arXiv:cs/0311043v1 [cs.PL] 27 Nov 2003

Combining Logic Programs and
Monadic Second Order Logics
by Program Transformation

Fabio Fioravanti', Alberto Pettorossi?, Maurizio Proietti*

(1) IASI-CNR, Viale Manzoni 30, I-00185 Roma, Italy
2) DISP, University of Roma Tor Vergata, I-00133 Roma, Ital
Yy g Yy

{fioravanti,adp,proietti}@iasi.rm.cnr.it

Abstract We present a program synthesis method based on unfold/fold
transformation rules which can be used for deriving terminating definite
logic programs from formulas of the Weak Monadic Second Order theory
of one successor (WS1S). This synthesis method can also be used as a
proof method which is a decision procedure for closed formulas of WS1S.
We apply our synthesis method for translating CLP(WS1S) programs
into logic programs and we use it also as a proof method for verifying
safety properties of infinite state systems.

1 Introduction

The Weak Monadic Second Order theories of k successors (WSkS) are theories
of the second order predicate logic which express properties of finite sets of finite
strings over a k-symbol alphabet (see [?] for a survey). Their importance relies
on the fact that they are among the most expressive theories of predicate logic
which are decidable. These decidability results were proved in the 1960’s [?,7],
but they were considered as purely theoretical results, due to the very high
complexity of the automata-based decision procedures.

In recent years, however, it has been shown that some Monadic Second Order
theories can, in fact, be decided by using ad-hoc, efficient techniques, such as
BDD’s and algorithms for finite state automata. In particular, the MONA system
implements these techniques for the WS1S and WS2S theories [?].

The MONA system has been used for the verification of several non-trivial
finite state systems [?,7]. However, the Monadic Second Order theories alone
are not, expressive enough to deal with properties of infinite state systems and,
thus, for the verification of such systems alternative techniques have been used,
such as those based on the embedding of the Monadic Second Order theories
into more powerful logical frameworks (see, for instance, [?]).

In a previous paper of ours [?] we proposed a verification method for infinite
state systems based on CLP(WSkS), which is a constraint logic programming
language resulting from the embedding of WSkS into logic programs. In order
to perform proofs of properties of infinite state systems in an automatic way
according to the approach we have proposed, we need a system for constraint

http://arxiv.org/abs/cs/0311043v1

logic programming which uses a solver for WSkS formulas and, unfortunately,
no such system is available yet.

In order to overcome this difficulty, in this paper we propose a method for
translating CLP(WS1S) programs into logic programs. This translation is per-
formed by a two step program synthesis method which produces terminating
definite logic programs from WS1S formulas. Step 1 of our synthesis method
consists in deriving a normal logic program from a WSI1S formula, and it is
based on a variant of the Lloyd-Topor transformation [?]. Step 2 consists in
applying an unfold/fold transformation strategy to the normal logic program
derived at the end of Step 1, thereby deriving a terminating definite logic pro-
gram. Our synthesis method follows the general approach presented in [?,7?].
We leave it for future research the translation into logic programs starting from
general CLP(WSkS) programs.

The specific contributions of this paper are the following ones.

(1) We provide a synthesis strategy which is guaranteed to terminate for any
given WS1S formula.

(2) We prove that, when we start from a closed WS1S formula ¢, our synthesis
strategy produces a program which is either (i) a unit clause of the form f «,
where f is a nullary predicate equivalent to the formula ¢, or (ii) the empty
program. Since in case (i) ¢ is true and in case (ii) ¢ is false, our strategy is also
a decision procedure for WS1S formulas.

(3) We show through a non-trivial example, that our verification method
based on CLP(WS1S) programs is useful for verifying properties of infinite state
transition systems. In particular, we prove the safety property of a mutual ex-
clusion protocol for a set of processes whose cardinality may change over time.
Our verification method requires: (i) the encoding into WS1S formulas of both
the transition relation and the elementary properties of the states of a transition
system, and (ii) the encoding into a CLP(WS1S) program of the safety property
under consideration. Here we perform our verification task by translating the
CLP(WSI1S) program into a definite logic program, thereby avoiding the use of
a solver for WS1S formulas. The verification of the safety property has been
performed by using a prototype tool built on top of the MAP transformation
system [?].

2 The Weak Monadic Second Order Theory of One
Successor

We will consider a first order presentation of the Weak Monadic Second Order
theory of one successor (WS1S). This first order presentation consists in writing
formulas of the form n € S, where € is a first order predicate symbol (to be
interpreted as membership of a natural number to a finite set of natural num-
bers), instead of formulas of the form S(n), where S is a predicate variable (to
be interpreted as ranging over finite sets of natural numbers).

We use a typed first order language, with the following two types: nat, de-
noting the set of natural numbers, and set, denoting the set of the finite sets of

natural numbers (for a brief presentation of the typed first order logic the reader
may look at [?]). The alphabet of WS1S consists of: (i) a set fvars of individual
variables N, N1, Na,... of type nat, (ii) a set Svars of set variables S, S1, Sa, ...
of type set, (iii) the nullary function symbol 0 (zero) of type nat, and the unary
function symbol s (successor) of type nat — nat, and (iv) the binary predicate
symbols < of type nat x nat, and € of type nat x set. Ivars U Svars is ranged
over by X, X1, Xo,... The syntax of WS1S is defined by the following grammar:

Individual terms: n =0 | N | s(n)

Atomic formulas: A = n1<ng | nes

Formulas: pu=A]| o | 1 Apa | AN | IS
When writing formulas we feel free to use also the connectives V, —, <> and the
universal quantifier V, as shorthands of the corresponding formulas with —, A,
and 3. Given any two individual terms n; and ng, we will write the formulas
ni=ng, ni#ng, and ny <ng as shorthands of the corresponding formulas using
<. Notice that, for reasons of simplicity, we have assumed that the symbol < is
primitive, although it is also possible to define it in terms of € [?].

An example of a WS1S formula is the following formula pu, with free variables
N and S, which expresses that N is the maximum number in a finite set S:

JY NES/_‘ENl(Nle;g/_‘NlSN)
The semantics of WS1S formulas is defined by considering the following typed
interpretation N

(i) the domain of the type nat is the set Nat of the natural numbers and the
domain of the type set is the set Pgy,(Nat) of all finite subsets of Nat;

(ii) the constant symbol 0 is interpreted as the natural number 0 and the function
symbol s is interpreted as the successor function from Nat to Nat;

(iii) the predicate symbol < is interpreted as the less-or-equal relation on natural
numbers, and the predicate symbol € is interpreted as the membership of a
natural number to a finite set of natural numbers.

The notion of a variable assignment o over a typed interpretation is analo-
gous to the untyped case, except that o assigns to a variable an element of the
domain of the type of the variable. The definition of the satisfaction relation
I =, ¢, where I is a typed interpretation and o is a variable assignment is also
analogous to the untyped case, with the only difference that when we interpret
an existentially quantified formula we assume that the quantified variable ranges
over the domain of its type. We say that a formula ¢ is true in an interpretation
I, written as I | o, iff T =, ¢ for all variable assignments o. The problem
of checking whether or not a WS1S formula is true in the interpretation N is
decidable [?].

3 Translating WS1S Formulas into Normal Logic
Programs

In this section we illustrate Step 1 of our method for synthesizing definite pro-
grams from WS1S formulas. In this step, starting from a WS1S formula, we de-

rive a stratified normal logic program [?] (simply called stratified programs) by
applying a variant of the Lloyd-Topor transformation, called typed Lloyd-Topor
transformation. Given a stratified program P, we denote by M (P) its perfect
model (which is equal to its least Herbrand model if P is a definite program) [?].

Before presenting the typed Lloyd-Topor transformation, we need to intro-
duce a definite program, called NatSet, which axiomatizes: (i) the natural num-
bers, (ii) the finite sets of natural numbers, (iii) the ordering on natural numbers
(<), and (iv) the membership of a natural number to a finite set of natural num-
bers (€). We represent: (i) a natural number &k (>0) as a ground term of the form

s¥(0), and (ii) a set of natural numbers as a finite, ground list [bg, b1, .. ., bym]
where, for i = 0,...,m, we have that b; is either y or n. A number k belongs
to the set represented by [bg, b1, ..., by iff by = y. Thus, the finite, ground lists
[bo, b1, ..., bm] and [bo, b1, ..., bm,n,...,n] represent the same set. In particular,
the empty set is represented by any list of the form [n,...,n]. The program
NatSet consists of the following clauses (we adopt infix notation for < and €):

nat(0) < 0<N

nat(s(N)) < nat(N) $(N1) <s(N3) + N1 <N,

set([]) < 0€lylS] <

set([y|S]) « set(S) s(N)e[B|S] + NeS

set([n|S]) « set(S)
Atoms of the form nat(N) and set(S) are called type atoms. Now we will establish
a correspondence between the set of WS1S formulas which are true in N and the
set of the so-called explicitly typed WSI1S formulas which are true in the least
Herbrand model M (NatSet) (see Theorem [below).

Given a WSI1S formula ¢, the explicitly typed WS1S formula corresponding
to ¢ is the formula ¢, constructed as follows. We first replace the subformulas
of the form IN ¢ by AN (nat(N) A) and the subformulas of the form 35 by
3S (set(S) A1), thereby getting a new formula ¢, where every bound (individual
or set) variable occurs in a type atom. Then, we get:

©r + nat(N1) A... A nat(Np) A set(S1) A... A set(Sk) Ay,
where Ny, ..., Np, S1,..., S are the variables which occur free in ¢.

For instance, let us consider again the formula g which expresses that N is
the maximum number in a set S. The explicitly typed formula corresponding to
1 is the following formula:

pr o nat(N) A set(S) AN €S A-3INi(nat(Ni) AN €S A-Ni<N)

For reasons of simplicity, in the following Theorem [l we identify: (i) a natural
number k(> 0) in Nat with the ground term s*(0) representing that number,
and (ii) a finite set of natural numbers in Pp,(Nat) with any finite, ground list
representing that set. By using these identifications, we can view any variable
assignment over the typed interpretation A also as a variable assignment over
the untyped interpretation M (NatSet) (but not vice versa).

Theorem 1. Let ¢ be a WSI1S formula and let ¢, be the explicitly typed
formula corresponding to ¢. For every variable assignment o over N,

N, ¢ iff M(NatSet) Eo or

Proof. The proof proceeds by induction on the structure of the formula ¢.

(i) Suppose that ¢ is of the form n; <ns. By the definition of the satisfaction
relation, N' =, n1 < ng iff the natural number o(n;) is less or equal than
the natural number o(ns). By the definition of least Herbrand model and by
using the clauses in NatSet which define <, o(n1) is less or equal than o(n2)
ifft M(NatSet) = o(n1) <o(ng) (here we identify every natural number n with
the ground term s™(0)). It can be shown that M (NatSet) = nat(o(ny)) and
M (NatSet) = nat(o(nz)). Thus, M (NatSet) = o(ni) <o(ng) iff M(NatSet) =,
nat(ni) A nat(nz) A ny <ng. Now, the term n; is either of the form s™!(0) or
of the form s™!(N;), where m1 is a natural number. Similarly, the term ny is
either of the form s™2(0) or of the form s™2(N), where m2 is a natural number.
We consider the case where n; is s™1(Ny) and ng is s™?(Nz). The other cases
are similar and we omit them. It can be shown that, for all natural numbers m,
M (NatSet) =, nat(s™(N)) iff M(NatSet) =, nat(N). Thus, M (NatSet) =,
nat(s™ (N1)) A nat(s™2(Na)) As™(N7) < s™2(Ng) iff M(NatSet) =, nat(N1) A
nat(Nz) A s™ (N1)<s™2(Ny), that is, M (NatSet) o (n1<nz),.

(ii) The case where ¢ is of the form ne€ S is similar to Case (i).

(iii) Suppose that ¢ is of the form —. By the definition of the satisfaction
relation and the induction hypothesis, N |, — iff M(NatSet) =, —(¢,).
Since), is of the form a(X1) A ... A ar(Xy) A ¢y, where Xy,..., X}, are the
free variables in ¢ and a1(X1),...,ar(Xx) are type atoms, by logical equiva-
lence, we get: M (NatSet) = —(v7) iff M (NatSet) Eo (a1(X1) A ... Aar(Xi) A
=(¢y)) V(a1 (X1) A ... Aar(Xg)). Finally, since for all variable assignments o,
M (NatSet) =y a1(X1) A ... A ar(Xk), we have that M(NatSet) =, (1) iff
M (NatSet) =5 (a1(X1) A ... Aar(Xk) A =(y)), that is, M (NatSet) =5 (—1)),
(to see this, note that —(¢,,) is equal to (—t))y,).

(iv) The case where ¢ is of the form 1 A 15 is similar to Case (iii).

(v) Suppose that ¢ is of the form 3IN; ¢. By the definition of the satisfaction
relation and by the induction hypothesis, N' =, IN7 9 iff there exists ny in Nat
such that M(NatSet) |=o(n,n,) ¥r. Since 9, is of the form nat(Ni) A ... A
nat(Np) A set(S1) A ... A set(Sk) Ay, where Ny,..., Np,S1,..., Sk are the free
variables in 1, we have that:

there exists n; in Nat such that M (NatSet) Fon,n,) ¥r

iff M(NatSet) =o AN1 (nat(N1) A ... A nat(Np) A set(S1) A... A set(Sk) Aby)
iff (by logical equivalence) M (NatSet) =, nat(Na) A ... A nat(Np) A set(S1) A
... A set(Sk) A (N1 nat(Ny) Ay)

iff (by definition of explicitly typed formula) M (NatSet) =, (3N1 ¥);.

(vi) The case where ¢ is of the form 351 is similar to Case (v). O

As a straightforward consequence of Theorem [, we have the following result.
Corollary 1. For every closed WS1S formula ¢, N |= ¢ iff M(NatSet) = o-.

Notice that the introduction of type atoms is indeed necessary, because there
are WS1S formulas ¢ such that N |= ¢ and M (NatSet) [~ . For instance, N |=
VN13Ny Ny < Ny and M(NatSet) = VN1IN2 N; < Ns. Indeed, for a variable
assignment o over M (NatSet) which assigns [] to N1, we have M (NatSet) -,

AN, N1 < N,. (Notice that o is not a variable assignment over A because [] is
not a natural number.)

Now we present a variant of the method proposed by Lloyd and Topor [?],
called typed Lloyd-Topor transformation, which we use for deriving a stratified
program from a given WSIS formula ¢. We need to consider a class of formulas
of the form: A < S, called statements, where A is an atom, called the head of
the statement, and (is a formula of the first order predicate calculus, called the
body of the statement. In what follows we write C[y] to denote a formula where
the subformula 7 occurs as an outermost conjunct, that is, C[y] = 1 Ay At
for some subformulas 1 and ,.

The Typed Lloyd-Topor Transformation.

We are given in input a set of statements, where: (i) we assume without loss of
generality, that the only connectives and quantifiers occurring in the body of the
statements are -, A, and 3, and (ii) X, X1, Xa, ... denote either individual or set
variables.

We perform the following transformation (A) and then the transformation (B):

(A) We repeatedly apply the following rules A.1-A.4 until a set of clauses is
generated:
(A1) A+ C[-—y] isreplaced by A+ C[y].

(A.2) A+ C[~(yA0)] isreplaced by A+ C[-newp(Xy,..., Xi)]
newp(Xy,..., Xk) < yA0

where newp is a new predicate and Xi,..., X; are the variables which occur
free in y A 4.

(A.3) A+ C[-3X 4] isreplaced by A+ Cl-newp(Xy,..., Xi)]
newp(Xy,..., Xig) <

where newp is a new predicate and X7, ..., X are the variables which occur free
in 4X ~.

(A4) A+ C[3X ~] isreplaced by A+ C[y{X/X1}]

where X is a new variable.

(B) Every clause A < G is replaced by A « G..

Given a WSIS formula ¢ with free variables X1, ..., X,,, we denote by Cls(f, ©)
the set of clauses derived by applying the typed Lloyd-Topor transformation
starting from the singleton {f(X1,...,X,) + ¢}, where f is a new n-ary pred-
icate symbol. By construction, NatSet U Cls(f, p,) is a stratified program. We
have the following theorem.

Theorem 2. Let ¢ be a WSI1S formula with free variables X1, ..., X, and let
- be the explicitly typed formula corresponding to ¢. For all ground terms
t1,...,tn, we have that:

M(NatSet) = o-{X1/t1,..., Xn/tn} iff
M(NatSet U Cls(f, o)) E f(t1,...,tn)

Proof. Tt is similar to the proofs presented in [?,?] and we omit it.

From Theorems [and B we have the following corollaries.

Corollary 2. For every WSI1S formula ¢ with free variables Xi,...,X,,, and
for every variable assignment o over the typed interpretation N\,

N, ¢ it M(NatSet U Cls(f,¢:)) E f(o(X1),...,0(X,))

Corollary 3. For every closed WS1S formula ¢,
N E ¢ iff M(NatSet U Cls(f,¢-)) E f

Let us consider again the formula p we have considered above. By applying the
typed Lloyd-Topor transformation starting from the singleton {maz (S, N) < u}
we get the following set of clauses Cls(maz, p,):

maz (S, N) < nat(N) A set(S) ANe€S A —-newp(S, N)

newp(S, N) <= nat(N) A nat(N1) A set(S) AN €S A-N1 <N
Unfortunately, the stratified program NatSetUCls(f, ¢,) derived from the single-
ton {f(X1,...,X,) < @} is not always satisfactory from a computational point
of view because it may not terminate when evaluating the query f(Xi,...,X,)
by using SLDNF resolution. (Actually, the above program Cls(maz, i) which
computes the maximum number of a set, terminates for all ground queries, but
in Section Bl we will give an example where the program derived at the end of
the typed Lloyd-Topor transformation does not terminate.) Similar termination
problems may occur by using tabled resolution [?], instead of SLDNF resolution.

To overcome this problem, we apply to the program NatSet U Cls(f, o)
the unfold/fold transformation strategy which we will describe in Section @ In
particular, by applying this strategy we derive definite programs which terminate
for all ground queries by using LD resolution (that is, SLD resolution with the
leftmost selection rule).

4 The Transformation Rules

In this section we describe the transformation rules which we use for transforming
stratified programs. These rules are a subset of those presented in [?,?], and
they are those required for the unfold/fold transformation strategy presented in
Section B

For presenting our rules we need the following notions. A variable in the
body of a clause C'is said to be existential iff it does not occur in the head of
C'. The definition of a predicate p in a program P, denoted by Def (p, P), is the
set of the clauses of P whose head predicate is p. The extended definition of a

predicate p in a program P, denoted by Def™(p, P), is the union of the definition
of p and the definitions of all predicates in P on which p depends. (See [?]for
the definition of the depends on relation.) A program is propositional iff every
predicate occurring in the program is nullary. Obviously, if P is a propositional
program then, for every predicate p, M (P) = p is decidable.

A transformation sequence is a sequence Py, ..., P, of programs, where for
0<k<n—1, program P is derived from program P by the application of one
of the transformation rules R1-R4 listed below. For 0 <k <n, we consider the set
Defs,, of the clauses introduced by the following rule R1 during the construction
of the transformation sequence Py, ..., Pj.

When considering clauses of programs, we will feel free to apply the following
transformations which preserve the perfect model semantics:

(1) renaming of variables,

(2) rearrangement of the order of the literals in the body of a clause, and

(3) replacement of a conjunction of literals the form L A L in the body of a
clause by the literal L.

Rule R1. Definition. We get the new program Pj4; by adding to program P
a clause of the form newp(X1,...,X,) < L1 A...AL,,, where: (i) the predicate
newp is a predicate which does not occur in Py U Defs,,, and (ii) X1, ..., X, are
distinct (individual or set) variables occurring in Ly A ... A L,.

Rule R2. Unfolding. Let C' be a renamed apart clause in Py of the form:
H < G1 AN L ANGq, where L is either the atom A or the negated atom —A. Let
H, < By,..., H,, < By, with m>0, be all clauses of program P, whose head
is unifiable with A and, for j = 1,...,m, let ¥; the most general unifier of A
and H;. We consider the following two cases.

Case 1: L is A. By unfolding clause C w.r.t. A we derive the new program
Py = (Pk — {C}) @] {(H «~— GLANB1 A G2)191, RN (H «~ GLANB, A Gg)ﬁm}
In particular, if m=0, that is, if we unfold C' w.r.t. an atom which is not unifiable
with the head of any clause in Py, then we derive the program Pj;; by deleting
clause C.

Case 2: L is —A. Assume that: (i) A = H1v1 = -+ = HpVU,, that is, for
j=1,...,m, Ais an instance of Hj, (ii) for j = 1,...,m, H; < B; has no
existential variables, and (iii) @1 V...V Q,, with » > 0, is the disjunctive normal
form of Gy A= (B V. . .V By) AGa. By unfolding clause C' w.r.t. = A we derive
the new program Py11 = (P, — {C})U{C4,..., Cyn}, wherefor j =1,...,r, C;
is the clause H < Q;.

In particular: (i) if m = 0, that is, A is not unifiable with the head of any clause
in Py, then we get the new program Py, 1 by deleting —A from the body of clause
C, and (ii) if for some j € {1,...,m}, B; is the empty conjunction, that is, A is
an instance of the head of a unit clause in Py, then we derive Py by deleting
clause C from P;.

Rule R3. Folding. Let C : H + G1 A BY A G2 be a renamed apart clause
in P, and D : Newp < B be a clause in Defs;. Suppose that for every ex-
istential variable X of D, we have that X is a variable which occurs neither

in {H,G1,G2} nor in the term Y9, for any variable Y occurring in B and dif-
ferent from X. By folding clause C using clause D we derive the new program
Py = (Pk — {C}) U {H < G1 A Newp 9 A GQ}

Rule R4. Propositional Simplification. Let p be a predicate such that
Def*(p, P) is propositional. If M(Def*(p, P;)) | p then we derive Pyy1 =
(P, — Def(p, Py)) U{p «}. If M(Def*(p,Pr)) = —p then we derive Py =
(Px — Def (p, Py))-

Notice that we can check whether or not M (P) = p holds by applying pro-
gram transformation techniques [?] and thus, Rule R4 may be viewed as a derived
rule.

The transformation rules R1-R4 we have introduced above, are collectively
called unfold/fold transformation rules. We have the following correctness result,
similar to [?].

Theorem 3. [Correctness of the Unfold/Fold Transformation Rules]
Let us assume that during the construction of a transformation sequence Py, . . .,
P, each clause of Defs, which is used for folding, is unfolded (before or after
its use for folding) w.r.t. an atom whose predicate symbol occurs in Fy. Then,

M(Py U Defs,) = M(P,).

Notice that the statement obtained from Theorem Bl by replacing ‘atom’ by
‘literal’, does not hold [?].

5 The Unfold/Fold Synthesis Method

In this section we present our program synthesis method, called unfold/fold syn-
thesis method, which derives a definite program from any given WS1S formula.
We show that the synthesis method terminates for all given formulas and also
the derived programs terminate according to the following notion of program
termination: a program P terminates for a query @ iff every SLD-derivation of
P U {+ Q} via any computation rule is finite.

The following is an outline of our unfold/fold synthesis method.

The Unfold/Fold Synthesis Method.
Let ¢ be a WSI1S formula with free variables Xi,..., X, and let ¢, be the
explicitly typed formula corresponding to .

Step 1. We apply the typed Lloyd-Topor transformation and we derive a set
Cls(f, ¢-) of clauses such that: (i) f is a new n-ary predicate symbol, (ii) NatSet
UCIs(f, ¢-) is a stratified program, and (iii) for all ground terms t1, ..., &y,
(1) M(NatSet) = o {X1/t1,...,Xn/tn} iff

M (NatSet U Cls(f, o)) E f(t1,...,tn)
Step 2. We apply the unfold/fold transformation strategy (see below) and from

the program NatSetU Cls(f, ¢,) we derive a definite program TransfP such that,
for all ground terms t1,...,t,,

(2.1) M(NatSetU Cls(f,or)) E f(t1,...,tn) ifft M(TransfP) |= f(t1,...,tn);
(2.2) TransfP terminates for the query f(t1,...,tn).

In order to present the unfold/fold transformation strategy which we use for
realizing Step 2 of our synthesis method, we introduce the following notions of
reqular natset-typed clauses and regular natset-typed definitions.

We say that a literal is linear iff each variable occurs at most once in it.
The syntax of regular natset-typed clauses is defined by the following grammar
(recall that by N we denote individual variables, by S we denote set variables,

and by X, X1, Xs, ... we denote either individual or set variables):
Head terms: h = 0 | s(N) | [] | [¥1S] | [nl9]
Clauses: C = plhy,....,hi) < | pi(h1,... ki) < p2(X1,. .., Xim)

where for every clause C, (i) both hd(C) and bd(C) are linear atoms, and
(i) {X1,..., Xm} Cwars(hy,. .., hy) (that is, C has no existential variables). A
reqular natset-typed program is a set of regular natset-typed clauses.

The reader may check that the program NatSet presented in Section Bl is
a regular natset-typed program. The following properties are straightforward
consequences of the definition of regular natset-typed program.

Lemma 1. Let P be a regular natset-typed program. Then:
(i) P terminates for every ground query p(t1,...,t,) with n > 0;
(ii) If p is a nullary predicate then Def™(p, P) is propositional.

The syntax of natset-typed definitions is given by the following grammar:

Individual terms: n == 0 | N | s(n)

Terms: tu=mn| S

Type atoms: T == nat(N) | set(S)

Literals: L = p(ty,...,tg) | —p(t1,... tk)

Definitions: D= pX1,...,. X))« TIN...ANT.NLLA...AN Ly,

where for all definitions D, vars(D) C vars(Ty A ... A T}).

A sequence Ds,..., D, of natset-typed definitions is said to be a hierar-
chy iff for ¢ = 1,...,s the predicate appearing in hd(D;) does not occur in
Dy, ...,D;_1,bd(D;). Notice that in a hierarchy of natset-typed definitions, any
predicate occurs in the head of at most one clause.

One can show that given a WS1S formula ¢ the set Cls(f, ¢,) of clauses de-
rived by applying the typed Lloyd-Topor transformation is a hierarchy D1, ..., D;
of natset-typed definitions and the last clause D; is the one defining f.

10

The Unfold/Fold Transformation Strategy.

Input: (i) A regular natset-typed program P where for each nullary predicate
p, Def™(p, Transf P) is either the empty set or the singleton {p <}, and (ii) a
hierarchy Dy, ..., D; of natset-typed definitions such that no predicate occurring
in P occurs also in the head of a clause in Dy, ..., D;.

Output: A regular natset-typed program TransfP such that, for all ground terms
et

(2.1) M(PU{Ds,...,Ds}) E f(t1,...,tn) iff M(TransfP) = f(t1,...,tn);
(2.2) TransfP terminates for the query f(t1,...,tn).

TransfP := P; Defs := (;
FOR:=1,...,5s DO

Defs := Defs U{D;}; InDefs :={D;};
By the definition rule we derive the program TransfP U InDefs.

WHILE InDefs # () DO

(1) Unfolding. From program TransfP U InDefs we derive TransfPU U by: (i) ap-
plying the unfolding rule w.r.t. each atom occurring positively in the body of a
clause in InDefs, thereby deriving TransfPU Uy, then (ii) applying the unfolding
rule w.r.t. each negative literal occurring in the body of a clause in Uy, thereby
deriving TransfPU Us, and, finally, (iii) applying the unfolding rule w.r.t. ground
literals until we derive a program TransfP U U such that no ground literal occurs
in the body of a clause of U.

(2) Definition-Folding. From program TransfP U U we derive TransfP U F' U
NewDefs as follows. Initially, NewDefs is the empty set. For each non-unit clause
C:H<+ BinU,

(i) we apply the definition rule and we add to NewDefs a clause of the form
newp(Xy,...,Xx) ¢ B, where X1,..., X}, are the non-existential variables oc-
curring in B, unless a variant clause already occurs in Defs, modulo the head
predicate symbol and the order and multiplicity of the literals in the body, and
(ii) we replace C by the clause derived by folding C' w.r.t. B. The folded clause
is an element of F.

No transformation rule is applied to the unit clauses occurring in U and, there-
fore, also these clauses are elements of F'

(3) TransfP := TransfP U F; Defs := Defs U NewDefs; InDefs := NewDefs
END WHILE;

Propositional Simplification. For each predicate p such that Def*(p, TransfP) is
propositional, we apply the propositional simplification rule and

if M(TransfP) Ep

then TransfP := (TransfP — Def (p, TransfP)) U {p <}

else TransfP := (TransfP — Def (p, TransfP))

END FOR

11

The reader may verify that if we apply the unfold/fold transformation strat-
egy starting from the program NatSet together with the clauses Cls(maz, u;)
which we have derived above by applying the typed Lloyd-Topor transformation,
we get the following final program:

maz([y|S],0) + newl(S)
maz([y|S], s(N)) < maz(S, N)
maz([n]S], s(N)) < maz(S,N)
newl([])

newl([n|S]) + newl(S)

To understand the first clause, recall that the empty set is represented by any list
of the form [n,...,n]. A more detailed example of application of the unfold /fold
transformation strategy will be given later.

In order to prove the correctness and the termination of our unfold/fold
transformation strategy we need the following lemmas whose proofs are mutually
dependent.

Lemma 2. During the application of the unfold/fold transformation strategy,
TransfP is a regular natset-typed program.

Proof. Initially, TransfP is the regular natset-typed program P. Now we assume
that TransfP is a regular natset-typed program and we show that after an ex-
ecution of the body of the FOR statement, TransfP is a regular natset-typed
program.

First we prove that after the execution of the WHILE statement, TransfP is
a regular natset-typed program. In order to prove this, we show that every new
clause E which is added to TransfP at Point (3) of the strategy is a regular
natset-typed clause.

Clause E is derived from a clause D of InDefs by unfolding (according to
the Unfolding phase) and by folding (according to the Definition-Folding phase).
By Lemma Bl D is a natset-typed definition of the form p(Xi,..., Xg) + T1 A
...NT. ALy A...ALy,. By unfolding w.r.t. the type atoms 71, ..., T, (according
to Point (i) of the Unfolding phase) we get clauses of the form p(hq,...,hg)
TN . NT ALYA. . .ALL, where: (a) hq, ..., hj are head terms, (b) p(hy, ..., hy)
is a linear atom (because X1,..., X} are distinct variables), and (c) for i =
1,...,m, no argument of L is a variable. By the inductive hypothesis TransfP
is a regular natset-typed program and, therefore, by unfolding w.r.t. the literals
LY,..., L, (according to Points (ii) and (iii) of the Unfolding phase) we get
clauses of the form D' : p(hy,...,hg) < TI AN ... AT ALY A .. ALY . Either
D’ is a unit clause or, by folding according to the Definition-Folding phase, it
is replaced by p(h1,...,hi) < newp(Xi,...,X,,) where Xi,..., X, are the
distinct, non-existential variables occurring in bd(D’). Hence, E is either a unit
clause of the form p(hi,...,hi) < or a clause of the form p(hi,..., hg) +
newp(X1, ..., Xm), where {X1,..., X;n} C vars(hy,...,hi). Thus, F is a regular
natset-typed clause.

We conclude the proof by observing that if we apply the propositional simpli-
fication rule to a natset-typed program, then we derive a natset-typed program,

12

because by this rule we can only delete clauses or add natset-typed clauses of the
form p <. Thus, after an execution of the body of the FOR statement, TransfP
is a regular natset-typed program. |

Lemma 3. During the application of the unfold/fold transformation strategy,
InDefs is a set of natset-typed definitions.

Proof. Let us consider the i-th execution of the body of the FOR statement.
Initially, InDefs is the singleton set {D;} of natset-typed definitions. Now we
assume that InDefs is a set of natset-typed definitions and we prove that, after
an execution of the WHILE statement, InDefs is a set of natset-typed definitions.
It is enough to show that every new clause E which is added to InDefs at
Point (3) of the strategy, is a natset-typed definition. By the Folding phase
of the strategy, F is a clause of the form newp(Xy,...,Xs) + B where B is
the body of a clause derived from a clause D of InDefs by unfolding. By the
inductive hypothesis, D is a natset-typed definition of the form p(Xy, ..., Xx)
TiN...NT. NLy A... A\ L,,. By unfolding w.r.t. the type atoms 77,...,7T,
(according to Point (i) of the Unfolding phase) we get clauses of the form D’ :
p(hi, ... hg) < TIN. AT ALY AL where vars(D') C vars(TyA...AT.,).
Since, by Lemma B, TransfP is a regular natset-typed program, by unfolding
w.r.t. the literals L, ..., L] (according to Points (ii) and (iii) of the Unfolding
phase) we get clauses of the form D" : p(h1,..., hg) < TN . AT ALYA. . AL
where vars(D") C vars(T] A ... AT.). Thus, E is a natset-typed definition of
the form newp(Xq,...,Xg) <« TY A .. AT ALY Ao ALY with vars(E) C
vars(T{ A ... ANT/).

We conclude the proof by observing that the Propositional Simplification
phase does not change InDefs, and thus, after the execution of the body of the
FOR statement, InDefs is a set of natset-typed definitions.]

Theorem 4. Let P and Dy,..., D be the input program and the input hier-
archy, respectively, of the unfold/fold transformation strategy and let TransfP
be the output of the strategy. Then,

(1

) TransfP is a natset-typed program;
(2) for every nullary predicate p, Def*(p, TransfP) is either §) or {p +};
)

(3) for all ground terms t1,...,t,,

(3.1) M(PU{Dz,...,Ds}) = f(t1,...,tn) iff M(TransfP) = f(t1,...,tn);
(3.2) TransfP terminates for the query f(t1,...,tn).

Proof. Point (1) is a straightforward consequence of Lemma

For Point (2), let us notice that, by Lemmal[at each point of the unfold /fold
transformation strategy TransfP is a natset-typed program and therefore, by
Lemmal[l, for every nullary predicate p, Def*(p, TransfP) is propositional. Since
the last step of the unfold/fold transformation strategy consists in applying to
TransfP the propositional simplification rule for each predicate having a propo-
sitional extended definition, Def™(p, TransfP) is either () or {p +}.

13

Point (3.1) will be proved by using the correctness of the transformation rules
w.r.t. the Perfect Model semantics (see Theorem B). Let us first notice that the
unfold /fold transformation strategy generates a transformation sequence (see
Section), where: the initial program is P, the final program is the final value of
TransfP, and the set of clauses introduced by the definition rule R1 is the final
value of Defs.

To see that our strategy indeed generates a transformation sequence, let us
observe the following facts (A) and (B):

(A) The addition of InDefs to TransfP at the beginning of each execution of
the body of the FOR statement is an application of the definition rule. Indeed,
for i = 1,...s, InDefs = {D;} and, by the hypotheses on the input sequence
Dy, ..., Dy, we have that the head predicate of D; does not occur in the current
value of P U Defs.

(B) When we unfold the clauses of U; w.r.t. negative literals, we have that:
(B.1) Condition (i) of Case (2) of the unfolding rule (see Section H) is satisfied
because:

(a) Every clause D of InDefs is a natset-typed definition (see Lemma Bl) and,
thus, for each variable X occurring in D there is a type atom of the form a(X)
in bd(D). Since we unfold the clauses of InDefs w.r.t. all the atoms which occur
positively in the bodies of the clauses in InDefs, and in particular, w.r.t. type
atoms, every argument of a negative literal in the body of a clause of U is of
one of the following forms: 0, s(n), [], [y|S], [n|S].

(b) For each negative literal —p(¢1,...,tx) in the body of a clause of Uy, the
definition of p is a subset of the regular natset-typed program TransfP (see
Lemma) and, hence, the head of a clause in TransfP is a linear atom of the
form p(hq, ..., hy), where hy, ..., hy are head terms (see the definition of regular
natset-typed clauses above).

From (a) and (b) it follows that if p(t1,...,t;) is unifiable with p(hy,..., hy)
then p(t1,...,t;) is an instance of p(hq,..., hg).

(B.2) Condition (ii) of Case (2) of the unfolding rule is satisfied because TransfP
is a regular natset-typed program (see Lemmaf) and, thus, no clause in TransfP
has existential variables.

Now, the transformation sequence constructed by the unfold/fold transfor-
mation strategy satisfies the hypothesis of Theorem Bl Indeed, let us consider a
clause D which is used for folding a clause C'. Since C' has been derived at the
end of the Unfolding phase, no ground literal occurs in bd(C') and, thus, there
is at least one variable occurring in D. Hence, there is at least one type atom in
bd(D), because D is a natset-typed definition (see Lemma[). Therefore, during
an application of the unfold/fold transformation strategy (before or after the
use of D for folding), D is unfolded w.r.t. a type atom (see Point (i) of the Un-
folding phase). Thus, by Theorem B, we have that M (P U Defs) = M (TransfP),
where by Defs and TransfP we indicate the values of these variables at the end
of the unfold/fold transformation strategy. Observe that Def™(f, P U Defs) =
Def*(f, PU{Dz,...,Ds}) and, therefore, M(PU{D1,...,D}) E f(t1,...,tn)
ifft M(P U Defs) = f(t1,...,tn) it M(TransfP) |= f(t1,...,tn).

14

Finally, let us prove Point (3.2). We consider the following two cases:

(n = 0) f is nullary and hence, by Point (2) of this theorem, Def™(f, TransfP)
is either @ or {f <}. Thus, TransfP terminates for the query f.

(n > 0) By Point (1) of this theorem, TransfP is a natset-typed program and
thus, by Lemma [0l TransfP terminates for the ground query f(t1,...,t,). O

Theorem 5. The unfold/fold transformation strategy terminates.

Proof. We have to show that the WHILE statement in the body of the FOR
statement terminates.

Each execution of the Unfolding phase terminates. Indeed, (a) the number of
applications of the unfolding rule at Points (i) and (ii) is finite, because InDefs is
a finite set of clauses and the body of each clause has a finite number of literals,
and (b) at Point (iii) only a finite number of unfolding steps can be applied
w.r.t. ground literals, because the program held by TransfP during the Unfolding
phase terminates for every ground query. To see this latter fact, let us notice that,
by Lemma Bl TransfP is a natset-typed program. Thus, by Lemma [, TransfP
terminates for any ground query p(t1,...,t,) with n > 1. For a ground query p,
where p is a nullary predicate, TransfP terminates because Def™ (p, Transf P) is
either the empty set or it is the singleton {p < }. Indeed, this follows from our
assumptions on the input program and from the execution of the Propositional
Simplification phase after completion of the WHILE statement.

Each execution of the Definition-Folding phase terminates because a finite
number of clauses are introduced by definition and a finite number of clauses are
folded.

Thus, in order to show that the strategy terminates, it is enough to show
that after a finite number of executions of the body of the WHILE statement,
we get InDefs = (). Let Defs; and InDefs; be the values of Defs and InDefs,
respectively, at the end of the j-th execution of the body of the WHILE statement.
If the WHILE statement terminates after z executions of its body, then, for all
J > z, we define Defs; to be Defs, and InDefs; to be (). We have that, for any
J =1, InDefs; = 0 iff Defs; ; = Defs;. Since for all j > 1, Defs; _; C Defs;,
the termination of the strategy will follow from the following property:

there exists K > 0 such that, for all j > 1, [Defs;| < K *)

Let TransfP,, Defs,, and InDefs, (C Defs,) be the values of TransfP, Defs, and
InDefs, respectively, at the beginning of the execution of the WHILE statement.
By Lemmal for all j > 1, Defs; is a set of natset-typed definitions. Property (*)
follows from the fact that, for all D € Defs;, the following holds:
(a) every predicate occurring in bd(D) also occurs in TransfP, U InDefs;
(b) for every literal L occurring in bd(D),

height(L) < max{height(M) | M is a literal in the body of a clause in Defs,}
where the height of a literal is defined as the length of the maximal path from
the root to a leaf of the literal considered as a tree;
(¢) |vars(D)| < max{vars(D'")| D’ is a clause in Defs};
(d) no two clauses in Defs; can be made equal by one or more applications of the
following transformations: renaming of variables, renaming of head predicates,

15

rearrangement of the order of the literals in the body, and deletion of duplicate
literals.

Recall that bd(D) is equal to bd(E’) where E’ is derived by unfolding (according
to the Unfolding phase of the strategy) a clause E in TransfP,U InDefs; and E
belongs to InDefs;.

Now Property (a) is a straightforward consequence of the definition of the un-
folding rule.

Property (b) can be shown as follows. E is of the form newp(Xi, ..., Xg) + T1 A
.. .ANT.AL1A...AL,,. By unfolding w.r.t. the type atoms 77, ..., T, (according to
Point (i) of the Unfolding phase) we get clauses of the form newp(hq, ..., hg) <
TIN...ANTL NLY A ... ANLL, where hy,..., hy are head terms and, for all
i€ {1,...,m}, height(L}) < height(L;) + 1. By Lemmal TransfP, is a regular
natset-typed program and, therefore, by unfolding w.r.t. the literals L,..., L,
(according to Point (ii) of the Unfolding phase) we get clauses of the form
newp(ha, ..., hg) < TIN. . AT ALY A ALY where for all i € {1,...,ml},
there exists il € {1, ..., m}, such that height(L}) = height(L};)—1. Thus, Prop-
erty (b) follows from the fact that E’ is derived by unfolding w.r.t. ground literals
from a clause of the form newp(hi,...,hg) < T{ A AT ALY AN ALY, and
every unfolding w.r.t. a ground literal does not increase the height of the other
literals in a clause.

Property (c) follows from Lemma P and the fact that by unfolding a clause E
using regular natset-typed clauses we get clauses E’ where vars(E’) C vars(E).
To see this, recall that in a regular natset-typed clause C' every term has at
most one variable and vars(bd(C)) C wvars(hd(C)) and, thus, by unfolding, a
variable is replaced by a term with at most one variable and no new variables
are introduced.

Finally, Point (d) is a consequence of Point (i) of the Definition-Folding phase
of the unfold/fold strategy. O

6 Deciding WS1S via the Unfold /Fold Proof Method

In this section we show that if we start from a closed WS1S formula ¢, our
synthesis method can be used for checking whether or not A/ = ¢ holds and,
thus, our synthesis method works also as a proof method which is a decision
procedure for closed WS1S formulas.

If ¢ is a closed WS1S formula then the predicate f introduced when con-
structing the set Cls(f,y,), is a nullary predicate. Let TransfP be the program
derived by the unfold/fold transformation strategy starting from the program
NatSet U Cls(f, ¢-). As already known from Point (2) of Theorem H we have
that Def*(f, TransfP) is either the empty set or the singleton {f «+—}. Thus, we
can decide whether or not N/ = ¢ holds by checking whether or not f <+ belongs
to TransfP. Since the unfold/fold transformation strategy always terminates, we
have that our unfold/fold synthesis method is indeed a decision procedure for
closed WS1S formulas. We summarize our proof method as follows.

16

The Unfold/Fold Proof Method.

Let ¢ be a closed WS1S formula.

Step 1. We apply the typed Lloyd-Topor transformation and we derive the set
Cls(f,¢r) of clauses.

Step 2. We apply the unfold/fold transformation strategy and from the program
NatSet U Cls(f,) we derive a definite program TransfP.

If the unit clause f < belongs to TransfP then N = ¢ else N = —.

Now we present a simple example of application of our unfold/fold proof
method.

Ezample 1. (An application of the unfold/fold proof method.) Let us consider
the closed WS1S formula ¢ : VX 3Y X <Y. By applying the typed Lloyd-Topor
transformation starting from the statement f < ¢, we get the following set of
clauses Cls(f, or):

1. A(X) + nat(X) Anat(Y)ANX <Y

2. g + nat(X) A =h(X)

3. f+ g
Now we apply the unfold /fold transformation strategy to the program NatSet
and the following hierarchy of natset-typed definitions: clause 1, clause 2, clause 3.
Initially, the program TransfP is NatSet. The transformation strategy proceeds
left-to-right over that hierarchy.
(1) Defs and InDefs are both set to {clause 1}.
(1.1) Unfolding. By unfolding, from clause 1 we get:

4. h(0) «

5. h(0) < nat(Y)

6. h(s(X)) < nat(X) Anat(Y)ANX <Y
(1.2) Definition-Folding. In order to fold the body of clause 5 we introduce the
following new clause:

7. newl + nat(Y)
Clause 6 can be folded by using clause 1. By folding clauses 5 and 6 we get:

8. h(0) + newl

9. h(s(X)) + h(X)
(1.3) At this point TransfP = NatSet U {clause 4, clause 8, clause 9}, Defs =
{clause 1, clause 7}, and InDefs = {clause 7}.
(1.4) By first unfolding clause 7 and then folding using clause 7 itself, we get:

10. newl «+

11. newl < newl
No new clause is introduced (i.e., NewDefs = 0). At this point TransfP =
NatSet U {clause 4, clause 8, clause 9, clause 10, clause 11}, Defs = {clause 3,
clause 7}, and InDefs = (). Thus, the WHILE statement terminates.
Since Def*(newl, TransfP) is propositional and M (TransfP) | newl, by the
propositional simplification rule we have:

17

TransfP = NatSet U {clause 4, clause 8, clause 9, clause 10}.

(2) Defs is set to {clause 1, clause 2, clause 7} and InDefs is set to {clause 2}.
(2.1) Unfolding. By unfolding, from clause 2 we get:

12. g « nat(X) A -h(X)

(Notice that, by unfolding, clause g + —h(0) is deleted.)

(2.2) Definition-Folding. Clause 12 can be folded by using clause 2 which occurs
in Defs. Thus, no new clause is introduced (i.e., NewDefs = ()) and by folding
we get:

13.g+g

(2.3) At this point TransfP = NatSet U {clause 4, clause 8, clause 9, clause 10,

clause 13}, Defs = {clause 1, clause 2, clause 7}, and InDefs =). Thus, the

WHILE statement terminates.

Since Def*(g, TransfP) is propositional and M (TransfP) | —g, by the proposi-

tional simplification rule we delete clause 13 from TransfP and we have:
TransfP = NatSet U {clause 4, clause 8, clause 9, clause 10}.

(3) Defs is set to {clause 1, clause 2, clause 3, clause 7} and InDefs is set to
{clause 3}.
(3.1) Unfolding. By unfolding clause 3 we get:

14. f +

(Recall that, there is no clause in TransfP with head g.)

(3.2) Definition-Folding. No transformation steps are performed on clause 14
because it is a unit clause.

(3.3) At this point TransfP = NatSet U {clause 4, clause 8, clause 9, clause 10,
clause 14}, Defs = {clause 1, clause 2, clause 3, clause 7}, and InDefs = (.
The transformation strategy terminates and, since the final program TransfP
includes the unit clause f <, we have proved that N' EVX 3V X <Y.

We would like to notice that neither SLDNF nor Tabled Resolution (as im-
plemented in the XSB system [?]) are able to construct a refutation of NatSet U
Cls(f,or) U {+ f} (and thus construct a proof of ¢), where ¢ is the WS1S
formula VX 3Y X <Y'. Indeed, from the goal < f we generate the goal < —g,
and neither SLDNF nor Tabled Resolution are able to infer that < —g succeeds
by detecting that < ¢g generates an infinite set of failed derivations. a

We would like to mention that some other transformations could be applied
for enhancing our unfold/fold transformation strategy. In particular, during the
strategy we may apply the subsumption rule to shorten the transformation pro-
cess by deleting some useless clauses. For instance, in Example [l we can delete
clause 5 which is subsumed by clause 4, thereby avoiding the introduction of the
new predicate newl. In some other cases we can drop unnecessary type atoms.
For instance, in Example [l in clause 1 the type atom nat(X) can be dropped
because it is implied by the atom X <Y. The program derived at the end of the
execution of the WHILE statement of the unfold /fold transformation strategy are
nondeterministic, in the sense that an atom with non-variable arguments may be

18

unifiable with the head of several clauses. We can apply the technique for deriv-
ing deterministic program presented in [?] for deriving deterministic programs
and thus, obtaining smaller programs.

When the unfold/fold transformation strategy is used for program synthesis,
it is often the case that the above mentioned transformations also improve the
efficiency of the derived programs.

Finally, we would like to notice that the unfold/fold transformation strategy
can be applied starting from a program P U Cls(f,¢,) (instead of NatSet U
Cls(f,¢-)) where: (i) P is the output of a previous application of the strategy,
and (ii) ¢ is a formula built like a WSI1S formula, except that it uses predi-
cates occurring in P (besides < and €). Thus, we can synthesize programs (or
construct proofs) in a compositional way, by first synthesizing programs for sub-
formulas. We will follow this compositional methodology in the example of the
following Section [

7 An Application to the Verification of Infinite State
Systems: the Dynamic Bakery Protocol

In this section we present an example of verification of a safety property of
an infinite state system by considering CLP(WS1S) programs [?]. As already
mentioned, by applying our unfold/fold synthesis method we will then translate
CLP(WSLS) programs into logic programs.

The syntax of CLP(WSL1S) programs is defined as follows. We consider a set of
user-defined predicate symbols. A CLP(WS1S) clause is of the form A + o AG,
where A is an atom, ¢ is a formula of WS1S, G is a goal, and the predicates
occurring in A or in G are all user-defined. A CLP(WSL1S) program is a set of
CLP(WS1S) clauses. We assume that CLP(WSLS) programs are stratified.

Given a CLP(WS1S) program P, we define the semantics of P to be its
perfect model, denoted M (P) (here we extend to CLP(WS1S) programs the
definitions which are given for normal logic programs in [?]).

Our example concerns the Dynamic Bakery protocol, called DBakery for
short, and we prove that it ensures mutual exclusion in a system of processes
which share a common resource, even if the number of processes in the system
changes during a protocol run in a dynamic way. The DBakery protocol is a
variant of the N-process Bakery protocol [?].

In order to give the formal specifications of the DBakery protocol and its
mutual exclusion property, we will use CLP(WS1S) as we now indicate. The
transition relation between pairs of system states, the initial system state, and
the system states which are unsafe (that is, the system states where more than
one process uses the shared resource) are specified by WS1S formulas. However,
in order to specify the mutual exclusion property we cannot use WS1S formulas
only. Indeed, mutual exclusion is a reachability property which is undecidable
in the case of infinite state systems. The approach we follow in this example is
to specify reachability (and, thus, mutual exclusion) as a CLP(WS1S) program
(see the program Pppakery below).

19

Let us first describe the DBakery protocol. We assume that every process is
associated with a natural number, called a counter, and two distinct processes
have distinct counters. At each instant in time, the system of processes is repre-
sented by a pair (W, U), called a system state, where W is the set of the counters
of the processes waiting for the resource, and U is the set of the counters of the
processes using the resource.

A system state (W, U) is initial iff W U U is the empty set.

The transition relation from a system state (W,U) to a new system state
(W',U") is the union of the following three relations:

(T1: creation of a process)
if WUU is empty then (W', U’) = ({0}, 0) else (W', U") = (W U {m+1}, U),
where m is the maximum counter in W U U,

(T2: use of the resource)
if there exists a counter n in W which is the minimum counter in W U U
then (W', U") = (W—{n}, U U{n}),

(T3: release of the resource)
if there exists a counter n in U then (W', U’) = (W,U—{n}).

The mutual exclusion property holds iff from the initial system state it is not
possible to reach a system state (W, U) which is unsafe, that is, such that U is
a set of at least two counters.

Let us now give the formal specification of the DBakery protocol and its
mutual exclusion property. We first introduce the following WS1S formulas (be-
tween parentheses we indicate their meaning):

empty(X) = v zeX

(the set X is empty)
maz(X,m) = meX AVz (z€X — z<m)
(m is the maximum in the set X)
min(X,m) = meX ANVx (r€X — m<x)
(m is the minimum in the set X)

(Here and in what follows, for reasons of readability, we allow ourselves to use
lower case letters for individual variables of WS1S formulas.)

A system state (W, U) is initial iff N' = init((W,U)), where:
init(W,U)) = empty(W) A empty(U)

The transition relation R between system states is defined as follows:

(WU, (W', U")) € Riff
N [cre((W,U), (W', U")) V use((W,U) , (W' U")) v rel((W,U) , (W' U"))

where the predicates cre, use, and rel define the transition relations T1, T2, and
T3, respectively. We have that:

20

cre((W,UY, (W, U"Y) = U'=U A 3Z(Z=W UUA
((empty(Z) ANW'={0}) V
(mempty(Z) A 3m (maz(Z, m) ANW'=WU{s(m)}))))
use(W,U), (W', U")) = In(ne WAIZ(Z=WUU Amin(Z,n)) A
W'=W —{n} A U'=UU{n})

rel((W,U), (W, U")) = W=W Adn(neUAU=U—-{n})

where the subformulas involving the set union (U), set difference (—), and set
equality (=) operators can be expressed as WS1S formulas.

Mutual exclusion holds in a system state (W, U) iff N = —unsafe((W,U)),
where unsafe((W,U)) = 3ny Ing (n1 €U A na €U A =(n1=ng)), i.e., a system
state (W, U) is unsafe iff there exist at least two distinct counters in U.

Now we will specify the system states reached from a given initial system state
by introducing the CLP(WSL1S) program Pppgkery consisting of the following
clauses:

reach(S) <« init(S)

reach(S1) < cre(S,S1) A reach(S)
reach(S1) < use(S, S1) A reach(S)
reach(S1) < rel(S,S1) A reach(S)

where init(S), cre(S,S1), use(S,S1), and rel(S,S1) are the WS1S formulas
listed above.

From Pppakery we derive a definite program Pp g, by replacing the WS1S
formulas occurring in Pppakery by the corresponding atoms init(S), cre(S, S1),
use(S, S1), and rel(S, S1), and by adding to the program the clauses (not listed
here) defining these atoms, which are derived from the corresponding WS1S for-
mulas listed above, by applying the unfold/fold synthesis method (see Section).
Let us call these clauses Init, Cre, Use, and Rel, respectively.

In order to verify that the DBakery protocol ensures mutual exclusion for
every system of processes whose number dynamically changes over time, we
have to prove that for every ground term s denoting a finite set of counters,
ur(s) & M(Pppger, U {clause 1}), where clause 1 is the following clause which
we introduce by the definition rule:

1. ur(S) < unsafe(S) A reach(S)
and unsafe(S) is defined by a set, called Unsafe, of clauses which are derived from
the corresponding WS1S formula by using the unfold/fold synthesis method.

In order to verify the mutual exclusion property for the DBakery protocol
it is enough to show that Ppp,4.,., U {clause1} can be transformed into a new
definite program without clauses for ur(S). This transformation can be done,
as we now illustrate, by a straightforward adaptation of the proof technique
presented for Constraint Logic Programs in [?]. In particular, before performing
folding steps, we will add suitable atoms in the bodies of the clauses to be folded.

We start off this verification by unfolding clause 1 w.r.t. the atom reach. We
obtain the following clauses:

2. ur(S) < unsafe(S) A init(S)

21

3. ur(S1) < unsafe(S1) A cre(S, S1) A reach(S)

4. ur(S1) < unsafe(S1) A use(S,S1) A reach(S)

5. ur(S1) < unsafe(S1) A rel(S,S1) A reach(S)
Now we can remove clause 2 because

M (Unsafe U Init) = —3S (unsafe(S) A init(S)).
The proof of this facts and the proofs of the other facts we state below, are
performed by applying the unfold/fold proof method of Section Bl Then, we fold
clauses 3 and 5 by using the definition clause 1 and we obtain:

6. ur(S1) < unsafe(S1) A cre(S, S1) A ur(S)

7. ur(S1) < unsafe(S1) A rel(S,S1) A ur(S)
Notice that this application of the folding rule is justified by the following two
facts:

M (Unsafe U Cre) = VSVS1 (unsafe(S1) A cre(S,S1) — unsafe(S))

M (Unsafe U Rel) = VSVS1 (unsafe(S1) A rel(S, S1) — unsafe(S))
so that, before folding, we can add the atom unsafe(S) to the bodies of clauses
3 and 5. Now, since M (Unsafe U Use) |= VS VS1 (unsafe(S1) A use(S, S1) —
unsafe(S)), clause 4 cannot be folded using the definition clause 1. Thus, we
introduce the new definition clause:

8. p1(S) + ¢(S) A reach(S)
where c((W,U)) = In (neWAIZ (Z = WUU Amin(Z,n))) A ~empty(U) which
means that: in the system state (W, U) there is at least one process which uses
the resource and there exists a process waiting for the resource with counter n
which is the minimum counter in W U U.

Notice that, by applying the unfold/fold synthesis method, we may derive a
set, called Busy (not listed here), of definite clauses which define ¢(.5).
By using clause 8 we fold clause 4, and we obtain:

9. ur(S1) < unsafe(S1) A use(S,S1) A p1(S)
We proceed by applying the unfolding rule to the newly introduced clause 8,
thereby obtaining:
10. p1(S) + ¢(S) A nit(S)
11. p1(S1) « ¢(S1) A cre(S,S1) A reach(S)
12. p1(S1) « ¢(S1) A use(S, S1) A reach(S)
13. p1(S1) < ¢(S1) A rel(S, S1) A reach(S)
Clauses 10 and 12 are removed, because
M (Busy U Init) = —3S (¢(S) A init(S))
M (Busy U Use) = —35 351 (¢(S1) A use(S, S1))
We fold clauses 11 and 13 by using the definition clauses 8 and 1, respectively,
thereby obtaining:
14. p1(S1) < ¢(S1) A cre(S,S1) A p1(S)
15. p1(S1) < ¢(S1) A rel(S, S1) A ur(S)
Notice that this application of the folding rule is justified by the following two
facts:

22

M (Busy U Cre) |E VSVS1 ((¢(S1) A ere(S,S1)) — ¢(9))
M (Busy U Rel) = VSVS1 ((¢(S1) A rel(S,S1)) — unsafe(S))

Thus, starting from program Ppp,p..,U{clause 1} we have derived a new pro-
gram @) consisting of clauses 6, 7, 14, and 15. Since all clauses in Def™*(ur, Q)
are recursive, we have that for every ground term s denoting a finite set of coun-
ters, ur(s) ¢ M(Q) and by the correctness of the transformation rules [?], we
conclude that mutual exclusion holds for the DBakery protocol.

8 Related Work and Conclusions

We have proposed an automatic synthesis method based on unfold/fold pro-
gram transformations for translating CLP(WS1S) programs into normal logic
programs. This method can be used for avoiding the use of ad-hoc solvers for
WSIS constraints when constructing proofs of properties of infinite state multi-
process systems.

Our synthesis method follows the general approach presented in [?] and it
terminates for any given WS1S formula. No such termination result was given
in [?]. In this paper we have also shown that, when we start from a closed WS1S
formula ¢, our synthesis strategy produces a program which is either (i) a unit
clause of the form f <, where f is a nullary predicate equivalent to the formula
@, or (ii) the empty program. Since in case (i) ¢ is true and in case (ii) ¢ is false,
our strategy is also a decision procedure for closed WS1S formulas. This result
extends [?] which presents a decision procedure based on the unfold/fold proof
method for the clausal fragment of the WSkS theory, i.e., the fragment dealing
with universally quantified disjunctions of conjunctions of literals.

Some related methods based on program transformation have been recently
proposed for the verification of infinite state systems [?,?]. However, as it is
shown by the example of Section [, an important feature of our verification
method is that the number of processes involved in the protocol may change over
time and other methods find it problematic to deal with such dynamic changes.
In particular, the techniques presented in [?] for verifying safety properties of
parametrized systems deal with reactive systems where the number of processes
is a parameter which does not change over time.

Our method is also related to a number of other methods which use logic
programming and, more generally, constraint logic programming for the verifi-
cation of reactive systems (see, for instance, [?,?,?,?] and [?] for a survey). The
main novelty of our approach w.r.t. these methods is that it combines logic pro-
gramming and monadic second order logic, thereby modelling in a very direct
way systems with an unbounded (and possibly variable) number of processes.

Our unfold/fold synthesis method and our unfold/fold proof method have
been implemented by using the MAP transformation system [?]. Our implemen-
tation is reasonably efficient for WS1S formulas of small size (see the example
formulas of Section[d). However, our main concern in the implementation was not
efficiency and our system should not be compared with ad-hoc, well-established
theorem provers for WS1S formulas based on automata theory, like the MONA

23

system [?]. Nevertheless, we believe that our technique has its novelty and de-
serves to be developed because, being based on unfold/fold rules, it can easily be
combined with other techniques for program derivation, specialization, synthesis,
and verification, which are also based on unfold/fold transformations.

24

	Combining Logic Programs and Monadic Second Order Logics by Program Transformation

