Analysing the Impact of Adding Integrity
Constraints to Information Systems

Suzanne M. Embury! and Jianhua Shao?

! Department of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, England, United Kingdom
SEmbury@cs.man.ac.uk
2 Department of Computer Science, Cardiff University,
P.O. Box 916, Cardiff, CF24 3XF, Wales, United Kingdom
J.Shao@cs.cf.ac.uk

Abstract. The ability of a business to change its working practices, in
order to gain or retain competitive edge, is closely aligned to its ability
to change the business rules implemented by its information systems.
Unfortunately, adding a new business rule to an existing system is both
time-consuming and error-prone. It is all too easy, for example, for the
programmer to overlook some program elements that are affected by the
addition of the new rule, with the result that it is not enforced uniformly
by the system as a whole. When this happens, the information system
can begin to behave in confusing and anomalous ways.

In this paper, we describe an impact analysis technique that aims to sup-
port the programmer in the difficult task of implementing an important
class of business rules, namely, integrity constraints. We have adapted
techniques from database integrity maintenance to allow us to identify
whether a program is likely to be affected by the addition of a new con-
straint, and to pinpoint the specific program statements that must be
guarded against the possibility of constraint violation. Our technique can
also be used to provide guidance to the programmer as to the conditions
that must be included in any new guards.

1 Introduction

The ability of a business to gain and retain competitive edge is closely aligned to
its ability to change the business rules which govern its day-to-day behaviour. A
business rule is a statement that “defines or constrains some aspect of a business”
[T0]. For example, one such rule might define the criteria that make a customer
eligible for a certain kind of discount; another might state the circumstances
under which credit can be given. Such rules are typically very volatile. New
business rules are regularly imposed on organisations by changes to statutory
regulations, government policy and economic/market conditions. However, in
addition to these enforced changes, many businesses also choose to modify their
business rules frequently as they fight to maximise revenues, minimise churn and
capture new market share.
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One of the key costs for any organisation wishing to make changes to its
business rules arises from the need to evolve the supporting information systems
so that they too enforce the new rules. Adding new business rules to a software
system (or modifying existing ones) is typically both time-consuming and error-
prone. The reason for this is that there is no obvious correspondence between
a business rule and the collection of software artefacts that implement it. Real
world information systems typically consist of a great many programs, each
of which has a slightly different effect on the system state and each of which
may potentially have a role in enforcing a new business rule. Deciding which
programs (or which parts of a program) might violate the new rule, and exactly
what changes have to be made to them to prevent the violations, is an extremely
challenging task.

Current software maintenance tools offer little help with this task, and it is
usually necessary to manually inspect a significant proportion of the program
code. Not only is this costly in terms of programmer time, but it is also highly
error prone. It is extremely easy to overlook some programs that really ought to
be modified or to add redundant checks to programs that cannot in fact cause a
violation of the rule. And yet much of this inspection work is highly repetitive
and mundane, and is therefore amenable to automation.

In this paper, we present a technique that partially automates the process
of adding a particular kind of business rule to an existing information system.
The business rules that we focus on are those that act as database integrity
constraints [I4]. Of course, evolution is straightforward for those integrity con-
straints that are simple enough to be implemented centrally by the database
management system (DBMS). However, it is still the case that many of the
more complex forms of business rule must be implemented in the application
programs, either because of limitations in the capabilities of the DBMS or be-
cause of the need for better performance than can be achieved using a centralised
approach. Tool support for such modifications is therefore still required, even
though DBMS facilities have improved significantly over the last decade.

In the remainder of this paper, we describe our technique for determining
the impact of adding a new integrity constraint to a software system. We begin
(Section [2)) by outlining the steps involved in implementing a new integrity
constraint, and consider how far existing software tools can support each of
these steps. We then go on to show how techniques from the field of database
integrity maintenance (Section[3)) can be adapted to provide key elements of the
information necessary for performing a detailed impact analysis for this form
of software maintenance (Section H). Finally, we illustrate the behaviour of our
technique on some examples (Section [3]) and conclude (Section [G).

2 Implementing New Integrity Constraints

Constraint-style business rules begin life as high-level conditions that the organ-
isational state must adhere to [I0]. These conditions can typically be violated
by several different actions. Consider, for example, the following constraint:



Analysing the Impact of Adding Integrity Constraints 177

All customers with a negative balance must have a valid authorisation
for their overdraft.

This rule can potentially be broken by several different operations: lowering the
balance of a customer’s account, or cancelling an overdraft authorisation for
some customer, for example. The supporting software systems must ensure that,
whenever one of these “dangerous” actions occurs, the constraint is not violated
by the action. The exact processing steps required to detect a specific type of
violation will, in general, depend on the action which causes it. For example, if
the customer’s balance is lowered, then we need to check whether it has fallen
below zero and if so whether an overdraft authorisation exists. If, on the other
hand, a program results in the cancellation of an overdraft request, it is only
necessary to check whether that customer’s balance is above zero at the time of
the cancellation.

To the best of our knowledge, there is no widely accepted methodology for
the implementation of business ruled]] However, by examining the requirements
for the accurate and complete implementation of constraint-type rules, we can
infer something about what is involved in this evolution task and derive from it
the potential for automation.

The first requirement is to understand how the new constraint may be in-
validated by various forms of state change. Since we are focussing on business
rules that are equivalent to constraints over a database state, each such rule can
be expressed as a first order logic expression over predicates corresponding to
the schema elements in the database (and the standard inequality predicates).
For example, the informal constraint given earlier can be expressed in first order
logic (FOL) as follows:

(Vz,y, z) customer(z,y, z) A z < 0 = overdraftAuth(zx)

For any finite FOL expression, there is a finite set of atomic updates that can
violate it. For example, the insertion of a new record into the customer table
might invalidate our example constraint, but deletion of a customer record can
never have this effect. The full set of violating updates can be discovered through
analysis of the form of the constraint (as we shall describe in Section B).

Once we know which updates can trigger a constraint violation, the next
requirement is to examine each of the programs within the system, to see which of
them have the capacity to effect one of these dangerous state changes. Each such
program must be modified in order to prevent (or flag) violations of the rule. The
most common strategy is to insert a pre- or post-condition into the program, as a
guard on the offending update or any associated transaction commit operations.

! The nearest approximation to such a methodology is perhaps the externalisation of
business rules using rule engine technology, such as that provided by ILOG JRules
[11]. However, rule engines are not a universal solution to the problem of business
rule implementation and they cannot easily be grafted onto an existing information
system. In this paper, therefore, we concentrate on the problems faced by the main-
tainers of systems which have been implemented in a more traditional manner, and
where the rules are internalised within the code of the application programs.
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From these basic requirements, we can derive the following skeleton process
for modifying an information system so that it enforces a new constraint:

1. Analyse the new constraint and determine from it which state change oper-
ations can potentially cause it to be violated.

2. Locate the set of program statements which perform the state change opera-
tions identified in step 1. From this, we can also identify the set of programs
which are affected by the new constraint.

3. For each potentially dangerous program statement identified in step 2, deter-
mine whether it really does have the capability to violate the constraint (i.e.
check that it does not occur under conditions which would make a violation
of the rule impossible).

4. For each program statement remaining after step 3, determine how we will
detect whether it violates the constraint and how such violations will be
prevented (i.e. choose a pre- or post-condition approach).

5. For each program statement remaining after step 3, determine the condition
that must be checked by the program in order to prevent violations in the
manner selected in step 4.

Each of these steps presents a potential challenge to the maintenance program-
mer, either because of the complexity of the reasoning task involved or because
of the sheer volume of cases that must be considered. Despite this, few soft-
ware tools exist which can support the programmer in this task. Step 1, for
example, must be carried out manually at present, although (as we shall later
demonstrate) techniques do exist for assisting in this task.

Step 2 corresponds closely to the traditional notion of impact analysis, in
that it essentially involves the identification of the set of software components
(in this case, programs) that are affected by the proposed change. However, most
current impact analysis tools [I] discover impacts by tracking dependencies of
various kinds between software artefacts. While certain forms of dependencies
(e.g. data dependencies) might be of use in determining which programs are
impacted by the addition of a new constraint, they do not provide us with a
complete solution to the problem. In fact, the kind of functionality required to
support step 2 is provided to a large extent by modern data dictionary systems.
For example, Predict (a data dictionary for use with the ADABAS/NATURAL
development environment [17]) maintains links to program statements which
contain database update commands, and thus allows easy identification of the
(super)set of programs which can potentially violate a given constraint.

For steps 3 to 5, we require a tool which is able to reason over both the
semantics of the programming language and the semantics of the data manip-
ulation commands. Presently, very few impact analysis techniques incorporate
knowledge of database semantics. There are a few commercial tools (e.g. CAST
Envision [I6] and Quest’s SQL Impact [13]) and some limited research proposals
[@I15] which perform impact analysis for database schema evolution. However,
their scope is limited to changes to table and attribute structure, and they can-
not identify the impacts of more complex forms of schema evolution (such as
changes to integrity constraints).



Analysing the Impact of Adding Integrity Constraints 179

3 Identifying Potentially Violating Updates

The key to automating the process of constraint implementation lies in the first
of the steps mentioned in the previous section. If we can discover which updates
can potentially violate the new constraint, then we can use this information,
alongside conventional source code analysis techniques, to provide support for
all of the remaining steps (i.e. steps 2 to 5).

As it happens, this is a problem that has been well-studied for many decades,
and a variety of solutions have been proposed in the literature [12/3]9]. In general,
these solutions are derived from the notion that, given any arbitrary database
update, we can classify its effect on the truth value of a condition over the
database state as belonging to one of the following three categories [5]:

— The update has no effect on the validity of the constraint, regardless of the
circumstances under which it occurs. In this case, the update is said to be
trivially satisfying.

— The update will always result in a violation of the constraint, regardless of
the circumstances under which it occurs. In this case, the update is said to
be trivially violating.

— The update will cause a violation of the constraint in some circumstances
but not in others. Updates of this kind are said to be potentially violating.

As an illustration of these three categories, consider the following simple con-
straint:
icy = (Ve,a,b) cust(c,a,b) A managed(c) = gold(c)

Informally, this rule expresses the company policy that, for the purposes of the
company’s reward programme, all managed customers are considered automat-
ically to have “gold” status. We will now present some example updates, and
classify them according to their effect on this constraint. We will use the notation
+tablename(xy, ..., x,) to indicate the insertion of a new tuple < z1,...,z, >
into the table called tablename, and the notation —tablename(xy,...,x,) to in-
dicate the deletion of the tuple < z1,...,x, > from tablename. Modifications to
existing tuples are expressed as combination of a deletion and an insertion.

We illustrate the different categories of update using the following examples:

— Since our example constraint is range-restricted [12], any update to a schema
element which does not appear in the constraint expression can be classified
as being trivially satisfying. For instance, the update

—account(zx,y, z)

is trivially satisfying relative to our example constraint for any value of x, y
and z.

— Some updates involving schema elements which do appear in a constraint
may also be trivially satisfying, as in the case of the following update:

—cust(z,y, 2)
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Deleting a customer from the database can never violate constraint ic;. Such
an update can only have the effect of falsifying the left hand side of the
implication for a given set of values, and thus the implication must remain
true for those values.

— There is only one update that is trivially violating for constraint icy. It is
the composite update:

+cust(z,y, z), +managed(x), —gold(z)

Since all these updates refer to the same customer identifier (z), we know
that a violation must always result if all three are executed successfully.

— Finally, we present an example of an update that is potentially violating for
our example constraint:

—gold(x)

In this case, we cannot tell from the form of the update whether it will cause
a violation or not. In order to make this decision, we need to interrogate the
database to discover more about the context of the update. For instance, in
this case, we need to know whether the customer whose gold status is being
deleted is a managed customer or not. If he or she is, then this update will
cause a violation, but if the customer is a normal domestic customer then
we can freely delete his or her gold status without breaching this particular
business rule.

When we add a new integrity constraint to an information system, we need to
identify the set of all updates which are trivially or potentially violating for that
constraint?. Any program capable of effecting a state change that includes such
an update is potentially impacted by the addition of the new constraint.

To identify this set of updates, we can make use of techniques from the field of
database integrity checking [12J2]5l9]. Various approaches have been proposed,
each of which operates on a slightly different class of constraints. Here, we will
describe the method we have implemented in our prototype impact analysis
tool, which is adapted from a technique proposed for use in identifying database
repairs [8]. Due to space restrictions, we will present a cut-down version of the
method that operates over universally quantified expressions only. The reader
is referred to the literature on integrity maintenance for details of techniques
which can operate on constraints involving existentially quantified variables [9].

The method we describe here uses a truth table representation of the con-
straint to derive the different kinds of update that can cause it to become false.
For example, consider the following truth table for constraint ic;:

2 For brevity, in the remainder of this paper, we will use the term potentially violating
updates to indicate the set of both trivially and potentially violating updates.
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The truth table shows us that a violation of ic; occurs iff a substitution 6; of
values for the variables a, b and c exists, such that:

cust(c/01,a/01,b/601) A managed(c/61) A =gold(c/01)

is satisfied by the database state. By examining the differences between pairs of
true and false rows in the truth table, we can discover what state changes could
cause such a substitution to be brought into existence. For example, consider
the differences between rows 1 and 7 of the table. Suppose we have a database
state ds which satisfies the row 1 expression, i.e. some substitution 5 exists for
which the expression:

—cust(c/b2,a/02,b/02) A ~managed(c/02) A —gold(c/03)

is true in ds. The columns which have a different value in the two rows being
compared tell us what changes we need to make to ds in order to cause it to
satisfy the false row expression for #; — that is, to cause a violation to be
introduced. These changes are:

+cust(c/02,a/02,b/02), +managed(c/02)

The columns where the value is the same in both rows indicate the necessary
and sufficient condition for determining whether a violation will definitely occur
as a result of these updates. In the case of our example, the condition to be
tested is: gold(c/02). In other words, if we are adding a new managed customer
to the database, we need to check whether that customer has gold status or not,
in order to determine whether a violation with result from the update.

By considering the differences between all possible pairs of true and false rows
in this way, we can extract the complete set of potentially violating updates (and
their associated conditions) for this rule:

1—=7 +cust(c, a, b), +managed(c) if mgold(c)
2 =7 +cust(c, a, b), +managed(c), -gold(c) if true
a7

3—=7 +cust(c, a, b) if managed(c) A —gold(c)

4—7 +cust(c, a, b), -gold(c) if managed(c)

5—7 +managed(c) if (3a,b) cust(c, a, b) A —gold(c)
6 — 7 +managed(c), -gold(c) if cust(c, a, b)

8 =7 -gold(c) if cust(c, a, b) A managed(c)

3 The proof of this is given elsewhere [
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Any program fragment which has the potential to bring about one of these state
changes can also potentially violate the constraint. For example, the state change
described by the transition between row 5 and row 7 can be effected by insertion
of a new cust tuple, or by updating an existing one.

By analysing the form of the constraint that we wish to add to the system,
therefore, we can identify the set of “symptoms” that indicate where a change to
source code might be required. In the following section, we will describe how we
can make use of this information in analysing the impact of adding new integrity
constraints to existing software systems.

4 Impact Analysis for the Addition of Constraints

The ability to determine the complete set of updates that can violate a con-
straint opens up a number of possibilities for developing techniques to support
programmers in maintaining and evolving integrity constraints. For example, if
we consider the steps involved in implementing a new constraint (as outlined in
Section B)), the following forms of support can be envisaged:

1. If we know which state changes can potentially cause a violation of the new
constraint, we can use this information to identify those programs which
have the potential to bring such state changes about (i.e. to support steps 2
and 3). This corresponds to the set of programs which need to be modified
in order to implement the new constraint. In theory, it should be possible
to identify this set exactly; in practice, a more efficient technique which
identifies a close superset may be just as useful. It is important, however,
that any more efficient but less accurate technique returns a true superset
of the actual results. We can live with the programmer having to examine
a handful of programs unnecessarily, but we want to be confident that no
potentially violating programs have been omitted.

2. Once we have determined that a particular program requires modification,
it should be possible for a software tool to indicate to the programmer ex-
actly which of the database update statements need to be guarded against
violation of the constraint (i.e. to support step 4). Again, in practice, we can
be satisfied with a technique which occasionally points out update state-
ments that cannot violate the constraint, provided that it does not omit any
statements that can.

3. Since we can derive the necessary and sufficient condition for violation along
with each potentially violating update, we can also provide some guidance
to the programmer as to the form of the guard condition that is required in
each case (i.e. to support step 5). Of course, the actual changes to the code
must be chosen by the programmer, but the advice provided by the software
tool could at least help to ensure that awkward and complex cases are not
overlooked or interpreted incorrectly.

Each of the above cases involves the use of information derived by the analysis
of a constraint in determining the impact of adding that constraint to a given set
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of programs. Such impacts can be identified at a variety of granularities, ranging
from identification of impacted programs (point 1 in the above list), through
identification of impacted program statements (point 2), to guidance as to the
form of the new code that is required (point 3).

Given the capability to determine impacted program statements, it might be
thought that the ability to determine impacted programs is unnecessary. After
all, the set of impacted programs should be exactly the set of programs which
contain impacted statements. However, since analysis of a program to discover
the set of impacted statements is a potentially expensive task, there is still some
value in a “quick and dirty” filtering step, which can remove programs which
are not impacted from further consideration. Only programs which pass through
this filtering step are subjected to the more comprehensive impact analysis step.

Before we describe the operation of these two steps in more detail, we first
present some definitions and assumptions. We use the name ic, to refer to the
integrity constraint that is to be added to the system, while Ps denotes the set of
programs that are to be analysed for the impacts of this change. We assume the
existence of a function called gcu which maps constraints onto the set of guarded
complex updates which can potentially violate them. A guarded complex update
is a pair < Us, C >, where Us is a set of database updates and C' is the necessary
and sufficient condition (i.e. the guard) that determines whether the updates in
Us result in a rule violation or not. For example, at the end of Section [3, we
listed the seven GCUs that are potentially violating for constraint ic;.

Each member of Us is a triple < UT, TN,V >, where UT is the update type
(UT € {*',‘d,‘m’}, representing the standard “insert”, “delete” and “modify”
update types), TN is the name of the table that is updated and V is a tuple of
variables representing the updated tuple in the named table.

We further assume the existence of a function called dbs, which maps a
program p (p € Ps) onto a set of triples < UT, TN,S >, where UT is the
update type (as defined earlier), TN is the name of the table that is updated,
and S is the identifier of a statement in the program that corresponds to an
update of the given type to the given table. This function provides us with a
convenient means of locating program statements that correspond to particular
database update commands.

4.1 Identifying Programs Likely to Be Impacted

Once the set of potentially violating updates (PVUs) has been identified for the
new constraint, we can use this information to quickly determine which of the
application programs are likely to be capable of violating it. Informally, we can
state the criterion used to filter the set of programs as follows:

A program is potentially impacted by the addition of the new constraint
iff there is some PVU for that constraint such that every component
update of the PVU is performed by some part of the program.

In the case of example constraint icy, this criterion implies that any program
which performs a deletion from the gold table is impacted by the addition of ic;.
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Programs which contain no deletion or modification operations on the gold table
and no insertions or modifications to either cust or managed are not impacted.

More formally, for a new constraint ic,, we can define the set of potentially
impacted programs IP (IP C Ps) as:

IP={p| (3u,c) p € Ps A <u,c> € geulic,) A

((Vut, tn,v) < ut,tn,v > € u = (3s) < ut,tn,s >€ p) }

The advantage of this filtering criterion is that it is relatively cheap to com-
pute (especially if an index has been created that provides quick access to the
database update statements performed by the program [17]). It also meets our
requirements in that it can eliminate a high proportion of the non-impacted
programs without eliminating any impacted programs.

It is not, however, a completely accurate determiner of impact, and some
non-impacted programs will pass successfully through our filter. This can happen
when the updates within a PVU all occur in a program but in such a way that
it is impossible for them to be executed together in one run of the program.

Another situation in which the filter will give inaccurate results is when the
PVU updates occurring in the program do so within a context where the guard
condition can never be satisfied. For example, if we have the following PVU:

+cust(c,a,b) if b<0

then a COBOL program p containing the following fragment would be considered
to be potentially violating according to our filtering criterion:

IF WS-BALANCE > O
MOVE WS-CNO TO DB-CUST-CNO
MOVE WS-CUST-ADDR TO DB-CUST-ADDR
MOVE WS-BALANCE TO DB-CUST-BAL
STORE CUST.

However, if this is the only update to the cust table in p, then p should not be
included in the set of impacted programs. This is because the update specified
in the PVU occurs in a context in which the associated condition can never be
satisfied; the enclosing if-statement is already guarding the update against this
particular kind of violation.

4.2 Identifying the Impacts within a Program

Having determined that a particular program is likely to be impacted by the
addition of a new constraint, the next step is to perform a more detailed analysis
of that program, to discover the ways in which it is impacted more precisely. In
order to do this, we must identify the subset of the PVUs of the new constraint
that may be performed by the program being analysed. This allows us to pinpoint
the exact source code statements which are involved in each PVU, so that the
programmer can be given some guidance on where new guard conditions must
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+cust(a, b, ¢)

Fig. 1. Example CFG with update nodes distinguished

be added to the program. In general, of course, a given program will be capable
of performing several different PVUs, and may even be able to perform the same
PVU in several different ways.

Conceptually, the problem of identifying the set of program statements that
can perform a PVU corresponds to the identification of subgraphs in the pro-
gram’s control flow graph (CFG) which contain all the updates in the PVU in
sequence. For example, Figure [[lshows the basic structure of a control flow graph
for a very simple program. The nodes of the graph correspond to the statements
of the program and the edges between the nodes indicate the control flow paths
that are possible between statements. Nodes corresponding to database update
commands are shown in grey and are labelled with a description of the state
change operation the command performs.

If we match this example control flow graph against the PVU set identi-
fied from constraint ic; then we discover that the following three PVUs can be
performed by this program:

+cust(c, a, b) if managed(c) A — gold(c)
+cust(c, a, b), -gold(c) if managed(c)
-gold(c) if cust(c, a, b) N managed(c)

In order to compute such matches, we first construct a “trace” of the database
update commands that can be performed by the program being analysed, and
then match each PVU update set against this tracel. The trace is computed

4 In our prototype implementation, we actually compute the trace and perform the
matching at the same time, as this is more efficient than computing the trace sepa-
rately from matching. However, we present them as two separate steps here, in order
to simplify the presentation.
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by walking the abstract syntax tree of the program, adding the identifiers of
update statements as they are encountered. Effectively, it provides a (finite)
representation of the sequences of update commands that may be executed by
the program.

Since programs may contain conditional branches and loops, it is not possible
to use a simple list structure to represent this trace. Instead, we use a form
of AND-OR tree, where AND nodes represent sequential execution of traces
and OR nodes represent alternative execution of traces. Traces formed from the
bodies of loops are tagged with a special label, which indicates that the updates
in the trace may match against multiple elements of the PVU set.

The algorithm for constructing update traces follows the usual syntax-
directed pattern for analysing programs. Here, we give its definition for several
representative kinds of programming language construct. In each case, the inputs
to the trace function are the current statement in the abstract syntax tree, and
the trace constructed so far. The result is the trace describing the behaviour of
the program immediately after the execution of the statement given as input.

A sequence of statements: in this case, the resulting trace is that produced
by execution of the second part of the sequence, in the context of the trace
produced by the first.

trace([S1; S2], tr) = trace(S2, trace(S1, tr))

A conditional statement: for this kind of statement, we process each branch
of the conditional in the context of the given trace, and then combine the
resulting traces together using an OR node.

trace([if C then S1 else S21], tr) = or(trace(S1, tr), trace(S2, tr))

A loop statement: most loop constructs actually include a conditional ele-
ment, representing the exit condition. For example, consider the definition
of the trace function for a standard while-do loop:

trace( [ while C do S|, tr) = or(tr, tag(trace(S, tr))

If the loop condition C' is false, then this loop will execute zero times, in
which case the resulting trace is simply that produced after execution of the
preceding statement (i.e. the input trace). Otherwise, the final trace is that
produced by executing the loop body an arbitrary number of times.

How do we produce a trace representing the effects of an arbitrary (and
possibly infinite) number of iterations of the loop body? In fact, if we could
be sure that every update type to every database table would appear at
most once in each PVU, the answer to this question would be exceedingly
straightforward, since we would obtain the same set of matches from the
trace of a single execution of the loop body as we would from an arbitrary
number of executions. Unfortunately, there is no reason why a PVU cannot
contain multiple examples of the same kind of update. For example:

+cust(A, B, C), +cust(B, D, E) if ...
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This example PVU matches with a program that contains a single insertion
to the cust table only if the insertion command appears within the body of a
loop. This is because, effectively, updates which occur with loops may match
with updates in a PVU an arbitrary number of times, while updates which
do not occur within a loop may be matched with only one PVU update. We
can therefore model the behaviour of loops by means of the simple expedient
of tagging updates which occur within loops, so that the matching algorithm
is aware that they can be treated specially.

A simple non-update command: simple commands which are not database
updates are essentially ignored by the trace generation algorithm, e.g.

trace([print T, tr) = tr

A database update command: if we encounter an update command, we
must add the details of the update (represented as a triple of update type,
table name and statement identifier) to the current trace. For example:

trace( [ store tn ], tr) = and( tr, < ‘¢,tn,s > )
where s = the identifier of the current statement

Having computed the trace of updates produced by a program, we can then
attempt to match each of the PVUs against it. Informally, we say that a PVU
< us,c > matches a trace t iff all the updates in the set us occur as a sequence
somewhere within ¢. More formally, a set of updates us matches ¢ in the following
cases:

— If us = () then us matches t.

— If us # 0 and t = and(t1,t2) then us matches ¢ iff us can be partitioned into
two disjoint subsets u; and us, such that u; matches t; and us matches to.

— If us # () and t = or(t1,t2) then us matches t iff us matches t; or to.

— If us # 0 and t = tagged(and(t1,t2)) then us matches ¢ iff us can be parti-
tioned into two disjoint subsets u; and g, such that u; matches and(tq, t2)
and uo matches t.

— If us # () and t = tagged(or(t1,t2)) then us matches ¢ iff us can be parti-
tioned into two disjoint subsets u; and us such that:

e w11 matches t; and us matches ¢, or
e uo matches o and u; matches .

— If us = {< “¢,tn,v >} then us matches t iff t = {< ‘', tn,s >} or t =
<‘m/,tn,s >.

— If us = {<’ d',tn,v >} then us matches t iff t = {< ‘d’,tn,s >} or t = {<
‘m/,tn, s >}.

For each match against a given trace, we record the identifier of the PVU which
has been matched and a list of the update statements responsible for it. We also
store a “contextualised” form of the necessary and sufficient condition associated
with the matched PVU. A contextualised condition is one in which some of the
original variables have been replaced with variables from the program code. It
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describes a constraint over the program variables that are involved in the update
commands, rather than over the “disembodied” logical variables of the original
integrity constraint.

Details of all possible matches are recorded (and shown to the programmer),
since each one represents a potential cause of violations within the program that
must be guarded against. In some cases, this may mean that a single program
statement matches with several different PVUs. It is important that the pro-
grammer is aware of all the ways in which a program statement may lead to a
violation, before he or she decides on the guard conditions that will be added to
the program.

5 An Illustrative Example

In order to illustrate our impact analysis technique in action, we will present a
small (and rather artificial) example of the kinds of result it can produce. Assume
that we have an information system which consists of a customer database (db)
and three applications programs (p1, p2 and p3). We wish to add constraint icy
to the system. Recall that ic; is defined as follows:

ic; = (Ve,a,b) cust(c, a,b) A managed(c) = gold(c)

Program p; performs a query over the database and produces a report. It does
not make any updates to the database, and would therefore be filtered out by
our program during phase 1 of the analysis.

Program ps, on the other hand, is used to delete customers and their asso-
ciated records. All the database update commands it contains are included in
the following fragment of code, which appears in the program immediately after
a section of code which attempts to retrieve the customer record to be deleted.
The variable DB-CUST-CNO identifies this record.

100 IF DB-REC-EXISTS

160 MOVE DB-CUST-CNO TO DB-GOLD-CNO
170  DELETE GOLD

230 MOVE DB-CUST-CNO TO DB-MANAGED-CNO
240 DELETE MANAGED

250  DELETE CUST

260  COMMIT.

This program meets our criterion for impacted programs, since it contains all
the updates included within one of the PVUs derived from ic;:

8 =7 —gold(c) if cust(c,a,b) A managed(c)

During the second phase of impact analysis, the PVUs are matched against the
structure of the program in more detail, and statement 170 is found to match
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with the PVU shown above. The contextualised condition that is attached to
the record of this match is:

(Ja, b) cust(DB-CUST-CNO, a, b) A managed(DB-CUST-CNO)

The programmer browses the set of matches, and the statements to which they
are attached, and attempts to determine how much of the contextualised con-
dition is already implemented by the program. In fact, since the programmer
knows that the customer number attribute is a key attribute of all three of the
tables updated by this program, he or she can also deduce that the PVU con-
dition can never be satisfied at the point when the COMMIT operation is invoked
(line 260). This is because any cust and managed tuples which join with the
deleted gold tuple are also deleted by the program, before the effect of this PVU
is committed to the database. The programmer therefore decides that no change
is required to program po (except perhaps for the addition of a comment to
explain why the constraint cannot be violated by this sequence of updates).

Program p3 contains a more complex sequence of updates. The parts of the
program that are relevant to our analysis (i.e. those that involve database up-
dates) are shown below:

120 IF NOT DB-REC-EXISTS

130 MOVE WS-CNO TO DB-CUST-CNO

140 MOVE WS-ADDR TO DB-CUST-ADDR
150  MOVE WS-BALANCE TO DB-CUST-BAL
160  STORE CUST

170 ELSE

210 END-IF.

340 IF WS-CTYPE ="M”

350 MOVE WS-CNO TO DB-MANAGED-CNO
360 STORE MANAGED

370 ELSE

420 END-IF.

780 COMMIT.

This program passes successfully through the phase 1 filter, and is then matched
against the PVUs. As a result, three records are created, to record the following
PVU matches:

— The program may execute PVU 1 — 7, through update statements [160,
360]. The contextualised condition is:

- gold(DB-CUST-CNO)
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— The program may execute PVU 3 — 7, through update statement [160]. The
contextualised condition for determining violation is:

managed(DB-CUST-CNO) A = gold(DB-CUST-CNO)

— The program may execute PVU 5 — 7, through update statement [360]. The
contextualised condition is:

(3a,b) cust(DB-CUST-CNO, a, b) A = gold(DB-CUST-CNO)

At first sight, the first and third of these matches might be thought to be redun-
dant, as their update sequences are both subsets of that of the second match.
However, since it is possible for the flow of control to pass through one of the
identified statements (i.e. 160 and 360) without necessarily passing through them
both, the program actually has the capability to violate the constraint in all these
three ways. The programmer must be made aware of all these possibilities, so
that the most appropriate guard (or guards) can be designed and inserted into
the program.

In our example, since the conditions of the first and third matches are both
stronger than the condition associated with the second, the programmer might
decide to add pre-condition guards to each of the individual updates. Alterna-
tively, he or she might decide to place a single, more complex guard before the
commit operation, that tests for all three of the contextualised conditions at
once.

6 Conclusions

Modifying an information system so that it enforces new business rules is a chal-
lenging and error prone task. If any of the necessary modifications are omitted
or carried out incorrectly, then the business rule will only be enforced by part of
the system and inconsistent behaviour will result [6]. In this paper, we have de-
scribed how techniques from database integrity maintenance can be used as the
basis of a technique which can help make the implementation of certain kinds of
business rule a less painful and risky procedure. The technique, which has been
prototyped in Prolog, helps the programmer by identifying the set of programs
which have the potential to cause violations and by indicating which lines of
code are responsible for this ability. It is also able to provide guidance as to the
form of guard that should be inserted into the program to prevent violations
from occurring at run-time.

We expect that the principal practical benefits of our technique will be in re-
ducing the amount of time programmers have to spend examining program code
that is not related to the new constraint; and in reducing the chance of errors
of omission by helping to ensure that all the possibilities for violations, however
complex or obscure, are considered by the programmer. It is also possible that
this technique might have a role in validation of software, i.e. in helping to de-
termine whether a software system correctly implements a given set of database
constraints, or whether it has the capacity to violate some of them. In addition,
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knowledge of the source code statements implicated in the implementation of a
constraint can also help in generating white-box test cases aimed at detecting
defects in the implementation, or for use in regression testing.

However, further evaluation of the technique is required before these claims
can be verified. In particular, we need to discover whether the algorithms de-
scribed in this paper are capable of processing real-scale constraints and pro-
grams in realistic timescales. The time required to compute impacts by our
method is dependent on two factors: the number of potentially violating updates
that are derived from the new constraint, and the number of distinct sequences
of database update commands that can be performed by the programs being
analysed.

Unfortunately, the number of PVUs derivable from a constraint is 2™ in
the average case and 22772 in the worst case, where n is the number of dis-
tinct atomic predicates appearing in the rule. Similarly, a program containing m
database update statements will be capable of performing up to 2™ — 1 distinct
update sequences, all of which must be matched against the set of PVUs. The
efficiency of this technique in practice is therefore clearly a matter of concern.
Our experience with extraction of business rules from legacy systems suggests
that, for many rules, n will be small (less than 10, for example) [7]. We cannot
be so sanguine in the case of database update statements - it does not seem
unreasonable to expect a typical database application program to contain tens
of update statements. However, we can reasonably expect the average number
of update sequences to be much lower than that predicted by our worst case
analysis.

The next stage in our research, therefore, will be to test our technique on
some real application programs, for the implementation of constraints of realistic
complexity. If the tool is efficient enough to be practically usable, then we can
attempt to gauge its success in reducing effort and errors in integrity constraint
implementation. If the algorithm’s complexity is found to be a stumbling block
to exploitation of the tool, we shall seek a less accurate but more efficient version
of the algorithms that can at least give some help to the programmer in dealing
with the complexity of the rule implementation task.
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