
Consistent Process Execution in Peer-to-Peer
Information Systems

Klaus Haller and Heiko Schuldt

Database Research Group, Institute of Information Systems
Swiss Federal Institute of Technology (ETH Zürich)

CH-8092 Zürich, Switzerland {haller,schuldt}@inf.ethz.ch

Abstract. The proliferation of Internet technology resulted in a high connectivity
between individuals and companies all over the world. This technology facilitates
interactions within and between enterprises, organizations, etc. and allows for
data and information exchange. Automating business interactions on this platform
requires the execution of processes. This process execution has to be reliable,
i.e., guarantees for correct concurrent and fault tolerant execution are vital. A
strategy enforcing these properties must take into consideration that large-scale
networks like the Internet are not always reliable. We deal with this by encap-
sulating applications within mobile agents. Essentially, this allows users to be
temporary disconnected from the network while their application is executing. To
stress the aspect of guarantees, we use the term transactional agents. They invoke
services provided by resources, which are responsible for logging and conflict
detection. In contrast, it is the transactional agents’ task to ensure globally correct
concurrent interactions by means of communication. The used communication
pattern is a sample implementation of our newly developed protocol. It is, to our
best knowledge, the first distributed protocol that addresses the global problem
of concurrency control and recovery in a truly distributed way and that, at the
same time, jointly solves both problems in a single framework. Because (i) pro-
cesses are long running transactions requiring optimistic techniques and (ii) large
networks require decentralized approaches, this protocol meets the demands of
process-based applications in large scale networks.

1 Introduction

The proliferation of Internet technology in the recent years resulted in a high connectiv-
ity between individuals and companies all over the world. Together, they form a unique
world-wide platform for business interactions, or – more general – for data and infor-
mation exchange. Hence, this technology facilitates interactions within and between
enterprises, organizations, etc. This offers new opportunities for automating business
interactions, because a wide variety of services – like booking flights and hotels or reg-
istering for conferences – are today supported by computers and can be invoked over
the network, e.g., the Internet. Application development in this context requires to com-
bine different invocations of such services into a coherent whole. This is done by using
processes. Each activity of a process corresponds to a service invocation or, in case of
intra-process parallelism, to the invocation of a set of semantically equivalent services.

J. Eder and M. Missikoff (Eds.): CAiSE 2003, LNCS 2681, pp. 289–307, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



290 K. Haller and H. Schuldt

Vital to such process-based applications in large-scale dynamic networks like the In-
ternet is to have sophisticated system support guaranteeing that executions are reliable.
Essentially, process executions have to be shielded from unreliable network connections.
However, several problems resulting from this kind of environment have to be solved in
order to provide a holistic solution for reliable process execution.

First, the dynamics of the network has to be taken into account. This means that the
location of services to be invoked as process activities is not known at built-time when
processes are specified (dynamic service providers). Hence, it is not possible to hard-
code this information. Consequently, the services corresponding to process activities
have to be specified by using predicates. In a travel planning process, for instance,
an activity should rather be specified like ’Go to all European airlines and search for
flights from Zürich to Klagenfurt’ instead of coding this in the traditional way ’Go to
www.swissair.com and www.aua.com and invoke appropriate services (whose names have
also to be known at built-time) there’. Obviously the second approach has disadvantages
in a dynamic world where certain airlines stop operation or, more importantly, new
low-price airlines start operation.

Second, the characteristics of the underlying network have to be considered. Essen-
tially, when the network is unreliable, e.g., when network partitioning takes place or
when bottlenecks occur, this has severe effects on the execution of processes. If, for in-
stance, the travel planning process is executed on a mobile device like a PDA, this device
has to be connected to the network as long as the process is executing. Otherwise, pro-
cess execution would stop since remote services could no longer be invoked. The same
problem arises in case of network partitioning if a process wants to invoke a service that
belongs to a different partition. To cope with this problem, both process descriptions
and their execution states have to be brought to the hosts on which the services reside.
To do this, we use the concept of mobile agents [Whi97]. Processes are encapsulated
in a single mobile agent which migrates through the network for the purpose of pro-
cess execution. In the case of intra-process parallelism, the mobile agent clones such
that these clones are able to invoke different services at the same time even at different
hosts. In terms of the travel planning application started on a PDA, this paradigm gives
the user the freedom to disconnect from the network after her application is launched.
For all these reasons, mobile agents seamlessly provide support to problems related to
unreliable network connections.

Third, since service providers are autonomous, they can unilaterally decide to revoke
their services. This might have severe consequences on process executions when among
these services a particular service has been unique in the network (i.e., when there is
no semantically equivalent service left). Essentially, all processes in which this service
is to be used cannot continue their execution. However, in order to reliably execute
processes, each process has to terminate in a well-defined state, even in the case of
failures of the underlying network, in the case services disappear, or when run-time
failures of process instances occur. Yet, all these failures have to be handled in a flexible
way. Essentially, failure handling for processes must not be realized with an “all-or-
nothing” semantics meaning that all effects of a process are undone after a failure occurs.
Rather, following the idea of transactional processes [SABS02] which support semantic
atomicity [GM83], appropriate alternative execution strategies should be considered.
These alternative strategies have to be specified at built-time. Most importantly, they



Consistent Process Execution in Peer-to-Peer Information Systems 291

allow for flexible failure handling by forward recovery [Tay86]. In the travel planning
example, such a contingency strategy could be to search for a train connection when no
appropriate flight is offered or when all seats are already booked.

Finally, different processes may concurrently access shared data, wrapped by ser-
vices. In this case, appropriate mechanisms are required to protect processes to interfere
with each other in an undesired way. Obviously, this isolation property requires that flow
of information between independent processes via shared services is controlled such that
a consistent view of the overall system is guaranteed. Therefore, the system is respon-
sible for controlling the concurrent access to shared services and, as a consequence, to
correctly synchronize parallel processes. The latter two problems, i.e., (semantic) atom-
icity and isolation, are well understood in traditional database systems. However, the
first two aspects mentioned above – unreliable network connections and dynamically
evolving networks– require to re-think the solutions that have been proposed so far. Con-
ventionally, transaction management supporting atomic and isolated executions relies
on a centralized coordinator, i.e., a transaction manager.

However, such a centralized approach is not suitable in large-scale, unreliable and
dynamic networks. First, having a dedicated place for controlling all applications within
the overall network might soon become a bottleneck when the number of processes in-
creases. Second and more importantly, processes are not able to execute correctly in case
the coordinator cannot be contacted due to some network failure. For all these reasons,
a solution for the problems related to failure handling and synchronization has to be
combined with mobile agents we use as operational environment for process execution.
Support for flexible failure handling requires that alternative execution strategies are
made available to these agents as parts of the process specification such that these alter-
natives can be effected in case of failures. While this can be seamlessly solved locally
within each agent, support for the global problem of synchronizing concurrent process
executions requires a more radical shift of paradigm. The synchronization of concur-
rent applications is shifted to the individual agents. Hence, the global problem is solved
by distributing meta information needed for synchronization purposes to the individual
agents. This meta information is then kept consistent by means of communication. In
particular, it allows to locally decide whether multi-agent executions are correct.

The combination of all these aspects leads to a framework supporting information
processing in peer-to-peer environments. We ensure that processes – which not only
search for and retrieve data, but also manipulate data – are executed in peer-to-peer
networks with transactional guarantees. The main contribution of this paper is a de-
centralized approach to process synchronization. This approach is embedded into an
operational environment in which mobile agents flexibly execute processes in dynamic
peer-to-peer networks. Within the AMOR project (Agents, MObility, tRansactions) of
ETH Zürich, we have built a prototype system that accounts for all different aspects.

The paper is organized as follows: We start with an overview of the AMOR system
(Section 2), followed by a discussion of the decentralized transaction processing archi-
tecture in Section 3. Section 4 discusses the main ideas underlying the AMOR protocol.
The latter will be presented in detail in Section 5. We discuss the AMOR-prototype in
Section 6. Section 7 provides a survey of related work. Section 8 concludes.



292 K. Haller and H. Schuldt

Fig. 1. The AMOR System Model

2 The AMOR System

The bottom layer of the AMOR system encompasses a set of distributed and autonomous
resources, e.g., database systems or flat files (Figure 1). Such resources are wrapped by
so-called resource agents (R). Each resource provides a certain set of services to the
outside world. This allows to hide the details of the type of resources and the implemen-
tation of services. Thus, by using a service-oriented interface, data access and manipu-
lation takes place at a semantically higher level of abstraction compared to traditional
read/write operations in databases. However, in order to make these services available,
each resource agent has to provide metadata describing its type and the semantics of
its resource, e.g., whether it manages flights or databases. More formally, we denote
by S∗ the universe of all services offered and, accordingly, the universe of all resource
agents in our system by R∗. We assume the resources wrapped by all Ri,Rk ∈ R∗ to
be pairwise disjoint. With this, we demand that the services of a resource agent only
operate on local resources and are not redirected to remote resources.

All resources and therefore also the resource agents reside on peers1. Hosts may
accommodate more than one resource agent. Also, the number of resource agents may
differ between peers. Peers communicate with each other via the AMOR middleware
layer (Figure 1). This layer forms a peer-to-peer (P2P) network out of the single peers.
Each of them can unilaterally and spontaneously decide to join or leave the network
such that the network configuration continuously evolves.

On top of this peer-to-peer network, mobile transactional agents execute processes.
Each transactional agent corresponds to a process instance. Processes consist of a set of
partially ordered activities.Activities, in turn, correspond to service invocations wrapped
by some Ri. When specifying a process, a programmer has to describe the type of
services that are to be invoked as process activities. In addition, certain activities allow for
several semantically equivalent services to be invoked in parallel. For example, finding
the cheapest flight to some destination may take place by contacting several resources
concurrently. Hence, it is the task of the programmer to set the level of concurrency
for individual activities. All this information is the input for an agent generator which
assembles a mobile transactional agent (Figure 2). This agent executes the process by
migrating from peer to peer within the network and by locally invoking services. More
formally, a transactional agent Ti is a pair (Si, <i) where Si ⊆ S∗ is a set of services

1 In the mobile agents terminology, they are also called places.



Consistent Process Execution in Peer-to-Peer Information Systems 293

Fig. 2. Agent Generation Process

invoked by Ti and <i ⊆ Si × Si is the (partial) invocation order of the services of Si

with ci (commit) or ai (abort) as terminal elements.
The invocation of services requires that services which meet the specified semantics

can be found dynamically. Hence, the run-time environment has to support the search
for particular services by providing service repositories where services are described
for example by WSDL. This search functionality is incorporated into the peer-to-peer
middleware layer. This layer evaluates the specification of an activity (Figure 2) to be
executed next and returns the location of appropiate Rs. Then – if parallelism is desired
– the agent clones and each clone migrates to a dedicated R. After all prallel service
invocations have succeeded, the next activity, according to the process specification, is
executed. Again, the agent searches for potential peers (possibly clones) and migrates
to the peer where the service invocaction takes place. In case of a failure, the system
should be brought back to a consistent state. Additionally – to enforce consistency –
also the flow of information between processes has to be controlled in order to enforce
consistency.

3 The AMOR Approach for Decentralized Transaction Processing

In this section, we present the basic concepts of the AMOR decentralized approach to
transaction management. This includes a comparison with the conventional transaction
management architecture. Thereby, we focus on how to enforce the isolation property
in AMOR. In AMOR, each Ti represents an individual, independent, and distributed
transaction. In such environments, transaction management is typically provided by a
dedicated coordinator, e.g., a TP Monitor [BN97]. The coordinator’s task is to orchestrate
the execution of distributed transactions, in particular, to enforce not only their atomic
commitment but also their isolated execution by using a 2PC/2PL-protocol [GR93]. This
requires all transactions of the system to register with the coordinator such that the latter
one is equipped with global knowledge.

Such a centralized approach is highly appropriate for small, well-delimited environ-
ments with a fixed number of peers, but it cannot be applied to large-scale networks with
a large number of distributed, heterogeneous, and autonomous peers (e.g., the intranet
of an international company, not to speak about globally distributed networks like the



294 K. Haller and H. Schuldt

Fig. 3. Decentralized AMOR Approach to Transaction Processing

semantic web). In addition, also administrative aspects (i.e., peers might dynamically
join or leave the system) prohibit centralized approaches to be used efficiently.

Hence, we must strive for a distributed implementation of the functionality of a co-
ordinator. Following the unified theory of concurrency control and recovery [VHBS98],
this coordinator jointly enforces both atomicity and isolation. In terms of recovery, each
failure of some Ti has to be handled properly, either by an alternatvie execution or by
undoing the effects of all services it has invoked so far (semantic atomicity). If Ti wants
to undo activities, it has to know where they have been executed. Consequently – because
there is no centralized component to which all requests are submitted – Ti itself has to
log all its service invocations. Using this log information, a Ti can undo the effects of its
regular services in reverse order (or, if specified in the process model, sets of entities can
be undone by additional compensation activities). Hence, the abort of a Ti is followed
by service invocations compensating the previous, regular invocations and finally by the
commit of ci. By this, we can enforce the atomicity property. In addition, the concurrent
invocation of services has to be controlled such that each Ti is correctly shielded from
other transactional agents. Shielding means in this context that there is no cyclic flow of
information between different transactional agents.

Such a flow of information emerges if different Tis invoke non-commuting services.
Two services do not commute (are in conflict) if their order matters, i.e., if the return
values of the two service invocations or those of any succeeding activities change when
the conflicting activities were ordered differently. More formally, the invocations of two
services sk,j and sk,m provided by resource agent Rk commute if the return values of
all services in the sequence S′ < sk,j < sk,m < S′′ are the same than those in the
sequence S′ < sk,m < sk,j < S′′ where S′ and S′′ are arbitrary sequences of service
invocations from S∗ [Aea94]. This conflict behavior belongs to the knowledge of each
R. So each R can reason about its local conflicts. The union of all local conflicts of R
comprises – due to the independence of the resources – all the conflicts of the system.

Conflict information is needed for reasoning about global correctness. This reasoning
is based on the notion of schedule. Such a schedule S is a tuple S = (TS , <S) reflecting
the concurrent execution of a set of transactions Ts where <S is the order in which the
services of the Ti ∈ TS are invoked (with <i ⊆ <S for all Ti of TS).

Using a serialization graph for reasoning about the correctness of a schedule requires
global information to be available at a central coordinator — the transaction manager.



Consistent Process Execution in Peer-to-Peer Information Systems 295

However, due to the absence of such a transaction manager in AMOR, conflict informa-
tion on local service invocations has to be communicated from a resource agent to the
corresponding Ti. Then, scheduling can be enforced by distributing this conflict infor-
mation between transactional agents, thereby replicating meta information needed for
synchronization purposes. In Figure 3, this distributed AMOR approach to transaction
management is illustrated.

Yet, an important aspect of the AMOR protocol is to bridge the gap between the
available, local view of transactional agents and the global knowledge needed to enforce
the correctness criteria of the unified theory of concurrency control and recovery. Given
the absence of a global coordinator, the challenge is to nevertheless enforce global cor-
rectness, although transactional agents are acting autonomously and in parallel while not
necessarily having up-to-date information on the services invoked by other transactional
agents.

4 Concepts and Data Structures for Decentralized Transaction
Processing in AMOR

4.1 Ensuring Correctness at Commit-Time: Requirements and Limitations

The applications implemented by mobile transactional agents are considered to be highly
distributed and long-running, thereby far exceeding the complexity and duration of
conventional funds transfer transactions. Hence, traditional locking-based protocols,
e.g., strict two phase locking, cannot be applied. The reason is that these protocols
would – especially when combined with two phase commit protocols – unnecessarily
block the access to the underlying resources. In contrast, due to the independence of
resources, conflicts may only occur when two transactional agents invoke services on
the same resource. Business processes are often characterized as applications for which
conflicts are rare. AMOR is supporting this characterization, although it is not a vital
requirement for the AMOR protocol.

For all these reasons, we follow an optimistic approach in AMOR. This means that
each Ti executes a service invocation of Ti on the spot without determining whether
is allowed or not. However, prior to the commit of Ti, a validation is required which
checks whether it has executed correctly (based on the correctness criteria of the unified
theory) and is therefore allowed to commit. This is closely related to well-established
optimistic concurrency control protocols like backward-oriented concurrency control,
BOCC [KR81]. Following this optimistic protocol, a Ti is allowed to commit if it does
not depend on some active (uncommitted) Tj . In here, dependency means that Ti and
Tj are in conflict at some resource Rk by services sk,i invoked by Ti and sk,j invoked
by Tj with sk,j < sk,i. In order to guarantee that no such dependencies exist, each
Ti has to query ’its’ resource agents at commit time (i.e, the resource agents where it
has invoked services). Then, the latter determine – based on their local log – all local
conflicts with active transactional agents in which Ti is involved. Hence, a transactional
agent is allowed to commit correctly i.) when it has queried all resource agents where it
has invoked services, ii.) when all have responded to this query, and iii.) when there is
no dependency to an uncommitted transactional agent.



296 K. Haller and H. Schuldt

While this approach enforces correct concurrency control, it features an important
drawback. Essentially, cyclic conflicts and therefore non-serializable executions are not
detected until commit time, even when these cyclic conflicts have been imposed much
earlier in the work of some Ti.Yet, detecting such cyclic conflicts at an earlier stage, i.e.,
when they actually appear, would allow for much less redundancy.

4.2 Region Concept

In order to overcome the drawback of enforcing correctness at commit time, we have
to detect cycles as early as possible. Thus, we equip each Ti with metadata reflecting a
multi-agent execution. Such metadata – in a first approach – could be a copy of the global
serialization graph. This, on the one side, allows each transactional agent to detect cyclic
conflicts early. But on the other side, maintaining a copy of the complete serialization
graph with each Ti is not practical since it would impose considerable communication
overhead.

However, an important observation is that in the type of system we are addressing,
more or less closed –albeit not static– communities exist. These communities are sets of
closely related resources accessed by the same transactional agents, i.e., agents which
aim at addressing the same or similar tasks. Hence, conflicts are only possible between
agents invoking services within the same community. We denote the set of transac-
tional agents executing in such a community as region. In terms of the data structures
maintained for concurrency control purposes, a region corresponds to the nodes of a
connected subgraph of the global serialization graph. Consequently, only this connected
subgraph (termed region serialization graph) has to be replicated among all Ti of the
same region. Obviously, if all region serialization graphs are free of cycles, so is the
global serialization graph. Thus, reasoning about system-wide correctness can be safely
shifted to the universe of region serialization graphs. By making use of the partitioning
of the system in disjoint regions, AMOR uses replicas of region serialization graphs
maintained by each transactional agent to enforce correct multi-agent executions. This
requires that i.) conflicts are communicated from resource agents to the corresponding
transactional agents and ii.) the replica of region serialization graphs are kept consistent
among all Ti of the same region.

However, regions are not static. Rather, the composition of regions is affected by the
services invoked by the transactional agents of a region. For example if a service invo-
cation of Ti imposes a conflict with a service invocation of a Tj of another region – as a
consequence of this conflict – the two originally independent regions have to be merged.2

Hence, as an additional requirement for consistent metadata management in AMOR, the
two region serialization graphs have to be consolidated and finally distributed among all
transactional agents of the new region. Similarly, by correctly committing a transactional
agent or in case of a rollback, regions may split and so does the corresponding region
serialization graph.

2 In worst case, when all Ti conflict, there is only one region and the complete serialization graph
has to be replicated.



Consistent Process Execution in Peer-to-Peer Information Systems 297

4.3 Region Serialization Graphs

The task of guaranteeing consistency of replicated region serialization graphs is shifted
to the transactional agents of the corresponding region. The information needed for
this purpose is provided by the resource agents (such that each Ti is able to update its
local copy of the region serialization graph after a service invocation) and is exchanged
between transactional agents by means of asynchronous messages so as to keep the local
replica consistent. Every time the local region serialization graph of some Ti changes
due to a service invocation, the complete graph is propagated to all other Tj of the same
region. Essentially, communication between transactional agents has to consider delays
in the delivery of messages leading to message overtaking. Therefore, certain extensions
to the data structure of region serialization graphs are required.

Consistently with the traditional notion of serialization graph, the nodes of the region
serialization graph correspond to transactional agents and the directed edges to conflicts
between them. However, the edges are marked with the pairs of service invocations that
have caused the edge (note that several such pairs might exist for the same edge). In
addition, each edge is extended by a version number. However, changes of the serial-
ization graph are communicated by messages. So message overtaking has to be taken
into account for instance when messages are delivered along different paths. Then, it is
essential to know which information is more up to date, when region serialization graphs
are merged after a new graph has been received from another transactional agent.

5 A Protocol for Decentralized Optimistic Transaction Processing

The aim of the AMOR protocol is to enforce correct concurrent and fault tolerant agent
execution. This requires communication between transactional agents in order to ex-
change meta-data regarding the order of conflicting service invocations. The latter is
derived from the resource agents. In order to let the transactional agents know about
these conflicts, the resource agents have to report local conflicts to them after services
have been invoked.

5.1 Service Invocation

Processes are executed by transactional agentsTi.Therefore, they contact resource agents
Rk in order to invoke services sk,i on them. Such services are – due to the optimistic
approach followed in AMOR – executed immediately. At the same time, not only each
transactional agent logs where it has executed a service, but also the resource agents make
a corresponding log entry. Using the local log and the local commutativity relation, each
resource agent determines if and which new conflicts have emerged.

In case of new conflicts, Rk returns information about these conflicts to Ti. This
notification contains information on all Tm this service invocation is in conflict with and
the services of these Tm. Then, Ti – as the receiver of this information – first updates
its local region serialization graph: If the graph does not contain a newly emerged edge
up to now, meaning that the represented dependency is not known, it is inserted in the
graph and the version number (see Section 4.3) is set to one. Otherwise, if the edge



298 K. Haller and H. Schuldt

Fig. 4. Example: Service invocation

is marked as removed, it means that such a conflict has existed at least once before.
However, it disappeared later because of a partial rollback. Consequently, now, the edge
is marked as valid and the version counter increased by one. After Ti has updated its
local graph, it must share this information with the other transactional agents. Therefore,
the serialization graph is distributed (see below), before the next service is invoked.

We want illustrate the service invocation procedure with a small sample scenario.
In this scenario, we assume two resource agents, RA and RB . On top of them, three
transactional agents, T1, T2, and T3 operate. This execution (and the side-effects on the
system state) are illustrated in Figure 4. The left column of this figure depicts the global
system information, i.e., the global serialization graph. This information is, however, not
permanently materialized by any agent of the system. The other columns contain knowl-
edge materialized in the different agents and the activities performed by the transactional
agents.

In the first two steps, T2 invokes a service on RA and one on RB , respectively. In the
third step, the two other transactional agents T1 and T3 concurrently invoke services on
RA and RB , respectively, which both conflict which the ones of T2. This is detected by
RA and RB . Following the AMOR coordination protocol, they notify T1 and T3 about
these local conflicts such that T1 and T3 can maintain their local region serialization
graphs (step 3). Nevertheless, none of the local serialization graphs contains the full
knowledge of the (not materialized) global serialization graph: While T2 is not aware
of any conflict, both other transactional agents only know about the conflicts they are
involved in. Consequently, the transactional agents have to exchange their information.

5.2 Messaging: Distribution of Metadata

Enforcing consistency between local serialization graphs and the global graph requires
that the transactional agents exchange messages. For this, an agent Ti which has caused a
new edge by some service invocation (or any other change of the graph) is responsible for
distributing this information within its region, since Ti is the only one being immediately
informed about this by the underlying resource agent.

When a Tp receives a message from Ti containing the extended region serialization
graph of Ti, it updates its local version of the graph. Thus, Tp not just replaces its copy
with the newly arrived one, but it has to merge the two versions. This is due to the
fact that different transactional agents may concurrently invoke services. Consequently,



Consistent Process Execution in Peer-to-Peer Information Systems 299

they concurrently update their local copy of the serialization graph. A second reason is
that it has to be ensured that newly arrived, yet older data does not overwrite formerly
received, newer data during the process of merging. In case an edge appears in both
graphs, the one with the higher version number is chosen. Afterwards – to prevent the
graph from uncontrolled enlargement – it is checked for nodes that do not belong the
region anymore. Such edges can be safely removed.

After merging, Tp propagates the merged graph to all transactional agents which
have been in its local copy but not in the one received from Ti. So they also receive the
new information. Hence, also Ti may be a receiver in case Tp has knowledge not known
to Ti (e.g., in case of the consolidation of two different regions). The recipients of the
message originating from Tp, in turn, merge the new graph with their local replica and
again forward it, if needed.3

This forwarding and graph merging is the subject of the continuation of our example
in Figure 5. After the update of the local serialization graphs, the propagation process
is started. Since both T1 and T3 have caused changes to their region serialization graph,
they have to inform all other transactional agents of the same region (step 5). For this,
they depend on their local knowledge about the region. So T1 and T3 both only send a
message to T2 encompassing their updated region serialization graph, but not to each
other, because both do not know that the other agent also belongs to the same region.
In the following step 6, we assume that the message from T1 arrives at T2. So T2 is
able to update its graph with the new information. Because T2 does not have any new
information, there is no need to send any message back to T1. Note that T2 cannot
propagate its graph to T3, because it does not know about it up to now.

This changes in step 7, when T2 receives the message of T3. So T2 merges the newly
received graph from T3 with its local one. Obviously, simply overwriting the local copy
of T2 is not the correct solution, because information about the conflict between T2 and
T1 would be lost. But if T2 merges both graphs, this results in a region serialization graph
which now encompasses information on all conflicts of the region.

Afterwards, T2 has to figure out whether or not it has to propagate its region graph.
Because the message sent by T3 did not contain any edge between T1 and T2, T3 obviously
has less information than T2 and has to be a receiver. The same is true for T1. So T2
assumes that T1 has the same knowledge. Consequently, T2 reasons that T1 does not
know about the edge between T2 and T3. This results in the situation in step 8, in which
T2 forwards its merged graph to T1 and T3. Again, these messages contain the complete
region serialization graph of the sender (T2). After the receivers T1 and T3 have merged
their local graphs with the received graph, all transactional agents have up-to-date region
serialization graphs.

5.3 Commit Processing

When a Ti wants to commit, it first has to check whether an incoming edge to Ti’s
node exists in its local replica of the region serialization graph (checking this with the

3 To reduce the number of messages, it is possible to collect messages going to the same receiver.
This does no effect the basic properties of the protocol, if eventually each message is sent to its
receiver as described in this section.



300 K. Haller and H. Schuldt

Fig. 5. Example: Messaging for keeping replica consistent

local copy is sufficient since all conflicts in which Ti is ordered after other transactional
agents – i.e., all incoming edges to Ti – are immediately communicated to Ti after each
service invocation). If this is the case, Ti has to wait until this edge disappears in order
to correctly commit. Otherwise, Ti notifies all other Tj of its region to mark all edges
it is involved in as removed and finally to remove the node corresponding to Ti. Ti

can be safely removed after its commit, since it does not have any incoming edge in
the serialization graph. Then, this updated graph is also distributed by messages among
all nodes having formed the region prior to the commit of Ti. Hence, in certain cases,
this might have the consequence that a region splits into two or even more independent
regions.

5.4 Cycle Resolution

Due to the replication of metadata, each transactional agent of a region is able to locally
check for cyclic conflicts. In case a cycle is detected, the associated transactional agents
have to agree on one agent Tj to abort (this is orthogonal to the AMOR protocol and
may be for instance the agent having caused the cycle or the one having invoked the least
number of services so far). Then, the recovery process is started by Tj but might affect,
due to cascading aborts, also other transactional agents. Due to the optimistic protocol
where service invocations are executed (and committed) immediately although having
side effects, cycle resolution may lead to a cascading abort of several active transactional
agents.

5.5 Recovery

When a Ti aborts, it has to undo the effects of all regular services it has invoked so
far in reverse order (or by invoking a service that jointly removes the effects of a set



Consistent Process Execution in Peer-to-Peer Information Systems 301

Fig. 6. Example: Cycle Resolution and Rollback

of regular service invocations). To do this correctly and efficiently, in a first step Ti

sends a notification to all Rk where it has invoked regular services. In case no other
conflicting service invocation sk,j of some Tj has occurred after sk,i, the resource agent
can immediately correctly undo the service. Otherwise, first all these Tj have to abort
before s−1

k,i can be safely invoked by Ti. To enforce this prerequisite, the corresponding
abort request for Tj is generated by Rk. This abort, in turn, may cascadingly lead to the
abort of other transactional agents. In addition to determining whether other agents have
to be aborted due to the abort request of Ti, each Rk guarantees that it rejects service
invocations which are in conflict with sk,j , the service which effects are to be undone,
until s−1

k,i has been invoked. When Rk is prepared (and when all cascading aborts are

effected correctly), Ti is able to migrate to Rk and to invoke s−1
k,i . As a consequence, all

edges of the region serialization graph in which sk,i is involved are marked as removed.
Finally – after all regular service invocations of Ti have been undone this way – Ti is
able to commit.

We conclude our example by discussing the production, detection, and resolution
of a cycle in the (region) serialization graph: In step 10, T2 invokes another service on
RA. This invocation is assumed to be in conflict with sA,1.1 invoked before by T1. So



302 K. Haller and H. Schuldt

Fig. 7. Architecture of the AMOR Prototype

after updating the local serialization graph, a cycle is detected. Consequently, the new
graph is sent to T1 and T3. Assume that T1 is chosen to rollback (step 13). Therefore,
it first notifies RA. Since T2 has invoked service sA,2.2 after sA,1.1, the former has to
be undone before s−1

A,1.1 can be safely executed. Hence, RA requests T2 to undo sA,2.2
(step 14) before sA,1.1 is undone (step 15). Since this is the only service T1 has invoked
so far, T1 is committed, thereby leaving no effect to the system. After the commit of T1,
it is removed from the region serialization graphs of T2 and T3, respectively (step 16).
Then, the compensated service sA,2.2 of T2 can again be invoked.

6 The AMOR-Prototype

6.1 Aglets System

We have implemented the AMOR prototype (Figure 7) on top of the Aglets framework
[LO98]. This framework implements basic migration and communication functionality.
The limitation of the basic Aglets framework is that an agent has to know the concrete
address of other agents for means of communiaction, and, in case of migration, the
address of the destination. This is realized in a run-time environment which is called
Aglet Context. Each context can be understood as a peer in the network. On top of each
peer, the framework provides a graphical user interface termed Tahiti Server. This GUI
allows to easily start and stop agents resp. see which agents are currently running on a
certain context.

6.2 Peer-to-Peer Agents

In a first step of our AMOR project, our aim was to overcome the restrictions of the
Aglets System regarding migration and messaging, i.e., that the targets have to be hard-
coded at build-time time. Instead, we have realized a higher level of abstraction called
Peer-to-Peer Agents. These agents not only allow to find others with a certain name, they
even allow to use predicates to specify agents (in case of messaging) and peers/places (in
case of migration). Consequently, we equip the agents and places with descriptions. For
example, the property ’type’ is attached to agents allowing to differentiate for instance



Consistent Process Execution in Peer-to-Peer Information Systems 303

Fig. 8. Implementation Details of the AMOR Prototype

between agents providing weather forecasts (type=’WeatherRA’) and agents represent-
ing flight databases (type=’FlightDatabaseRA’).4 Agents Management Agents (AMAs)
bring these descriptions and the queries together [HS01]. They are transparent to the
agent programmer, because they belong to the place infrastructure. On each place, ex-
actly one AMA resides and works as a bookkeeper for the agents running locally. To
connect a peer with the rest of the world, the AMA additionally manages the information
about other peers. By this, the AMAs form a peer-to-peer network. This network is then
used to propagate queries and evaluate them over the whole network or subparts of it.
Thus, the P2P-Agents (together with theAMAs) realize a new mechanisms for migration
and messaging on a higher level of abstraction.

6.3 Resource Agents

Resource Agents have two main tasks: i) they support transaction processing function-
ality and ii) they provide a uniform service interface. The second aspect deals with the
problem of heterogeneity that emerges if we include existing resources into our system.
This problem requires a solution which is tailored to the individual resource, whereas
the first aspect can be realized in a general way.

This separation of resource-dependent and resource-independent aspects is reflected
by a two layered implementation of the resource agent (Fig. 8). The upper, generic
layer provides the interface to the transactional agents by offering the functionality to
invoke services. Therefore, it has a general description of the services provided by a
resource (service stubs). The service execution itself is implemented by the resource
specific layer. This layer knows the mapping of the service stubs to the resource specific
implementation of services.

4 We assume a common terminology. By this, we can abstract in our work from the problem of
defining and applying an appropriate ontology.



304 K. Haller and H. Schuldt

An important advantage of the traditional separation between interfaces and imple-
mentations of service stubs is that it allows to settle the local conflict detection and the
compensation functionality in the generic layer. Thus, this can be used for any underlying
resource by plugging the resource specific layer together with the generic one.

All resource agents implement the functionality to undo service invocations. There-
fore, transactional agents contact the resource agents unless failure handling is not part
of the process model in the form of alternative executions. The resource agents (in the
generic layer) know for each service its inverse (compensating service). Whereas this
allows the realization of (semantic) atomicity, the generic layer is also responsible for
local conflict detection. Therefore, this generic layer incorporates a conflict matrix and
logs the invoked services. This logging component uses a separate logging database on
each place to ensure that the entries are made persistent.

6.4 Transactional Agents

Transactional Agents operate on top of these resource agents. They contain their process
descriptions for example encompassing that we look for a flight from Zürich to Kla-
genfurt. Also, they contain the process state, e.g., that we have an offer for this flight
for 299,- EUR has been discovered. But, additionally, each transactional agent also has
to have a process log. This log memorizes which service has been invoked on which
resource agent. If the transactional agent wants or is asked to rollback, it can determine
which resource agents it has to contact to compensate its previously invoked services.

7 Related Work

The overall goal of the AMOR project is to provide a decentralized implementation
for concurrency control and recovery. This is closely related to distributed deadlock
detection [KKG99], which – together with a locking based protocol – can solve the
same problem. However, such approaches are optimized for short-living transactions.
Following an optimistic approach, AMOR also addresses long-running transactions.

For the same kind of environment, also timestamp ordering protocols [Tho79] can
be applied, if global timestamps are available. In such approaches, serialization orders
are not derived dynamically but are rather predefined by the timestamps assigned to each
transaction. However, the risk of violating timestamp orders increases with the duration
of transactions and finally leads to a large number of rollbacks induced by the violation
of timestamp orders. Hence, also these protocols are rather suitable for short living trans-
actions. Some approaches aim at weakening the strictness of the timestamp orders, e.g.,
dynamic timestamp allocation and validation [BEHR82], or multidimensional times-
tamp protocols [LB87]. These protocols dynamically assign timestamps. However, like
all timestamp approaches, these protocols only address correct concurrency control and
neglect recovery. Similar to traditional timestamp ordering, validation-based, optimistic
concurrency control protocols such as BOCC [KR81] potentially come along with a
large number of rollbacks when the duration of transactions and thus the number of
conflicts increases. Essentially, these protocols check for the correctness of schedules
not before commit time.



Consistent Process Execution in Peer-to-Peer Information Systems 305

To support atomic applications in large-scale environments, the Transaction Internet
Protocol (TIP) has been proposed. [LE98] Essentially, TIP implements a 2PC protocol.
Recent extensions like Web Service Transactions (WS-Transactions) [Cea01] also sup-
port ’BusinessActivities’, which are based on an optimistic service execution model with
compensations. However, both, TIP and WS-Transactions, do not consider isolation.

Important related work regarding agents in general has been done by Chen and
Dayal [CD00] and by Pitoura and Bhargava [PB95]. The latter provide an introductory
discussion on using agents for accessing databases. The first discuss how multiple (non-
mobile) agents can cooperate in order to guarantee atomic (but not necessarily isolated)
workflow execution.

Focusing more on mobile agents, valuable work has been done in the context of
transactions and workflow execution. The idea of mobile agents executing workflows –
first published in [CGN96] – is similar to our approach to build transactional agent appli-
cations on top of services made available by different resource agents. Other approaches
even address the intersection of mobile agent technology and transaction management.
First results were achieved by enforcing atomicity and fault tolerance based on the
concept of replication [SP98]. More recent approaches like [SAE01], albeit still con-
centrating on the atomicity aspect, also provide support for concurrency control. This
is achieved by combining timestamp-ordering and 2PC [GR93], hence with a rather
limited degree of concurrency. However, all these approaches aim not at combining op-
timistic transaction processing techniques with the isolation property. Therefore, they
focus on short living transactions. Hence, they do not consider isolation and therefore
lack support for reliable workflow resp. process execution in large, complex systems.

Finally, the underlying network model of the AMOR project is a peer-to-peer net-
work. Recently, research in this direction has attracted quite some attention. This work
was mainly driven by file sharing systems like Gnutella [Gnu]. Research concentrated
very much on novel access methods, e.g. [Abe01]. However, such access methods are
orthogonal to ARMOR and can therefore easily be integrated into our system.

8 Summary and Outlook

In this paper, we have presented the ideas of the AMOR project which allows for a novel
decentralized implementation of transaction management in a peer-to-peer environment.
Our approach is based on mobile transactional agents manipulating data provided by
(non-mobile) resource agents. The resource agents are responsible for logging and (local)
conflict detection. In contrast, it is the transactional agents’duty to ensure globally correct
schedules by communication.

To this end, sophisticated replication management of metadata needed for synchro-
nization purposes is applied. Each transactional agent receives information about local
conflicts when it invokes a service. This information is used to update the local view on
the relevant portion of global metadata, i.e., the region serialization graph. The different
local replica of these graphs are kept consistent by means of communication at the agent
level. To this end, we have introduced a new protocol that defines which information
has to be transferred such that each transactional agent has sufficient information to
decide whether a multi-agent execution is correct. For reasoning about correctness, we



306 K. Haller and H. Schuldt

apply the unified theory of concurrency control and recovery that jointly addresses the
problems imposed by atomicity and isolation.

The two significant features of AMOR — the protocol allowing for decentralized
transaction management, thus providing dedicated transactional execution guarantees
for mobile agents and the support for location transparent migration and messaging —
make the project a powerful effort towards transactional location transparent peer-to-peer
information processing.

In our future work, we aim extending the existing AMOR framework by providing
support for shielding unreliable network connections. To this end, we are working on a
cost model by which the effects of disconnections and, more general, of different network
latencies and bandwidths can be modeled. The goal is to extend the AMOR transaction
model by these costs as dedicated quality-of-service parameters and to make use of
this cost information for scheduling purposes. By this, we will build a sophisticated
framework realizing our vision of reliable process execution in peer-to-peer networks.

References

[Abe01] K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P Information Systems.
In 9th Int. Conf. on Cooperative Information Systems, Trento, Italy, 2001.

[Aea94] G. Alonso et al. Unifying Cconcurrency Control and Recovery of Transactions. In
Information Systems, 1994.

[BEHR82] R. Bayer, K. Elhardt, J. Heigert, and A. Reiser. Dynamic Timestamp Allocation for
Transactions in Database Systems. In Proc. of the 2nd Int’l Symposium on Distributed
Data Bases, Berlin, 1982.

[BN97] P. Bernstein and E. Newcomer. Principles of Transaction Processing. Morgan Kauf-
mann, 1997.

[CD00] Q. Chen and U. Dayal. Multi-agent cooperative transactions for e-commerce. In 7th
Int. Conference on Cooperative Information Systems, Eilat, Israel, 2000.

[Cea01] F. Cabrera et al. Web services transaction, 2001. BEA Systems, IBM, Microsoft.
[CGN96] T. Cai, P. Gloor, and S. Nog. Dartflow: A Workflow Management System on the Web

using Transportable Agents. Technical Report TR96-283, Dartmouth College, 1996.
[GM83] H. Garcia-Molina. Using Semantic Knowledge for Transaction Processing in a Dis-

tributed Database. ACM Transactions on Database Systems (TODS), 8(2):186–213,
June 1983.

[Gnu] Gnutella. http://www.gnutella.com.
[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, 1993.
[HS01] K. Haller and H. Schuldt. Using Predicates for Specifying Targets of Migration and

Messages in a Peer-to-Peer Mobile Agent Environment. In 5th Int. Conf. on Mobile
Agents (MA), Atlanta, GA, 2001.

[KKG99] N. Krivokapic,A. Kemper, and E. Gudes. Deadlock Detection in Distributed Database
Systems:A NewAlgorithm and a Comparative PerformanceAnalysis. VLDB Journal,
8(2):79–100, 1999.

[KR81] H. Kung and J. Robinson. On optimistic Methods for Concurrency Control. ACM
Transactions on Database Systems, 6(2), 1981.

[LB87] P. Leu and B. Bhargava. Multidimensional Timestamp Protocols for Concurrency
Control. IEEE Transactions on Software Engineering (TSE), 13(12):1238–1253,
1987.



Consistent Process Execution in Peer-to-Peer Information Systems 307

[LE98] J. Lyon L. Evans, J. Klein. Transaction Internet Protocol Version 3.0. http://
www.ietf.org/rfc/rfc2371.txt, 1998. IETF RFC 2371.

[LO98] D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with
Aglets. Addison Wesley Longman, 1998.

[PB95] E. Pitoura and B. Bhargava. A framework for providing consistent and recoverable
agent-based access to heterogeneous mobile databases. SIGMOD Record, 24(3):44–
49, 1995.

[SABS02] H. Schuldt, G. Alonso, C. Beeri, and H.-J. Schek. Atomicity and isolation for trans-
actional processes. ACM Transactions on Database Systems (TODS), 27(1), 2002.

[SAE01] R. Sher, Y. Aridor, and O. Etzion. Mobile Transactional Agents. In 21st Int. Conf. on
Distributed Computing Systems, Phoenix, AZ, 2001.

[SP98] A. Silva and R. Popescu-Zeletin. An Approach for Providing Mobile Agent Fault
Tolerance. In 2d Int. Workshop on Mobile Agents, Stuttgart, Germany, 1998.

[Tay86] D. Taylor. Concurrency and Forward Recovery inAtomicActions. IEEE Transactions
on Software Engineering, SE-12(1):69–78, January 1986.

[Tho79] R. Thomas. A Majority Consensus Approach to Concurrency Control for Multiple
Copy Databases. ACM Transactions on Database Systems (TODS), 4(2):180–209,
June 1979.

[VHBS98] R. Vingralek, H. Hasse-Ye, Y. Breitbart, and H.-J. Schek. Unifying Concurrency
Control and Recovery of Transactions with Semantically Rich Operations. Theoretical
Computer Science, 190(2), 1998.

[Whi97] J. E. White. Telescript. In W. Cockayne and M. Zyda, editors, Mobile Agents:
Explanations and Examples, 1997.


	Introduction
	The AMOR System
	The AMOR Approach for Decentralized Transaction Processing
	Concepts and Data Structures for Decentralized Transaction Processing in AMOR
	Ensuring Correctness at Commit-Time: Requirements and Limitations
	Region Concept
	Region Serialization Graphs

	A Protocol for Decentralized Optimistic Transaction Processing
	Service Invocation
	Messaging: Distribution of Metadata
	Commit Processing
	Cycle Resolution
	Recovery

	The AMOR-Prototype
	Aglets System
	Peer-to-Peer Agents
	Resource Agents
	Transactional Agents

	Related Work
	Summary and Outlook

