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Abstract. The context of this research is the development of a peda-
gogical surgery simulator for colon cancer removal. More precisely, we
would like to simulate the gesture which consists of moving the small
intestine folds away from the cancerous tissues of the colon. This paper
presents a method for animating the small intestine and the mesentery
(the tissue that connects it to the main vessels) in real-time, thus enabling
user-interaction through virtual surgical tools during the simulation. The
main issue that we solve here is the real-time processing of multiple col-
lisions and self-collisions that occur between the intestine and mesentery
folds.
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1 Introduction

Enabling surgeons to train on virtual organs rather than on a real patient has
recently raised a major interest for the development of pedagogical surgery sim-
ulators. Such simulators would be particularly useful in the context of minimally
invasive surgery, where learning the right gestures while observing results on a
screen causes major difficulties. The long term aim of this research is the devel-
opment of a virtual-reality based simulator for minimally invasive colon cancer
removal. Here, as the patient is resting on his back (Fig. 1), the small intestine
is positioned just above the colon region, thus hiding the colon beneath. This
requires the surgeon to interact with the intestine (by pulling and folding it)
so that he can operate on the colon without any constraint. Hence, our aim is
to simulate the behavior of the intestine when the surgeon is practicing in the
virtual surgical environment. Note that the current scope of this research work
does not include the simulation of the removal of the cancer itself.

The intestinal region of a human body is characterized by a very complex
anatomy. The small intestine is a tubular structure, about 4 meters long, con-
strained within a small space of the abdominal cavity, resulting in the creation of
numerous intestinal folds. This is further complicated by a tissue known as the



Fig. 1. Position of the small intestine when the patient is lying on his back

mesentery which connects the small intestine to the blood vessels. The mesen-
tery suspends the small intestine within the abdominal cavity, at a maximal
distance of 15 cm from the main vessels [1] (Fig. 2). Our challenge is to detect
the collisions and self-collisions occurring in the intestinal region and to provide
a realistic response at interactive frame rates.

Fig. 2. Anatomy showing the intestine (duodenum, jejunum and ileum) and mesentery.

Section 2 describes the earlier works in the area, focussing on the main tech-
niques for efficient collision detection and response. Section 3 describes our ge-
ometrical and mechanical models of the small intestine and the mesentery. We
then describe our collision detection method and our novel approach for provid-
ing response in Sect. 4. This is followed by results in Sect. 5 and conclusions in
Sect. 6.

2 Related Work

Recently, numerous researchers have focussed on the efficient simulation of de-
formable models [4, 5, 7, 9, 15, 16, 17, 23]. Several of them relied on adaptive,
multi-resolution techniques for reaching real-time performances for complex vol-
umetric bodies [4, 5, 9, 15]. In particular, some of these techniques were success-
fully applied to surgery simulators [8, 9, 16, 17, 22, 25]. In all these works, volu-



metric deformable bodies were simulated either in isolation, or were interacting
with a single rigid tool, enabling the use of very specific techniques for collision
detection and response, such as methods based on graphics hardware [19].

The problem we have to solve here is different: as will be shown in section 3, no
volumetric deformable model will be needed since the intestine and the mesentery
can be represented as a 1D and 2D structure respectively. Accordingly, a simple
chain of masses and springs were used by France [12, 13] for simulating the
intestine. France used a grid-based approach for detecting self-collisions of the
intestine and collisions with its environment. All objects were first approximated
by bounding spheres, whose positions were stored, at each time step, in the 3D
grid. Each time a sphere was inserted into a non-empty voxel, new colliding
pairs were checked within this voxel. Though this method achieved real-time
performances when the intestine alone was used, it failed when a mesentery
surface was added.

A well-known technique for accelerating collision detection consists of ap-
proximating the objects by a hierarchy of bounding volumes [3, 6, 14, 24, 28]. It
enables to quickly get rid-off most not-intersecting cases. In particular, thanks
to the tight-fitting volumes used, the OBB-trees [14] are known as the best rep-
resentation for detecting collisions between volumetric rigid bodies. The hierar-
chies can be recursively updated when the objects undergo small deformations.
However, this is not suitable for intestine-mesentery interaction where, even a
small local deformation can cause a large movement of the folds. This creates a
global deformation at large scale, which prevents the hierarchy from being effi-
ciently updated. An alternate multi-resolution method, based on layered shells,
was recently presented by Debunne [10]. It is well-suited for collision detection
between deformable objects since the shells themselves are deformable struc-
tures extracted from a multi-resolution representation of these objects. Though
suitable for volumetric deformable bodies, this method will not be appropri-
ate for intestine and mesentery, since the time-varying folds cannot easily be
approximated at a coarse scale.

Finally, Lin and Canny [18] exploited temporal coherence by detecting colli-
sions between convex polyhedra by tracking pairs of closest vertices. These pairs
were very efficiently updated at each time-step by propagating closest distance
tests from a vertex to its neighbors. Debunne [10] adapted this technique for
detecting collisions between his volumetric layered shells very efficiently. Since
these shells were neither convex nor rigid, a stochastic approach was used at
each time step to generate new pairs of points anywhere on the two approaching
objects. These pairs were made to converge to local minima of the distance, dis-
appearing when they reached an already detected minimum. Our work inspires
from this idea of stochastic collision detection exploiting temporal coherence. It
has been adapted, in our case, to the specific processing of multiple collisions
and contacts between the intestine and the mesentery folds.



3 Modeling of the Intestinal System

3.1 Geometric Model

As shown in Fig. 2, the mesentery is a folded surface membrane, approximately
15 cm thick, which links the small intestine, a long tubular structure 4 m in
length, to the main vessels of 10 cm length. Since the mesentery cannot be de-
veloped onto a plane, setting up its initial geometry free of self-intersections, is
quite difficult. We solved the problem by approximating a possible rest position
for the intestine as a folded curve lying at the surface of a cylinder of radius 15
cm. The axis of the cylinder, 10 cm in length, represents the main vessels. The
folds are drawn on the cylinder such that their total length is 4 m (Fig. 3). Then
the mesentery can be defined as the surface generated by a set of non-intersecting
line segments linking the cylinder axis to the curve. Though this initial geometry
is too symmetric to be realistic, it gives adequate local geometric properties to
the mesentery membrane. This will enable the system to take correct arbitrary
positions when animated under the effect of gravity. The geometry of the in-
testine is defined by creating tubular surface of radius 2 cm along its skeleton
curve. The thickness of the mesentery membrane, which can be parameterized
based on patient-specific data, was set to 1 cm.

Intestine

Mesentery

Fig. 3. Initialization of the geometric model of the intestine and the mesentery

3.2 Mechanical Model

The mechanical model representing the mesentery and its bordering curve, the
intestine, should allow large displacements with local, elastic deformations. For
animation, we used a simple mass-spring system since most of the computational
time will be required for self-collision detection. Since the mesentery has a much



larger length (4 m near the intestine) than thickness (15 cm near the vessel), we
sampled it by four sets of 100 masses each, connected by damped springs. The
last set of masses requires no computation since they are attached to the main
vessels, requiring only 300 masses to be integrated at each time step. No specific
model is needed for the intestine since it can be simulated by adjusting the masses
and stiffness values along the first bordering curve of the mesentery surface
(depicted as a darker curve in Fig. 4). To increase robustness and efficiency, we
relied on the integration method recently proposed by Lyard [20].

Fig. 4. Network of masses and springs used for the mechanical model

4 Real-time Collision Processing

4.1 Collision Detection

Our method for real-time collision detection exploits temporal coherence as
in [10, 18], i.e., to track the pairs of closest points between the colliding bodies.
The main differences here are: (1) the interacting objects have a tubular (in-
testine) and a membrane structure (mesentery), and (2) most collisions will be
self-collisions between different folds of the same body. We first explain the col-
lision detection method for the intestine alone, and then explain the mesentery
case.

Collision detection between cylinders can be processed by computing the
closest distance between their axes [11], and comparing it to the sum of their
radii. For intestine, computing the distance between two segments is done by
considering the distance between their principal axes. Then, we store the nor-
malized abscissa (s, t) (0 < s < 1, 0 < t < 1) of the closest points within the
segments, and the corresponding distance dmin.

Adapting the notion of “closest elements pairs” to this skeleton curve means
that we are willing to track the local minima of the distance between non-
neighboring segments along the curve (Fig. 5 ). Of course, only the local minima
satisfying a given distance threshold are of interest to us. We call these pairs of
segments as “active pairs”. Each active pair is locally updated at each time step,
in order to track the local minima, when the intestine folds move. This is done



by checking whether it is the current segment pair or a pair formed using one
of their neighbors which now corresponds to the smallest distance. This update
requires nine distance tests (Fig. 6), and the pair of segments associated to the
closest distance becomes the new active pair. When two initially distant active
pairs converge to the same local minimum, one of them is suppressed. The pair
is also suppressed if the associated distance is greater than a given threshold.

Fig. 5. Tracking of local minima of the distance between non-neighboring segments
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Fig. 6. Update of closest segment pairs of two adjoining intestinal folds

The above process tracks the existing regions of interest but does not the de-
tect new ones. Since the animation of the intestine may create new folds nearby,
a method for creating new active pairs of segments is needed. Our approach is



inspired from the stochastic approach of [10]. At each time step, in addition to
the update of the currently active pairs, n additional random pairs of segments,
uniformly distributed between the end-points but under the distance threshold,
are generated. The update of these extra active pairs is similar to the update
of the existing local minima, i.e., they are made to converge to a local distance
minimum, the pair elements moving from a segment to one of its neighbors,
and disappearing when an already detected minimum is reached. The complex-
ity of the detection process thus linearly varies with user-defined parameter n.
At each time step, collision detection consists in selecting, among the currently
active pairs, the pairs of segments which are closer that the sum of their radii.
Reaction forces, described in the collision response section, will then be gener-
ated between these segments.

For the mesentery, the total number of segments to be considered during each
time-step is very large for real-time computation. Hence, we use the following ap-
proximation to reduce the complexity of the problem. First, since the mesentery
is very thin and soft compared to the intestine, self-collisions of the membrane
will almost have no effect on the overall behavior of the system. Hence, we neglect
the testing of these collisions and only consider the pairs of segments from the
intestine or pairs with one intestine segment and one non-neighboring mesentery
segment.

Secondly, we use adaptive convergence to reduce the large number of distance
computation required in this case. We first replace the first segment S1 of the
pair (S1, S2) by its closest neighbor S to S2 (S is S1 if all neighbors are farther
than S2). We then update S2 by replacing it, if needed, by its neighbor which
is the closest to S. This update requires 12 distance computations at most (i.e.,
when one segment belongs to the intestine, and the other to the inside of the
mesentery). When a collision is detected, a recursive search starts across the
neighbors to find all the colliding pairs in the area.

4.2 Collision Response

We initiate the response whenever the distance between the two segments is
less than the sum of their radii. The earlier approaches such as penalty method
[2, 27] and reaction constraint method [21, 26] implemented collision response
by altering the force matrix in the mass-spring method. In our simulations, we
observed that the stability of the system was reduced when we applied penalty
and constraint methods.

Our new method alters the displacements and velocities of the two collid-
ing segments in such a way so as to avoid interpenetration. Let the end-point
velocities of segment S1 be v1 and v2 and that of segment S2 be v

′
1 and v

′
2

respectively. Let x1, x2, x
′
1 and x

′
2 be the corresponding positions. Let v and v

′

be the velocities of the closest approaching point within each segment (already
stored in the neighborhood data structure) and x and x

′
be the positions of the

closest points (Fig. 7).
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Fig. 7. Collision response by displacement-velocity correction

If s and t are the normalized abscissa of the closest points on the two segments
we have:

v = (1− s)v1 + sv2 v
′

= (1− t)v′1 + tv
′
2 (1)

Let two forces per time-step, f and f ′(= −f), be applied along the direction of
collision u to cause a change in the velocities such that the relative velocities
along the direction of collision is zero. These forces should set the new velocities
vnew and v

′
new to values satisfying the condition:

(vnew − v
′
new).u = 0 (2)

The force f acting on the point of collision can be split between the end-points
according to their barycentric coordinates. Expressing the new velocities in terms
of the force and old velocities at the segment end-points yields:

vnew1 = v1 + (1− s)fu vnew2 = v2 + sfu

v
′
new1 = v

′
1 + (1− t)fu v

′
new2 = v

′
2 + tfu

(3)

Again, expressing the new velocity of the colliding point vnew in terms of the
end-point velocities vnew1 and vnew2:

vnew = (1− s)vnew1 + svnew2

= v + ((1− s)2 + s2)fu
(4)

Similarly for segment S2:

v
′
new = v

′ − ((1− t)2 + t2)fu (5)

Substituting the new velocity values from (4) and (5) into (2) and solving for f ,
we have:

f =
(v
′ − v).u

(1− s)2 + s2 + (1− t)2 + t2
(6)



Using this value of f , we compute the new velocities of the end-points from (3).
We use a similar formulation for correcting the positions of colliding segments.
The only difference is in the condition for avoiding interpenetration, which takes
the segment’s radii r and r′ into account:

(xnew − x
′
new).u = r + r′ (7)

The force value g to change the positions in order to enforce the above condition,
is then:

g =
(x− x

′
).u + r + r′

(1− s)2 + s2 + (1− t)2 + t2
(8)

g is used for modify the positions xnew1, xnew2, x′new1 and x′new2 of the segments
end points using similar expressions as in (3).

5 Results

5.1 Validation

In order to compare the effectiveness of this method, we developed a simple
testing methodology for case of the intestine in isolation. We would like to know
if our algorithm detects all the regions of collisions. To do so, we compared our
method with a naive O(n2) approach (i.e., do a check of all possible pairs to
detect all the active collision regions). So, we let the simulation run and took
snapshots of the model during different time intervals (Fig. 8a and 8b). At the
same time, we also collected data on the segment pairs (index values) stored
in the neighborhood data structure. We carried out this procedure for both
the methods. During the simulation, the mass points were resting on a plane.
Figures 8b and 8d plot the values of the active segment-pair indices for the
two configurations (all segments under the distance threshold in the case of the
O(n2) detection). Results show that since our method only tracks local minima
of the distance, it considers much fewer segments (Table 1). They also show that
all regions of interest are adequately detected, i.e., there are no colliding folds
with no detected local minima, as depicted in Fig. 8b. The corresponding plot in
Fig. 8d shows an increased density of points in the local minima region, thereby
indicating that it has been detected by the algorithm. The resulting animations
also showed no interpenetration with realistic collision response. The figure only
shows the collisions detected by the converging pairs. Once a pair converges to
a collision, the recursive propagation ensures that all the collisions of a collision
region are detected. Our method can detect all the regions of collisions at 30
Hz on a PC. Comparing with the O(n2) method, this method uses a relatively
small number segment-pairs and is hence a lot faster.

5.2 Qualitative Results

Snapshots from the real-time animation of the intestinal system including both
the small intestine and the mesentery are depicted in Fig. 9. Note that realistic
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Fig. 8. (a) and (b) Snapshots of the simulation of an isolated intestine. (c) and (d)
Plot of the active pairs of segments compared with the pairs from the O(n2) method.

Table 1. Running time (in ms) for both the methods

Number of segments Time (ms)
Our method O(n2)

50 10 30
100 17 120
200 27 473



rendering is not our concern here. Our displacement-velocity method for collision
response produces highly stable simulations.

As a companion to this paper, a dynamic real-time demonstration of our re-
sults is available at: http://www-imagis.imag.fr/Membres/Francois.Faure/papers
/intestine/index.html.

(a) The system in its initial state with the intestine represented by the curve along
the cylindrical surface edge and the mesentery by segments connecting it to the cylinder axis.

(b) The intestine has reached a more plausible shape.

(c) The intestine makes a loop around the mesentery (medically unrealistic).

Fig. 9. Snapshots from our real-time simulator of the intestinal system.

6 Conclusion

We have developed a model which can accurately determine all the active regions
of self-collisions in the intestine and the mesentery. We have also developed a



method for providing realistic and stable collision response. Our models run at
interactive frame rates which can be used in a virtual surgical environment.

Future work will include the incorporation of these algorithms in the in-
testinal surgery simulator developed by our collaborators in Lille [12, 13], thus
enabling the use of convincing geometric coating, texturing and rendering of the
organs, in addition to the use of a force-feedback device for user-interaction.
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