there exists } \left.K>0 \text { such that, for all } j \geq 1, \mid \text { Defs }_{j} \mid \leq K \quad \quad^{*}\right)
$$

Let $\operatorname{TransfP}_{0}$, Defs $_{0}$, and InDefs $_{0}\left(\subseteq\right.$ Defs $\left._{0}\right)$ be the values of TransfP, Defs, and InDefs, respectively, at the beginning of the execution of the WHILE statement. By Lemma 3, for all $j \geq 1$, Defs $_{j}$ is a set of natset-typed definitions. Property (*) follows from the fact that, for all $D \in \operatorname{Defs}_{j}$, the following holds:
(a) every predicate occurring in $b d(D)$ also occurs in Transf $P_{0} \cup \operatorname{InDefs} s_{0}$;
(b) for every literal L occurring in $b d(D)$,
$h e i g h t(L) \leq \max \left\{\operatorname{height}(M) \mid M\right.$ is a literal in the body of a clause in $\left.\operatorname{Defs} s_{0}\right\}$ where the height of a literal is defined as the length of the maximal path from the root to a leaf of the literal considered as a tree;
(c) $|\operatorname{vars}(D)| \leq \max \left\{\operatorname{vars}\left(D^{\prime}\right) \mid D^{\prime}\right.$ is a clause in $\left.\operatorname{Defs}_{0}\right\}$;
(d) no two clauses in Defs j_{j} can be made equal by one or more applications of the following transformations: renaming of variables, renaming of head predicates,
rearrangement of the order of the literals in the body, and deletion of duplicate literals.
Recall that $b d(D)$ is equal to $b d\left(E^{\prime}\right)$ where E^{\prime} is derived by unfolding (according to the Unfolding phase of the strategy) a clause E in $\operatorname{Transf} P_{0} \cup$ InDefs ${ }_{j}$ and E belongs to InDefs $_{j}$.
Now Property (a) is a straightforward consequence of the definition of the unfolding rule.
Property (b) can be shown as follows. E is of the form newp $\left(X_{1}, \ldots, X_{k}\right) \leftarrow T_{1} \wedge$ $\ldots \wedge T_{r} \wedge L_{1} \wedge \ldots \wedge L_{m}$. By unfolding w.r.t. the type atoms T_{1}, \ldots, T_{r} (according to Point (i) of the Unfolding phase) we get clauses of the form newp $\left(h_{1}, \ldots, h_{k}\right) \leftarrow$ $T_{1}^{\prime} \wedge \ldots \wedge T_{r 1}^{\prime} \wedge L_{1}^{\prime} \wedge \ldots \wedge L_{m}^{\prime}$, where h_{1}, \ldots, h_{k} are head terms and, for all $i \in\{1, \ldots, m\}$, height $\left(L_{i}^{\prime}\right) \leq \operatorname{height}\left(L_{i}\right)+1$. By Lemma2 Transf P_{0} is a regular natset-typed program and, therefore, by unfolding w.r.t. the literals $L_{1}^{\prime}, \ldots, L_{m}^{\prime}$ (according to Point (ii) of the Unfolding phase) we get clauses of the form newp $\left(h_{1}, \ldots, h_{k}\right) \leftarrow T_{1}^{\prime} \wedge \ldots \wedge T_{r 1}^{\prime} \wedge L_{1}^{\prime \prime} \wedge \ldots \wedge L_{m 1}^{\prime \prime}$, where for all $i \in\{1, \ldots, m 1\}$, there exists $i 1 \in\{1, \ldots, m\}$, such that height $\left(L_{i}^{\prime \prime}\right)=\operatorname{height}\left(L_{i 1}^{\prime}\right)-1$. Thus, Property (b) follows from the fact that E^{\prime} is derived by unfolding w.r.t. ground literals from a clause of the form $\operatorname{newp}\left(h_{1}, \ldots, h_{k}\right) \leftarrow T_{1}^{\prime} \wedge \ldots \wedge T_{r 1}^{\prime} \wedge L_{1}^{\prime \prime} \wedge \ldots \wedge L_{m 1}^{\prime \prime}$ and every unfolding w.r.t. a ground literal does not increase the height of the other literals in a clause.
Property (c) follows from Lemma 2 and the fact that by unfolding a clause E using regular natset-typed clauses we get clauses E^{\prime} where $\operatorname{vars}\left(E^{\prime}\right) \subseteq \operatorname{vars}(E)$. To see this, recall that in a regular natset-typed clause C every term has at most one variable and $\operatorname{vars}(b d(C)) \subseteq \operatorname{vars}(h d(C))$ and, thus, by unfolding, a variable is replaced by a term with at most one variable and no new variables are introduced.
Finally, Point (d) is a consequence of Point (i) of the Definition-Folding phase of the unfold/fold strategy.

6 Deciding WS1S via the Unfold/Fold Proof Method

In this section we show that if we start from a closed WS1S formula φ, our synthesis method can be used for checking whether or not $\mathcal{N} \models \varphi$ holds and, thus, our synthesis method works also as a proof method which is a decision procedure for closed WS1S formulas.

If φ is a closed WS1S formula then the predicate f introduced when constructing the set $C l s\left(f, \varphi_{\tau}\right)$, is a nullary predicate. Let TransfP be the program derived by the unfold/fold transformation strategy starting from the program NatSet $\cup C l s\left(f, \varphi_{\tau}\right)$. As already known from Point (2) of Theorem 4 we have that $\operatorname{Def}^{*}(f, \operatorname{Transf} P)$ is either the empty set or the singleton $\{f \leftarrow\}$. Thus, we can decide whether or not $\mathcal{N} \models \varphi$ holds by checking whether or not $f \leftarrow$ belongs to TransfP. Since the unfold/fold transformation strategy always terminates, we have that our unfold/fold synthesis method is indeed a decision procedure for closed WS1S formulas. We summarize our proof method as follows.

The Unfold/Fold Proof Method.

Let φ be a closed WS1S formula.
Step 1. We apply the typed Lloyd-Topor transformation and we derive the set $C l s\left(f, \varphi_{\tau}\right)$ of clauses.
Step 2. We apply the unfold/fold transformation strategy and from the program NatSet $\cup C l s\left(f, \varphi_{\tau}\right)$ we derive a definite program TransfP.
If the unit clause $f \leftarrow$ belongs to TransfP then $\mathcal{N} \models \varphi$ else $\mathcal{N} \models \neg \varphi$.
Now we present a simple example of application of our unfold/fold proof method.

Example 1. (An application of the unfold/fold proof method.) Let us consider the closed WS1S formula $\varphi: \forall X \exists Y X \leq Y$. By applying the typed Lloyd-Topor transformation starting from the statement $f \leftarrow \varphi$, we get the following set of clauses $C l s\left(f, \varphi_{\tau}\right)$:

1. $h(X) \leftarrow \operatorname{nat}(X) \wedge \operatorname{nat}(Y) \wedge X \leq Y$
2. $g \leftarrow \operatorname{nat}(X) \wedge \neg h(X)$
3. $f \leftarrow \neg g$

Now we apply the unfold/fold transformation strategy to the program NatSet and the following hierarchy of natset-typed definitions: clause 1, clause 2, clause 3. Initially, the program TransfP is NatSet. The transformation strategy proceeds left-to-right over that hierarchy.
(1) Defs and InDefs are both set to \{clause 1\}.
(1.1) Unfolding. By unfolding, from clause 1 we get:
4. $h(0) \leftarrow$
5. $h(0) \leftarrow \operatorname{nat}(Y)$
6. $h(s(X)) \leftarrow \operatorname{nat}(X) \wedge \operatorname{nat}(Y) \wedge X \leq Y$
(1.2) Definition-Folding. In order to fold the body of clause 5 we introduce the following new clause:
7. new $1 \leftarrow \operatorname{nat}(Y)$

Clause 6 can be folded by using clause 1 . By folding clauses 5 and 6 we get:
8. $h(0) \leftarrow$ new 1
9. $h(s(X)) \leftarrow h(X)$
(1.3) At this point TransfP $=$ NatSet $\cup\{$ clause 4, clause 8, clause 9\}, Defs $=$ \{clause 1, clause 7\}, and InDefs $=\{$ clause 7$\}$.
(1.4) By first unfolding clause 7 and then folding using clause 7 itself, we get:
10. new $1 \leftarrow$
11. new $1 \leftarrow$ new 1

No new clause is introduced (i.e., NewDefs $=\emptyset$). At this point TransfP $=$ NatSet \cup \{clause 4, clause 8, clause 9, clause 10, clause 11\}, Defs $=\{$ clause 3, clause 7$\}$, and InDefs $=\emptyset$. Thus, the while statement terminates.
Since $D e f^{*}($ new 1, TransfP $)$ is propositional and $M($ TransfP $) \models$ new 1 , by the propositional simplification rule we have:

TransfP $=$ NatSet $\cup\{$ clause 4, clause 8, clause 9, clause 10$\}$.
(2) Defs is set to \{clause 1, clause 2, clause 7$\}$ and InDefs is set to \{clause 2$\}$.
(2.1) Unfolding. By unfolding, from clause 2 we get:
12. $g \leftarrow \operatorname{nat}(X) \wedge \neg h(X)$
(Notice that, by unfolding, clause $g \leftarrow \neg h(0)$ is deleted.)
(2.2) Definition-Folding. Clause 12 can be folded by using clause 2 which occurs in Defs. Thus, no new clause is introduced (i.e., NewDefs $=\emptyset$) and by folding we get:
13. $g \leftarrow g$
(2.3) At this point TransfP $=$ NatSet $\cup\{$ clause 4, clause 8, clause 9, clause 10, clause 13$\},$ Defs $=\{$ clause 1, clause 2, clause 7$\}$, and InDefs $=\emptyset$. Thus, the while statement terminates.
Since $\operatorname{Def}{ }^{*}(g, \operatorname{Transf} P)$ is propositional and $M(\operatorname{TransfP}) \vDash \neg g$, by the propositional simplification rule we delete clause 13 from $\operatorname{TransfP}$ and we have:

TransfP $=$ NatSet $\cup\{$ clause 4, clause 8, clause 9, clause 10$\}$.
(3) Defs is set to \{clause 1, clause 2, clause 3, clause 7\} and InDefs is set to \{clause 3 \}.
(3.1) Unfolding. By unfolding clause 3 we get:
14. $f \leftarrow$
(Recall that, there is no clause in TransfP with head g.)
(3.2) Definition-Folding. No transformation steps are performed on clause 14 because it is a unit clause.
(3.3) At this point TransfP $=$ NatSet $\cup\{$ clause 4, clause 8, clause 9, clause 10, clause 14$\},$ Defs $=\{$ clause 1, clause 2, clause 3, clause 7$\}$, and InDefs $=\emptyset$.
The transformation strategy terminates and, since the final program TransfP includes the unit clause $f \leftarrow$, we have proved that $\mathcal{N} \models \forall X \exists Y X \leq Y$.

We would like to notice that neither SLDNF nor Tabled Resolution (as implemented in the XSB system [?]) are able to construct a refutation of NatSet \cup $C l s\left(f, \varphi_{\tau}\right) \cup\{\leftarrow f\}$ (and thus construct a proof of φ), where φ is the WS1S formula $\forall X \exists Y X \leq Y$. Indeed, from the goal $\leftarrow f$ we generate the goal $\leftarrow \neg g$, and neither SLDNF nor Tabled Resolution are able to infer that $\leftarrow \neg g$ succeeds by detecting that $\leftarrow g$ generates an infinite set of failed derivations.

We would like to mention that some other transformations could be applied for enhancing our unfold/fold transformation strategy. In particular, during the strategy we may apply the subsumption rule to shorten the transformation process by deleting some useless clauses. For instance, in Example 1 we can delete clause 5 which is subsumed by clause 4 , thereby avoiding the introduction of the new predicate new1. In some other cases we can drop unnecessary type atoms. For instance, in Example 1 in clause 1 the type atom nat (X) can be dropped because it is implied by the atom $X \leq Y$. The program derived at the end of the execution of the WHILE statement of the unfold/fold transformation strategy are nondeterministic, in the sense that an atom with non-variable arguments may be
unifiable with the head of several clauses. We can apply the technique for deriving deterministic program presented in [?] for deriving deterministic programs and thus, obtaining smaller programs.

When the unfold/fold transformation strategy is used for program synthesis, it is often the case that the above mentioned transformations also improve the efficiency of the derived programs.

Finally, we would like to notice that the unfold/fold transformation strategy can be applied starting from a program $P \cup C l s\left(f, \varphi_{\tau}\right)$ (instead of NatSet \cup $C l s\left(f, \varphi_{\tau}\right)$) where: (i) P is the output of a previous application of the strategy, and (ii) φ is a formula built like a WS1S formula, except that it uses predicates occurring in P (besides \leq and \in). Thus, we can synthesize programs (or construct proofs) in a compositional way, by first synthesizing programs for subformulas. We will follow this compositional methodology in the example of the following Section 7

7 An Application to the Verification of Infinite State Systems: the Dynamic Bakery Protocol

In this section we present an example of verification of a safety property of an infinite state system by considering CLP(WS1S) programs [?]. As already mentioned, by applying our unfold/fold synthesis method we will then translate CLP(WS1S) programs into logic programs.

The syntax of CLP(WS1S) programs is defined as follows. We consider a set of user-defined predicate symbols. A CLP(WS1S) clause is of the form $A \leftarrow \varphi \wedge G$, where A is an atom, φ is a formula of WS1S, G is a goal, and the predicates occurring in A or in G are all user-defined. A CLP(WS1S) program is a set of CLP(WS1S) clauses. We assume that CLP(WS1S) programs are stratified.

Given a CLP(WS1S) program P, we define the semantics of P to be its perfect model, denoted $M(P)$ (here we extend to CLP(WS1S) programs the definitions which are given for normal logic programs in [?]).

Our example concerns the Dynamic Bakery protocol, called DBakery for short, and we prove that it ensures mutual exclusion in a system of processes which share a common resource, even if the number of processes in the system changes during a protocol run in a dynamic way. The DBakery protocol is a variant of the N-process Bakery protocol [?].

In order to give the formal specifications of the DBakery protocol and its mutual exclusion property, we will use CLP(WS1S) as we now indicate. The transition relation between pairs of system states, the initial system state, and the system states which are unsafe (that is, the system states where more than one process uses the shared resource) are specified by WS1S formulas. However, in order to specify the mutual exclusion property we cannot use WS1S formulas only. Indeed, mutual exclusion is a reachability property which is undecidable in the case of infinite state systems. The approach we follow in this example is to specify reachability (and, thus, mutual exclusion) as a CLP(WS1S) program (see the program $P_{\text {DBakery }}$ below).

Let us first describe the DBakery protocol. We assume that every process is associated with a natural number, called a counter, and two distinct processes have distinct counters. At each instant in time, the system of processes is represented by a pair $\langle W, U\rangle$, called a system state, where W is the set of the counters of the processes waiting for the resource, and U is the set of the counters of the processes using the resource.

A system state $\langle W, U\rangle$ is initial iff $W \cup U$ is the empty set.
The transition relation from a system state $\langle W, U\rangle$ to a new system state $\left\langle W^{\prime}, U^{\prime}\right\rangle$ is the union of the following three relations:
(T1: creation of a process)
if $W \cup U$ is empty then $\left\langle W^{\prime}, U^{\prime}\right\rangle=\langle\{0\}, \emptyset\rangle$ else $\left\langle W^{\prime}, U^{\prime}\right\rangle=\langle W \cup\{m+1\}, U\rangle$, where m is the maximum counter in $W \cup U$,
(T2: use of the resource)
if there exists a counter n in W which is the minimum counter in $W \cup U$
then $\left\langle W^{\prime}, U^{\prime}\right\rangle=\langle W-\{n\}, U \cup\{n\}\rangle$,
(T3: release of the resource)
if there exists a counter n in U then $\left\langle W^{\prime}, U^{\prime}\right\rangle=\langle W, U-\{n\}\rangle$.
The mutual exclusion property holds iff from the initial system state it is not possible to reach a system state $\langle W, U\rangle$ which is unsafe, that is, such that U is a set of at least two counters.

Let us now give the formal specification of the DBakery protocol and its mutual exclusion property. We first introduce the following WS1S formulas (between parentheses we indicate their meaning):

$$
\operatorname{empty}(X) \equiv \neg \exists x x \in X
$$

(the set X is empty)
$\max (X, m) \equiv m \in X \wedge \forall x(x \in X \rightarrow x \leq m)$
(m is the maximum in the set X)
$\min (X, m) \equiv m \in X \wedge \forall x(x \in X \rightarrow m \leq x)$
(m is the minimum in the set X)
(Here and in what follows, for reasons of readability, we allow ourselves to use lower case letters for individual variables of WS1S formulas.)
A system state $\langle W, U\rangle$ is initial iff $\mathcal{N} \models \operatorname{init}(\langle W, U\rangle)$, where:

$$
\operatorname{init}(\langle W, U\rangle) \equiv \operatorname{empty}(W) \wedge \operatorname{empty}(U)
$$

The transition relation R between system states is defined as follows:
$\left\langle\langle W, U\rangle,\left\langle W^{\prime}, U^{\prime}\right\rangle\right\rangle \in R$ iff
$\mathcal{N} \models \operatorname{cre}\left(\langle W, U\rangle,\left\langle W^{\prime}, U^{\prime}\right\rangle\right) \vee \operatorname{use}\left(\langle W, U\rangle,\left\langle W^{\prime}, U^{\prime}\right\rangle\right) \vee \operatorname{rel}\left(\langle W, U\rangle,\left\langle W^{\prime}, U^{\prime}\right\rangle\right)$
where the predicates cre, use, and rel define the transition relations T1, T2, and T3, respectively. We have that:

$$
\begin{aligned}
& \operatorname{cre}\left(\langle W, U\rangle,\left\langle W^{\prime}, U^{\prime}\right\rangle\right) \equiv \equiv U^{\prime}=U \wedge \exists Z(Z=W \cup U \wedge \\
&\left(\left(\operatorname{empty}(Z) \wedge W^{\prime}=\{0\}\right) \vee\right. \\
&\left.\left.\left.\left(\neg \operatorname{empty}(Z) \wedge \exists \operatorname{minax}(Z, m) \wedge W^{\prime}=W \cup\{s(m)\}\right)\right)\right)\right) \\
& \operatorname{use}\left(\langle W, U\rangle,\left\langle W^{\prime}, U^{\prime}\right\rangle\right) \equiv \exists n(n \in W \wedge \exists Z(Z=W \cup U \wedge \min (Z, n)) \wedge \\
&\left.W^{\prime}=W-\{n\} \wedge U^{\prime}=U \cup\{n\}\right) \\
& \operatorname{rel}\left(\langle W, U\rangle,\left\langle W^{\prime}, U^{\prime}\right\rangle\right) \equiv W^{\prime}=W \wedge \exists n\left(n \in U \wedge U^{\prime}=U-\{n\}\right)
\end{aligned}
$$

where the subformulas involving the set union (\cup), set difference $(-)$, and set equality ($=$) operators can be expressed as WS1S formulas.

Mutual exclusion holds in a system state $\langle W, U\rangle$ iff $\mathcal{N} \models \neg$ unsafe $(\langle W, U\rangle)$, where unsafe $(\langle W, U\rangle) \equiv \exists n_{1} \exists n_{2}\left(n_{1} \in U \wedge n_{2} \in U \wedge \neg\left(n_{1}=n_{2}\right)\right)$, i.e., a system state $\langle W, U\rangle$ is unsafe iff there exist at least two distinct counters in U.

Now we will specify the system states reached from a given initial system state by introducing the CLP(WS1S) program $P_{\text {DBakery }}$ consisting of the following clauses:

$$
\begin{aligned}
& \operatorname{reach}(S) \leftarrow \operatorname{init}(S) \\
& \operatorname{reach}(S 1) \leftarrow \operatorname{cre}(S, S 1) \wedge \operatorname{reach}(S) \\
& \operatorname{reach}(S 1) \leftarrow \operatorname{use}(S, S 1) \wedge \operatorname{reach}(S) \\
& \operatorname{reach}(S 1) \leftarrow \operatorname{rel}(S, S 1) \wedge \operatorname{reach}(S)
\end{aligned}
$$

where $\operatorname{init}(S), \operatorname{cre}(S, S 1)$, use $(S, S 1)$, and $\operatorname{rel}(S, S 1)$ are the WS1S formulas listed above.

From $P_{D \text { Bakery }}$ we derive a definite program $P_{D B a k e r y}^{\prime}$ by replacing the WS1S formulas occurring in $P_{D B a k e r y}$ by the corresponding atoms $\operatorname{init}(S)$, cre $(S, S 1)$, use $(S, S 1)$, and $\operatorname{rel}(S, S 1)$, and by adding to the program the clauses (not listed here) defining these atoms, which are derived from the corresponding WS1S formulas listed above, by applying the unfold/fold synthesis method (see Section5). Let us call these clauses Init, Cre, Use, and Rel, respectively.

In order to verify that the DBakery protocol ensures mutual exclusion for every system of processes whose number dynamically changes over time, we have to prove that for every ground term s denoting a finite set of counters, $\operatorname{ur}(s) \notin M\left(P_{\text {DBakery }}^{\prime} \cup\{\right.$ clause 1$\left.\}\right)$, where clause 1 is the following clause which we introduce by the definition rule:

1. $\operatorname{ur}(S) \leftarrow \operatorname{unsafe}(S) \wedge \operatorname{reach}(S)$
and unsafe (S) is defined by a set, called Unsafe, of clauses which are derived from the corresponding WS1S formula by using the unfold/fold synthesis method.

In order to verify the mutual exclusion property for the DBakery protocol it is enough to show that $P_{D \text { Bakery }}^{\prime} \cup\{$ clause 1\} can be transformed into a new definite program without clauses for $u r(S)$. This transformation can be done, as we now illustrate, by a straightforward adaptation of the proof technique presented for Constraint Logic Programs in [?]. In particular, before performing folding steps, we will add suitable atoms in the bodies of the clauses to be folded.

We start off this verification by unfolding clause 1 w.r.t. the atom reach. We obtain the following clauses:
2. $\operatorname{ur}(S) \leftarrow \operatorname{unsafe}(S) \wedge \operatorname{init}(S)$

$$
\begin{aligned}
& \text { 3. } \operatorname{ur}(S 1) \leftarrow \operatorname{unsafe}(S 1) \wedge \operatorname{cre}(S, S 1) \wedge \operatorname{reach}(S) \\
& \text { 4. } \operatorname{ur}(S 1) \leftarrow \operatorname{unsafe}(S 1) \wedge \operatorname{use}(S, S 1) \wedge \operatorname{reach}(S) \\
& \text { 5. } \operatorname{ur}(S 1) \leftarrow \operatorname{unsafe}(S 1) \wedge \operatorname{rel}(S, S 1) \wedge \operatorname{reach}(S)
\end{aligned}
$$

Now we can remove clause 2 because

$$
M(\text { Unsafe } \cup \operatorname{Init}) \models \neg \exists S(\text { unsafe }(S) \wedge \operatorname{init}(S)) .
$$

The proof of this facts and the proofs of the other facts we state below, are performed by applying the unfold/fold proof method of Section . Then, we fold $^{\text {S }}$ clauses 3 and 5 by using the definition clause 1 and we obtain:
6. $\operatorname{ur}(S 1) \leftarrow \operatorname{unsafe}(S 1) \wedge \operatorname{cre}(S, S 1) \wedge \operatorname{ur}(S)$
7. $\operatorname{ur}(S 1) \leftarrow \operatorname{unsafe}(S 1) \wedge \operatorname{rel}(S, S 1) \wedge \operatorname{ur}(S)$

Notice that this application of the folding rule is justified by the following two facts:

$$
\begin{aligned}
& M(\text { Unsafe } \cup C r e) ~ \\
& M \forall S \forall S 1(\text { unsafe }(S 1) \wedge \operatorname{cre}(S, S 1) \rightarrow \text { unsafe }(S)) \\
& M(\text { Unsafe } \cup \operatorname{Rel})
\end{aligned} \models \forall S \forall S 1(\text { unsafe }(S 1) \wedge \operatorname{rel}(S, S 1) \rightarrow \text { unsafe }(S)) \text {) }
$$

so that, before folding, we can add the atom unsafe (S) to the bodies of clauses 3 and 5. Now, since $M($ Unsafe $\cup U s e) \models \neg \forall S \forall S 1($ unsafe $(S 1) \wedge$ use $(S, S 1) \rightarrow$ unsafe (S)), clause 4 cannot be folded using the definition clause 1 . Thus, we introduce the new definition clause:
8. $p 1(S) \leftarrow c(S) \wedge \operatorname{reach}(S)$
where $c(\langle W, U\rangle) \equiv \exists n(n \in W \wedge \exists Z(Z=W \cup U \wedge \min (Z, n))) \wedge \neg \operatorname{empty}(U)$ which means that: in the system state $\langle W, U\rangle$ there is at least one process which uses the resource and there exists a process waiting for the resource with counter n which is the minimum counter in $W \cup U$.

Notice that, by applying the unfold/fold synthesis method, we may derive a set, called Busy (not listed here), of definite clauses which define $c(S)$.
By using clause 8 we fold clause 4 , and we obtain:
9. $\operatorname{ur}(S 1) \leftarrow \operatorname{unsafe}(S 1) \wedge u s e(S, S 1) \wedge p 1(S)$

We proceed by applying the unfolding rule to the newly introduced clause 8 , thereby obtaining:

$$
\begin{aligned}
& \text { 10. } p 1(S) \leftarrow c(S) \wedge \operatorname{init}(S) \\
& \text { 11. } p 1(S 1) \leftarrow c(S 1) \wedge \operatorname{cre}(S, S 1) \wedge \operatorname{reach}(S) \\
& \text { 12. } p 1(S 1) \leftarrow c(S 1) \wedge u s e(S, S 1) \wedge \operatorname{reach}(S) \\
& \text { 13. } p 1(S 1) \leftarrow c(S 1) \wedge \operatorname{rel}(S, S 1) \wedge \operatorname{reach}(S)
\end{aligned}
$$

Clauses 10 and 12 are removed, because

$$
\begin{aligned}
& M(B u s y \cup \operatorname{Init}) \models \neg \exists S(c(S) \wedge \operatorname{init}(S)) \\
& M(B u s y \cup U s e) \models \neg \exists S \exists S 1(c(S 1) \wedge u s e(S, S 1))
\end{aligned}
$$

We fold clauses 11 and 13 by using the definition clauses 8 and 1 , respectively, thereby obtaining:

$$
\begin{aligned}
& \text { 14. } p 1(S 1) \leftarrow c(S 1) \wedge \operatorname{cre}(S, S 1) \wedge p 1(S) \\
& \text { 15. } p 1(S 1) \leftarrow c(S 1) \wedge \operatorname{rel}(S, S 1) \wedge u r(S)
\end{aligned}
$$

Notice that this application of the folding rule is justified by the following two facts:

$$
\begin{aligned}
& M(B u s y \cup C r e) \models \forall S \forall S 1((c(S 1) \wedge \operatorname{cre}(S, S 1)) \rightarrow c(S)) \\
& M(B u s y \cup R e l) \models \forall S \forall S 1((c(S 1) \wedge \operatorname{rel}(S, S 1)) \rightarrow \operatorname{unsafe}(S))
\end{aligned}
$$

Thus, starting from program $P_{D B a k e r y}^{\prime} \cup\{$ clause 1$\}$ we have derived a new program Q consisting of clauses $6,7,14$, and 15 . Since all clauses in $D e f^{*}(u r, Q)$ are recursive, we have that for every ground term s denoting a finite set of counters, $\operatorname{ur}(s) \notin M(Q)$ and by the correctness of the transformation rules [?], we conclude that mutual exclusion holds for the DBakery protocol.

8 Related Work and Conclusions

We have proposed an automatic synthesis method based on unfold/fold program transformations for translating CLP(WS1S) programs into normal logic programs. This method can be used for avoiding the use of ad-hoc solvers for WS1S constraints when constructing proofs of properties of infinite state multiprocess systems.

Our synthesis method follows the general approach presented in [?] and it terminates for any given WS1S formula. No such termination result was given in [?]. In this paper we have also shown that, when we start from a closed WS1S formula φ, our synthesis strategy produces a program which is either (i) a unit clause of the form $f \leftarrow$, where f is a nullary predicate equivalent to the formula φ, or (ii) the empty program. Since in case (i) φ is true and in case (ii) φ is false, our strategy is also a decision procedure for closed WS1S formulas. This result extends [?] which presents a decision procedure based on the unfold/fold proof method for the clausal fragment of the WSkS theory, i.e., the fragment dealing with universally quantified disjunctions of conjunctions of literals.

Some related methods based on program transformation have been recently proposed for the verification of infinite state systems [?,?]. However, as it is shown by the example of Section [7 an important feature of our verification method is that the number of processes involved in the protocol may change over time and other methods find it problematic to deal with such dynamic changes. In particular, the techniques presented in [?] for verifying safety properties of parametrized systems deal with reactive systems where the number of processes is a parameter which does not change over time.

Our method is also related to a number of other methods which use logic programming and, more generally, constraint logic programming for the verification of reactive systems (see, for instance, [?,?,?,?] and [?] for a survey). The main novelty of our approach w.r.t. these methods is that it combines logic programming and monadic second order logic, thereby modelling in a very direct way systems with an unbounded (and possibly variable) number of processes.

Our unfold/fold synthesis method and our unfold/fold proof method have been implemented by using the MAP transformation system [?]. Our implementation is reasonably efficient for WS1S formulas of small size (see the example formulas of Section (7). However, our main concern in the implementation was not efficiency and our system should not be compared with ad-hoc, well-established theorem provers for WS1S formulas based on automata theory, like the MONA
system [?]. Nevertheless, we believe that our technique has its novelty and deserves to be developed because, being based on unfold/fold rules, it can easily be combined with other techniques for program derivation, specialization, synthesis, and verification, which are also based on unfold/fold transformations.

