
SelectionÿofÿMaterializedÿViews:
AÿCost-BasedÿApproach

Xavier Baril and Zohra Bellahsène

LIRMM - UMR 5506
CNRS/Université Montpellier II

161 Rue Ada
F-34392 Montpellier Cedex 5
{baril,bella}@lirmm.fr

Abstract.ÿRecently, multi-query optimization techniques have been con-
sidered as beneficial in view selection setting. The main interest of such
techniques relies in detecting common sub expressions between the differ-
ent queries of workload. This feature can be exploited for sharing updates
and space storage. However, due to the reuse a query change may entail
an important reorganization of the multi query graph. In this paper, we
present an approach that is based on multi-query optimization for view
selection and that attempts to reduce the drawbacks resulting from these
techniques. Finally, we present a performance study using workloads con-
sisting of queries over the schema of the TPC-H benchmark. This study
shows that our view selection provides significant benefits over the other
approaches.

1ÿ Introduction

The problem is to select a set of views to materialize that optimizes both the
view maintenance and query time given some constraints. The ideal selection
strategy should provide high query performance and low view maintenance cost.
However, these two costs are in conflict, the issue is to find a method that ensures
a balance between maintenance and query processing cost.

There are many motivations for investigating the view selection problem.
At first, materialized views are increasingly being supported by commercial
database systems and are used to speed up query response time. Therefore, the
problem of choosing an appropriate set of views to materialize in the database
is crucial in order to improve query processing cost. Another application of the
view selection issue is selecting views to materialize in data warehousing systems
to answer decision support queries. Furthermore, new applications of the prob-
lem of view selection arise namely in data placement in distributed databases
and in peer to peer computing.

Most of the previous related approaches are more theoretical studies than
pragmatic approaches and considered that the cost model is one parameter
among others. In this paper, we present a pragmatic approach that is based

J. Eder and M. Missikoff (Eds.): CAiSE 2003, LNCS 2681, pp. 665−680, 2003.
 Springer-Verlag Berlin Heidelberg 2003

on a cost model and experiments performed on a real data base system. More-
over, the processing cost of query is estimated according to the operation type.
For instance, the estimated cost of a join is not the same as the cost of a se-
lection. In related work [12], the operation cost of the query view is estimated
independently of their type. We have performed experiments to quantify the ef-
fect of some parameters (query and update frequencies, number of queries, etc.)
on view selection strategy. For this purpose we have compared our approach,
which make use of more precise cost model than the one used in MVPP [12].
Indeed, the MVPP approach doesn’t take into account the type of operations to
estimate their cost.

1.1ÿ Contribution

We make use of multi-query optimization techniques in order to detect overlap-
ping between queries of workload. Our approach provides the following features:

–ÿwe have designed a polynomial time algorithm that select views for materi-
alization,

–ÿwe exploit common sub expressions (with reuse factor of a view),
–ÿ the view selection is decided under space constraint,
–ÿour approach has been implemented.

Furthermore, we present a performance study using workloads of queries over the
schema of the TPC-H benchmark [11]. This study shows that our view selection
provides significant benefits over the other approaches.

1.2ÿ Outline

The rest of this paper is organized as follows. In Section 2, it is presented the
problem of view selection and our formalism for graphically representing the
queries of workload. Section 3 provides an overview of our approach and gives
the algorithm of selecting views to be materialized. Section 4 contains the sample
example. The cost model that is used in our view selection approach is described
in Section 5. In Section 6, is provided the performance evaluations. Finally,
Section 7 presents related work and Section 8 contains concluding remarks and
future work.

2ÿ Preliminaries

We consider Selection-Projection-Join (SPJ) views that may involve aggrega-
tion and group by clause as well. A view is a derived relation defined by a query
in terms of source relations and/or other views. It is said to be materialized
when its extent is computed and persistently stored. Otherwise, it is said to be
virtual.

The problem addressed in this paper is similar to that of deciding which
views to materialize in data warehousing [1, 2, 5, 4, 6, 10, 12]. The general problem

666 X. Baril and Z. Bellahsène

of view selection can be formulated as follows. Given a set of source relations
R = {R1, . . . , Rn}, a set of queries Q = {Q1, . . . , Qk}, the problem is to find a
set of views to materialize M = {V1, . . . , Vm} under a storage space constraint,
which have the best balance between view maintenance cost and query processing
cost.

2.1ÿ TheÿMultiÿViewÿMaterializationÿGraph

In this subsection, we present the framework for representing views to materi-
alize in order to exhibit common sub-expressions. The task of a view selection
module, which is based on multi-query optimization, is (i) to recognize possibili-
ties of shared views and (ii) to apply a strategy for selecting views to materialize.
The first task involves setting up the search space by identifying common sub-
expressions This task is of importance as in the multi-query optimization. But
it is orthogonal to the view selection process itself.

The Multi View Materialization Graph (MVMG) is similar to the AND-OR
DAG representation of queries in multi query optimization [8]. The MVMG is
a bipartite Directed Acyclic Graph (DAG) composed of two types of nodes:
AND-nodes and OR nodes. Each AND-node represents an algebraic expression
(Select-Project-Join) with possible aggregate function. An OR node represents a
set of logical expression that are equivalent (i.e., that yield the same result). The
AND-nodes have only OR-nodes as children and OR-nodes have only AND-nodes
as children. In fact, the MVMG represents AND-OR DAGs of several queries in
a single DAG. The leaf nodes of the MVMG are equivalence nodes representing
the base relations. In general, for each base relation, there is one leaf node except
in case of a selfjoin. Equivalence nodes in MVMG correspond to the views that
are candidate to the view selection.

We consider the equivalent query graphs of each query and provide the ex-
pression DAG derived from these graphs. Then, all the resulting graphs are
merged into one Multiple View Materialization Graph (MVMG) where the com-
mon sub-expressions are represented once. We borrow the rule provided in [8]
for identifying common sub-expressions. For example, equivalent nodes obtained
after applying join associativity are replaced by one single equivalence node.

Part(partkey,ÿname,ÿbrand,ÿtype,ÿsize,ÿretailprice)

Supplier(suppkey,ÿname,ÿaddress,ÿnationkey,ÿphone,ÿacctbal)

PartSupp(partkey,ÿsuppkey,ÿavailqty,ÿsupplycost)

Customer(custkey,ÿname,ÿaddress,ÿnationkey,ÿphone,ÿacctbal)

Orders(orderkey,ÿcustkey,ÿorderstatus,ÿtotalprice,ÿorderdate)

Lineitem(orderkey,ÿpartkey,ÿsuppkey,ÿlinenumber,ÿquantity)

Nation(nationkey,ÿname,ÿregionkey,ÿregionkey,ÿcomment)

Region(regionkey,ÿname,ÿcomment)

Fig. 1. Tables of TPC-H benchmark

667Selection of Materialized Views: A Cost-Based Approach

Example The queries used in this paper are defined over a simplified version of
the TPC-H schema [11] described in Figure 1. Let us consider the query Q1,
which finds the number of orders of Airbus planes ordered by different nations :

Select N.name, P.brand, O.orderdate, Sum(L.quantity)
From Part P, Customer C, Orders O, Nation N, Lineitem L
Where P.type = ’airplane’and AND P.brand = ’Airbus’ AND

P.partkey = L.partkey AND L.orderkey = O.orderkey AND
O.custkey = C.custkey AND C.nationkey = N.nationkey

Group by N.name P.brand, O.orderdate;

The AND-OR DAG representation of the query graph of query Q1 depicted
Figure 2(a) is shown in Figure 2(b). Circles represent AND nodes, i.e. operations
and boxes represent OR nodes, i.e. equivalence nodes. In the transition from
Figure 2(a) to Figure 2(b), new nodes are created to represent the equivalence
nodes, corresponding to operation results (e.g. node labelled A112 represents the
result of the aggregation operation).

base relation

(a) One possible query graph for Q1 (b) AND−OR DAG of query Q1

join

join

join

join

sum(L_QUANTITY) group by
P_BRAND, O_ORDERDATE

P_TYPE = "Airplane"

Order

Customer

Nation

Lineitem

A1_12

J3_12

J2_12

Part

Q1

J1_12

SP1_123

equivalence

operation

query result

Node types:

Order

Customer

Nation

Lineitem

Part

Q1

join

join

join

join

sum(L_QUANTITY) group by
P_BRAND, O_ORDERDATE

P_TYPE = "Airplane"

Fig. 2. Query graph and its AND-OR representation

2.2ÿ NotionÿofÿLevelÿinÿtheÿMVMG

Our view selection algorithm is based on the notion of level in the query tree.
For this purpose, each view (equivalence node) of the query tree is associated to
a level, which is defined as follows:

–ÿ level(root) = 1 with root the view representing the query result,
–ÿ level(view) = level(parent(view)) + 1 with parent a function which gives

the parent of a view in the query tree.

668 X. Baril and Z. Bellahsène

3ÿ OurÿViewÿSelectionÿMethod

In our previous work on the view selection problem [2], only leaf nodes of the
MVMG were materialized. We significantly improved our view selection strategy.

In this section, we present our strategy for selecting a set of views to be ma-
terialized. The optimal solution is the one which computes the set of equivalence
nodes (i.e., views) of the MVMG such that the sum of cost of processing all the
queries and maintaining all the views is minimal. However, the search space for
the optimal solution is very large since it entails a great number of comparisons
between all possible subsets of this set of vertices. If n is the number of nodes
of a MVMG, then the number of combinations of nodes is 2n. For this matter,
we consider the sum cost of processing cost and view maintenance per query.
Thus the first argument of our solution is reducing the complexity of the view
selection algorithm, which selects views to materialize in the MVMG. The sec-
ond argument for considering the views to materialize query by query relies in
preserving the data independence whenever adding a query to the view config-
uration or removing one from it. Indeed, the side effect on existing queries is
reduced since the view selection is applied query per query. In the related work
since the view selection strategy consists in considering all equivalence nodes of
the multi view query graph, the impact of adding or removing a query may lead
to an important reorganization.

More precisely, we make use of the following heuristics:

– Searching the views to materialize per level and per query. This heuristic is
based on the observation that the maintenance cost decreases from the root
level down to the leaf level of query tree. This is true in the context when
the operations of the query tree are not executed in pipeline way.

– Selecting the level, which provides the minimal sum of query processing and
view maintenance cost.

– Taking the reuse of views into account. This feature allows to reduce the
view maintenance cost and space storage.

– A pre-selection of beneficial views is performed as follows. A view is consid-
ered as beneficial if and only if its materialization reduces significantly the
query processing cost and without increasing significantly the view mainte-
nance. For instance, if the materialization of a view v reduces the query cost
from 2 minutes to 10 sec, and increases the view maintenance cost from 1
sec to 9 sec, then view v should be materialized. View benefit is formally
defined locally to a query (see 3.2) and on the entire MVMG (see 3.3).

3.1ÿ AlgorithmÿforÿViewÿSelection

ÿÿÿ1In the classical approach , which consists in fully materializing the view, the
materialization level corresponds to the root level of the query tree. In this

1 We refer to the approach which does not use the multi-query optimization feature
by considering views separately.

669Selection of Materialized Views: A Cost-Based Approach

approach, the query processing cost is low and the view maintenance cost may be
high. The opposite solution is leaving the view virtual. Consequently, the query
processing cost is high and the view maintenance cost is null. The aim of our
approach is to provide a solution based on the balance between query processing
and maintenance cost. For this purpose, our idea is finding an intermediary level
for each query tree optimizing the sum of the query processing and the view
maintenance cost.

The algorithm 1 computes, for each query, the materialization level according
to the query frequency and the data update frequency of each involved relation.
The complexity of the algorithm is in O(n×k) where n is the number of queries
and k is the average number of levels in a query. The treatment is done in two
main phases. The first one carry out a pre-selection of beneficial views. The
second phase computes the total cost (query plus maintenance) for each level
of the query graph and selects the one which has the minimal sum of query
processing and view maintenance cost.

Due to space limitation, we don’t indicate types of the variables used in the
algorithms. However, we use the following syntactic convention : variables in
capital letter denote sets.

Data : mvmg, q

Result : M // set of views to materialize for the considered query

// set of pre-selected views;
P = ∅;
// pre-selection on local benefit;
for each v of AllChildren(q) do

1 b = LocalBenefit(q, v);
if b > 0 then

P = P ∪ {v}
end

end

// get the level having the minimum total cost;
mlc = ∞;
for each L of AllV iewsOfLevel(q) do

2 PL = L ∩ P ;
3 lc = TotalCost(q, PL);

if lc < mlc then
M = PL;
mlc = lc;

end
end

Algorithm 1: Selection of a query materialization level

670 X. Baril and Z. Bellahsène

For each view, the pre-selection step is performed using the following formula
(line 1):

LocalBenefit(query, view) =
QueryCost(query, ∅) × frequency(query)
−(QueryCost(query, {view}) × frequency(query) + MaintenanceCost(view)

reuse(view))

During the selection phase, the set of pre-selected views for the current level
is computed, and stored in the variable PL (line 2): it is the intersection of the
views belonging to the level (L) and the pre-selected views (P). Next, the total
cost for pre-selected views of this level is computed in variable lc (line 3). The
total cost is given by the following formula:

TotalCost(query, M) =
QueryCost(query, M) × frequency(query) +

∑
v∈M

MaintenanceCost(v)
Reuse(v)

Finally, the level having the minimum total cost is selected.

3.2ÿ GeneralÿAlgorithm

As explained above, the algorithm 1 provided the set of candidate views for
materialization. We now present the second part of the view selection method
performed by the algorithm 2. It is aimed to find among the candidates views
to materialize, those optimizing the global benefit under the space constraint.

The general algorithm takes into account a constraint for the storage space
of the materialized views (variable s). Thus, the problem can be resumed as
follows. Let us consider:

–ÿLet C be the set of candidate views for materialization,
–ÿLet s be the available space storage,
–ÿLet s(v) be the function giving the storage space of a view,
–ÿLet GlobalBenefit(v) be the function giving the global benefit of a view.

The first step of the general algorithm is to select the set of candidate views for
materialization. For this purpose, we use the level selection algorithm for each
query, and the candidates views for materialization in C.

Next, the candidate views are filtered according to their global benefit, and
views having a negative benefit are removed from the set of candidate views.
The formula used for the global benefit (line 2) is:

GlobalBenefit(view) =
QueryCost(∅) − (QueryCost({view}) + MaintenanceCost(view))

The problem is to find a set of views to materialize M , such that
∑

v∈M s(v) <
s and

∑
v∈M GlobalBenefit(v) is maximum. This problem is similar to those

of the knapsack therefore it may be solved using the dynamic programming

671Selection of Materialized Views: A Cost-Based Approach

Data : mvmg, s // space constraint

Result : M // set of views to materialize

// set of candidate views for materialization;
C = ∅;
// union of candidate views for each query;
for each q of mvmg do

1 C = C ∪ LevelSelection(mvmg, q)

end
;
// pre-selection on global benefit;
for each v of C do

2 if GlobalBenefit(v) < 0 then
C = C − {v}

end
end
// view selection under space constraint according to global benefit;

3 M = knapsack(C, s, s(), GlobalBenefit());

Algorithmÿ2:ÿThe general algorithm for selecting views to materialize

paradigm. For this purpose, we make use of a knapsack function (line 3). This
function takes as input all the parameters described above (including the set of
candidate views, the space constraint, the function given the size of a view and
the function given the global benefit of a view) and returns a set of views satis-
fying the problem. Note that the knapsack algorithm is polynomial in O(n× s),
where n is the number of candidate views for materialization (n = |C|) and s the
available storage space. Computing benefits and costs of query and maintenance
can be done in polynomial time before running the selection algorithm : it needs
a traversal of the views of each queries of the MVMG. The level selection algo-
rithm is also polynomial in the number of level of the considered query. Then,
the general algorithm is polynomial because it uses only polynomial subroutines.

4ÿ SampleÿExample

Let us consider four other queries in addition to Q1 presented previously in
Section 2. Query Q2 finds the number of Airbus planes bought by the United
States for the last 6 years.

Selectÿ P.brand,ÿO.orderdate,ÿSum(L.quantity)
FromÿPartÿP,ÿCustomerÿC,ÿOrdersÿO,ÿNationÿN,ÿLineitemÿL

Whereÿ N.nameÿ=ÿ’USA’ÿandÿP.typeÿ=ÿ’Airplane’
andÿP.partkeyÿ=ÿL.partkey
andÿC.nationkey=ÿN.nationkey
andÿC.custkeyÿ=ÿO.custkeyÿandÿO.orderkeyÿ=ÿL.orderkey
andÿO.o_orderdateÿ>ÿ1996ÿandÿP.brandÿ=ÿ’Airbus’

GroupÿByÿP.brand,ÿO.orderdate;

Query Q3 lists the name, the brand, the price, the number and the quantity
of orders of every brand of planes.

672 X. Baril and Z. Bellahsène

Select P.name, P.brand, P.retailprice,Sum(L.quantity), Count(*) As C
From Part P, Lineitem L
Where p.type = ’airplane’ and P.partkey = L.partkey
Group By P.name, P.brand, P.retailprice

Query Q4 finds the minimal and the maximal supply cost for each country
and each product having the brand name ’Renault’. The associated query is as
follows:
Select P.partkey, N.nationkey, N.name,Min(PS.supplycost), Max(PS.supplycost)
From Part P, Supplier S, Nation N, PartSupp PS
Where P.brand = ’Renault’

and P.partkey = S.partkey
and P.partkey = PS.partkey
and PS.suppkey = S. suppkey
and S.nationkey = N.nationkey

Group by P.partkey, N.nationkey, N.name

Q5 lists the supplycosts and all the identifiers of each product having as brand
name ’Peugeot’ and supplied in the USA. The associated query is as follows:
Select P.partkey, S.supplycost
From Supplier S, Part P, Nation N, PartSupp PS
Where P.P_brand = ’Peugeot’

and N.N_name = ’USA’
and P.partkey = PS.partkey
and S.nationkey = N.nationkey
and PS.suppkey = S.suppkey

Group by P.partkey, S.supplycost

Figure 3 illustrates the Multi View Materialization Graph of the five queries
described above. The equivalence nodes are labeled OPijk where OP is the
operation type, i is a counter and jk is the list of queries sharing the node.
Operation type could be A for an aggregation, J for a join and SP for a selection-
projection. For example, J1123 denotes the first join shared by queries Q1, Q2

and Q3.

5ÿ TheÿCostÿModel

5.1ÿ EstimatedÿCostÿofÿtheÿOperations

We have been inspired by the formula given in [3] for estimating the query cost of
the operations: join, selection and projection. These costs are estimated accord-
ing to the size of the involved relations. The formulas used for cost operations
estimation are simple but sufficient : it is proven by the performances of our
approach, presented in the next section.

–ÿEstimated cost of unary operations.
• Cost(op) = rows, where op is an aggregation operation,
• Cost(op) = rows, where op is a selection operation,
• Cost(op) = rows ∗ log(rows), where op is a projection.

Where rows is the number of tuples of the operand.
–ÿEstimated cost of join

Cost(op) = α × lrows × rrows × β × (lrows + rrows), with α and β are
constant, and we assume that α is relatively small. Where lrows and rrows
are respectively the number of rows of the left and right operands.

673Selection of Materialized Views: A Cost-Based Approach

Order

J1_12

J2_12

Customer

A1_12

J3_45

Nation

A1_4 A1_5

J2_45

Partsupp

SupplierJ1_45

A1_2

Q1 Q4 Q5

Q3

Lineitem

A1_3 SP1_12

Q2

Part

SP1_123

Selected by Level

Selected by mvpp

J1_123

J3_12

SP1_4 SP1_5

Fig. 3.ÿExampleÿofÿMVMGÿGraphÿwithÿfiveÿqueries

5.2ÿ MaintenanceÿCost

Our view selection strategy assumes incremental maintenance. We consider two
kinds of maintenance operation: add and delete. Let AddCost(view,relation) be
the cost of maintaining view when a row is added to the relation and Delete-
Cost(view,relation) be the cost of maintaining the view when a row is deleted
from the relation. To each relation is associated the frequencies of add and delete
operations. Then, the maintenance cost for a view, is defined as the sum of add
and delete cost for each relation, multiplied by the corresponding frequency:

MaintenanceCost(view) =∑
AddCost(view r) × addF (r) + DeleteCost(view r) × deleteF (r),r∈R ,

Where addF (r) is the frequency of adding tuples to relation r and deleteF (r),
is the frequency of deleting tuples from relation r.

Reuse factor Although our method relies in selecting views per query (i.e. local
optimization), it takes the reuse of views into account b all they merging queries
of the workload in the same MVMG. For this definedpurpose, we a reuse factor
as the sum of queries frequencies using a view.

Reuse(view) =
∑

frequency(q)
q∈Qview

674 X. Baril and Z. Bellahsène

Where Q is the set of queries using viewview .

5.3ÿ QueryÿProcessingÿCost

In the case where there are no materialized views, the query cost is the sum
of execution costs of all the operations belonging to the query graph. When
there are materialized views, it is not necessary to execute operations which are
descendant nodes of the views in the query graph. For that purpose, we define the
query cost with to parameters: the considered query and the set of materialized
views. The function OpsToExec(query, M) returns the set of operations which
are the necessary to execute to compute the result of query, given M a set of
materialized views.

QueryCost(query, M) =
∑

op∈OpsToExec(query,M)

Cost(op)

Each query is associated to a frequency giving its importance. The global query
cost takes into account query frequencies. Then, the global query cost (given a
set of materialized views) is the sum of each query cost multiplied by its query
frequency.

QueryCost(M) =
∑

q∈Q

QueryCost(q,M) ∗ frequency(q)

where Q is the set of queries of the MVMG and frequency a function which
gives the frequency of a query.

6ÿ PerformanceÿStudy

We implemented the two algorithms presented in the section 3 for finding views
for materialization. The goal of the experiments was to quantify the benefits of
our view selection method. To achieve this purpose, we implemented the TPC-H
database at scale of 0.01 (i.e., 10MB total size) on MySQL. We chose as workload
consisting of five queries on the database schema of the TPC-H benchmark,
which are presented in section 4. The experiment consists of applying the view
selection method for finding the views for materialization. Once these views was
known, we measured the real cost executing the queries of workload and the
view maintenance cost of the materialized views.

6.1ÿ ExperimentÿProcess

The experiments were performed on a MySQL server (version 3.23.42) through
JDBC interface. The machine is a single processor (300 Mhz UltraSparc) Ultra
2, with 640 MB memory, running Solaris 5.7. Each cost has been measured three
times and is expressed in millisecond (ms).

675Selection of Materialized Views: A Cost-Based Approach

We consider several view selection strategies. The first one is our approach,
called ”level” approach. The ”MVPP” approach [12] : we implemented the algo-
rithm in order to achieve a comparison with our approach. In MVPP, the view
maintenance is assumed to be performed by re-computing the views, according
to the suggestion done in [12]. Then we consider two basic strategies : the ”all”
materialized approach which materializes the result of each query (this is the
classical approach which does not use the multi-query optimization techniques)
and the ”virtual” approach which does not materialize views and always recom-
pute queries.

We considered different scales of frequencies for access and update. Concern-
ing update frequencies we try to extend TPC requirements which are not very
accurate.

The “real” query cost is defined as the sum of the cost of executing each query
of the workload on the MVMG, using materialized views as often as possible. For
this purpose, we measured the execution time of each operations of the MVMG
in MySQL. The query cost is the sum of all the operations used to compute
the result of a query. This strategy is aimed to avoid to use the MySQL query
optimizer which would modify the results. To improve query time, namely the
join operation, we created indexes on the attributes involved in join conditions.

The “real” maintenance cost is defined as the sum of the cost of maintaining
all materialized views. This cost includes the evaluation of cost of computing the
new tuples to add (or to remove) from the view plus the cost of writing them.
At first, we measured the execution time for adding or deleting a row from each
view. Then, we estimated the number of rows to add to the view. Finally, the
cost of writing the new added tuples is obtained by multiplying this number by
the time to add a row. This cost is computed as the sum of the related operations
costs, which is pondered proportionally to the number of added rows (or deleted
tuples).

6.2ÿ ExperimentÿResults

Figure 4 presents the performance resulting from evaluating the global cost of
the workload involving 1, 3, 5 and 10 queries to test scalability of the selection
methods according to the number of queries. The update frequencies and access
frequencies are at scale 1. This graphic shows that our approach provides the
lowest global cost. The gap between our approach and the other rises according
to the number of queries.

The graphic depicted in Figure 5 shows the global cost of the workload in-
volving 10 queries while varying the access frequency. The update frequency is
at scale 1. We can see, our approach outperforms the MVPP approach and the
”all” materialized approach. The reason is MVPP tends to materialize views
near the leaf level in the multi query graph. Therefore, the query processing
is high. Note that for the MVPP strategy, the global cost decreases when the
access frequency increases from 4 to 8. This is because the MVPP algorithm

676 X. Baril and Z. Bellahsène

0

20

40

60

80

100

120

1 2 5 10

Number of queries

T
i
m
e

(
s
)

Level
Mvpp
All
Virtual

Fig. 4. Evaluating global cost while varying the number of queries

detects that the materialization of some views is beneficial with the increase of
the access frequency.

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

1 2 4 8

Access Frequency

T
i
m
e

(
s
)

Level
Mvpp
All
Virtuala

Fig. 5. Evolving the access frequency

Figure 6 presents the behavior of the different view selection methods while
varying the update frequency for a workload involving 10 queries. The access
frequency is at scale 1. We note that our approcah outperforms the others. The
approach named “all” is not represented in this figure because its results are too
bad and due to space limitation we don’t put them on the histogram.

677Selection of Materialized Views: A Cost-Based Approach

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

1 2 4 8

Update frequency

T
i
m
e

(
s
) Level

Mvpp
Virtuala

Fig. 6.ÿEvolvingÿtheÿupdateÿfrequency

6.3ÿ Discussion

We note from the above experiments that our approach provides the better
performances for global cost in all cases. Furthermore, our method supports
scalability when the number of views is large (i.e., greater than 3). We have made
experiments with various access and maintenance frequencies and our approach
has always outperform the others.

We note that the MVPP approach tends to materialize views near the leaf level
in the multi-query graph. In our opinion, there are two reasons to explain this
behavior. The first one is that maintenance cost is sur-evaluated with MVPP,
because they don’t assume incremental maintenance. The second reason is that
their cost model doesn’t take into account the type of relational operations. So
join operations which are very expensive are not in favor for materialization. For
this reasons, the results provided by the MVPP approach often tend to be the
same as the virtual approach.

Finally, we learnt from this study that the approaches using multi-query op-
timization techniques provide better performance than the classical approach
named here ”all” materialized approach.

7ÿ RelatedÿWork

One of the key ideas of our approach is to detect common sub-expressions.
This strategy has been applied in a significant number of papers in the context
of multi-query optimization and also in view selection setting. The problem of
the view selection and finding common sub-expressions are quite different: in
the context of multi-query optimization, the problem is recognizing possibilities
of shared computation whereas in our approach the problem is to find common

678 X. Baril and Z. Bellahsène

views (corresponding to intermediary results) which will be materialized. How-
ever, the sharing feature is one parameter among several others. For instance,
the strategy of choosing views to be materialized in our approach takes both the
view maintenance.

Most of the previous related approaches on view selection are theoretical
studies rather than pragmatic approaches and considered that the cost model
is one parameter among others. The work reported in [7] is an exception since
it was based on a cost model and has been implemented. However, this work
focused on view maintenance problem without considering the query processing
cost. Moreover, common subexpressions have been exploited for improving view
maintenance cost [7].

In [10], the dynamic data warehouse design is modeled as search space prob-
lem. Rules for pruning the search space have been proposed. The first rule relies
on favoring the query rewriting that uses views already materialized. The second
one modifies the previous rule to favor common subexpression. However, their
view selection algorithm is still in exponential time. Besides, neither implemen-
tation and/or evaluation of their method have been performed.

Our Multi View Materialization Graph is close to the Multi View Processing
Plan that has been described in [12]. However, the evaluation cost of the query is
not estimated according to the operation type. It seems that the estimated cost
of a join is estimated as the same as the cost of a selection. ”The cost of a query
is the number of rows present in the table used to construct Q” [12]. DynaMat
[6] is a system aimed to unify the view selection and the view maintenance
problems. The principle of this system is monitoring constantly the incoming
queries and materializing the set of views given the space constraint. During the
update only the most beneficial subset of materialized views are refreshed within
a given maintenance window. However, this approach is efficient when queries
are ad hoc especially in OLAP applications. More recently, a formal study of the
view selection problem focusing on its complexity has been done in [3]. It shows
notably that the cost model is a parameter of importance in the view selection
setting.

8ÿ Conclusion

In this paper, we have presented a pragmatic approach of the view selection
problem that combines global with local optimization. Due to the reuse a query
change may entail an important reorganization of the multi query graph. Thus
the data independence of the views may be compromised. In our approach,
adding or removing queries can be done without great reorganization as we
have shown it in this paper. While in the related work since the materialization
strategy consists in considering all nodes of the multi query graph, the impact
of adding or removing a query is more important. This is the counterpart of
sharing and because the view selection method consider all queries together.

679Selection of Materialized Views: A Cost-Based Approach

The view selection algorithms that we have presented in this paper have been
implemented in java interfaced with a MySQL sever. We have performed several
experiments and comparison with the approach reported in [12]. The experi-
ment results have shown that our approach provides significant benefits over the
all considered approaches. Furthermore, we learnt from this study that the ap-
proaches using multi-query optimization techniques provide better performance
than the classical approach named here ”all” materialized approach. We are plan-
ning to investigate the view selection problem in the context of a P2P Database
architecture.

References

1. S. Agrawal, S. Chaudhury, and V. Narasayya. Automated Selection of Materialized
Views and Indexes for SQL Databases. In Proceedings of the 26th International
Conference on Very Large Databases, VLDB’2000, Cairo, Egypt, 2000.

2. Z. Bellahsène and P. Marot. Materializing a Set of Views: Dynamic Strategies and
Performance Evaluation. In Proceedings of International Database Engineering and
Applications Symposium, Yokohoma, Japan, September 2000. IEEE publishing.

3. R. Chirkova, A. Halevy, and D. Suciu. A formal perspective on the view selec-
tion problem. In Proceedings of the 27th International Conference on Very Large
Databases, VLDB’2001, Roma, Italy, September 2001.

4. H. Gupta. Selection of Views to Materialize in a Data Warehouse. In Proceedings of
the International Conference on Database Theory, Delphi, Greece, January 1997.

5. H. Gupta and I. Mumick. Selection of Views to Materialize Under a Maintenance-
Time Constraint. In Proceedings of the International Conference on Database
Theory, Jerusalem, Israel, January 1999.

6. Y. Kotidis and N. Roussopoulos. DynaMat: A Dynamic View Management System
for Data Warehouses. In Proceedings of the ACM SIGMOD Conference, Philadel-
phia, USA, 1999.

7. H. Mistry, P. Roy, and K. Ramamritham. Materialized View Selection and Main-
tenance Using Multi-Query Optimization. In Proceeding of the International Con-
ference on Management of Data SIGMOD, USA, 2001.

8. P. Roy, S Seshadri, S. Sudarshan, and B. Siddhesh. Efficient and Extensible Algo-
rithms for Multiquery Optimization. In Proceeding of the International Conference
on Management of Data SIGMOD, San Diego, USA, 2000.

9. D. Theodoratos and T. Sellis. Data warehouse configuration. In In Proceedings of
the 23rd International Conference on Very Large Data Bases, VLDB’1997, 1997.

10. D. Theodoratos and T. Sellis. Incremental Design. Journal of Intelligent Informa-
tion Systems, 15:7–27, 2000.

11. TPC-R Benchmark Standard Specification 2.01, January 1999. http://www.tpc.org.
12. J. Yang, K. Karlapalem, and Q. Li. Algorithm for Materialized View Design in data

Warehousing Environment. In Proceedings of the 23rd International Conference on
Very Large Data Bases, VLDB’1997, pages 136–145, Athens, Greece, 1997.

680 X. Baril and Z. Bellahsène

	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Preliminaries
	2.1 The Multi View Materialization Graph
	2.2 Notion of Level in the MVMG

	3 Our View Selection Method
	3.1 Algorithm for View Selection
	3.2 General Algorithm

	4 Sample Example
	5 The Cost Model
	5.1 Estimated Cost of the Operations
	5.2 Maintenance Cost
	5.3 Query Processing Cost

	6 Performance Study
	6.1 Experiment Process
	6.2 Experiment Results
	6.3 Discussion

	7 Related Work
	8 Conclusion

