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Abstract. Regular path expression is one of the core components of
XML query languages, and several approaches to evaluating regular
path expressions have been proposed. In this paper, a new path ex-
pression evaluation approach, extent join, is proposed to compute both
parent-children (‘/’) and ancestor-descendent (‘//’) connectors between
path steps. Furthermore, two path expression optimization rules, path-
shortening and path-complementing, are proposed. The former reduces
the number of joins by shortening the path while the latter optimizes
the execution of a path by using an equivalent complementary path ex-
pression to compute the original path. Experimental results show that
the algorithms proposed in this paper are much more efficient than con-
ventional ones.

1 Introduction

With the rapid development of advanced applications on the Web, numerous
amount of information becomes available on the Web and almost all the cor-
responding documents are semi-structured. As the emerging standard for data
representation and exchange on the Web, XML has been adopted by more and
more applications as their information description mean. Even though XML is
mainly used as an information exchange standard, storing, indexing and query-
ing XML data have become research hotspots both in the academic community
and in the industrial community.

To retrieve XML data, many query languages have been proposed so far, such
as Quilt [3], XQuery [4], XQL [5], XPath [6], and Lorel [7]. Because one of the
common features of these languages is the use of regular path expressions (RPE),
query rewriting and optimization for RPE is becoming a research hotspot and
some research results have been obtained recently. A usual way to optimize the
execution of RPE expressions is to first rewrite RPE queries into simple path
expressions (SPE) based on schema information and statistics about XML data,
and then translate these SPE queries into the language of the database used
to store the XML data, for example, into SQL. In the Lore system, three basic
query processing strategies are proposed for the execution of path expressions,
top-down, bottom-up and hybrid. The top-down approach navigates the document
tree from the root to the leaf nodes while the bottom-up approach does from the
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leaf nodes to the root. In the hybrid way, a longer path is first broken into
several sub-paths, each of which is performed with either top-down or bottom-
up. The results of the sub-paths are then joined together. In the VXMLR system
[1], regular path expressions containing ‘//’ and/or ‘*’ operators are rewritten
with simple path queries based on schema information and statistics. The paper
in [2] presents an EE-Join algorithm to compute ‘//’ operator and a KC-Join
algorithm to compute ‘*’ operator based on their numbering scheme.

In this paper, we propose a new path expression evaluation approach, called
extent join, to compute both parent-children (‘/’) and ancestor-descendent (‘//’)
connectors between path steps. In order to support the extent join approach, we
introduce indexes preserving parent-children and ancestor-descendent relation-
ships. Furthermore, we propose two path expression optimization rules, path-
shortening and path-complementing. The Path-shortening rule reduces the num-
ber of joins by shortening the path while the path-complementing optimizes the
execution of a path by using an equivalent complementary path to compute the
original path. The performances of the query processing and optimization tech-
niques proposed in this paper are fully evaluated with four benchmarks, XMark,
XMach, Shakes and DBLP.

The remainder of this paper is organized as follows. Section 2 presents some
preliminaries for XML query processing, including XML data tree, XML schema
graph and path expression. Section 3 describes the extent join algorithm along
with indexes and rewriting algorithm for ‘//’. Section 4 presents two query op-
timization rules for regular path expressions. Section 5 gives the experimental
results and the performance evaluation. Finally, Section 6 concludes the paper.

2 Preliminaries

In this section we review some concepts and definitions used throughout the
paper.

2.1 XML Data Tree

XML is proposed by W3C as a standard for data representation and exchange,
in which information is represented by elements that can be nested and at-
tributes that are parts of elements. Document Object Model (DOM) is an ap-
plication programming interface (API) for XML and HTML documents, which
defines the logical structure of documents and the way a document is accessed
and manipulated. In DOM, XML data are abstracted into entities, elements
and attributes, and these entities are organized together via parent-children and
element-attribute relationships to form a data tree, i.e. DOM tree. In this paper,
we model XML data as a node-labelled tree in the following.

Definition 1. Formally, an XML data is represented as an XML data tree
Td = (Vd, Ed, δd, Σd, rootd, oid), where Vd is the node set including element nodes
and attribute nodes; Ed is the set of tree edges denoting parent-children rela-
tionships between two elements and element-attribute relationships between el-
ements and attributes; δd is the mapping function from nodes to nodes that are
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actually the relationship constraints. Every node has a unique name that is a
string-literal of Σd and a unique identifier in set oid. Finally, every XML data
tree has a root element rootd that is included in Vd.

Figure 1 shows part of an XML document proposed in the XML Benchmark
project [11], it is represented as an XML data tree. There are two kinds of nodes,
elements denoted by ellipses and attributes by triangles. The numeric identifiers
following “&” in nodes represent oids. The solid edges are tree edges connecting
nodes via the δd function. In this model, the parents can actually be reached via
the δ−1

d function from the children. Node “&1” labelled “site” is the rootd of this
XML data tree and all other nodes can and only can be reached by rootd. Note
that in Figure 1, there are two directed dashed lines between some nodes (&23
and &18, &28 and &18 ), representing the referencing-referenced relationship
between elements.
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& 3
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& 4item

& 6
nam e

& 10 {asia,.. .}

& 5
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item

& 9
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& 8
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Fig. 1. Sample XML data tree

2.2 XML Schema Graph

Although XML data is self-descriptive, Document Type Definition (DTD) is
proposed by W3C to further and explicitly constrains XML data, for example,
an element should contain what kind of and/or how many sub-elements. XML
mainly defines the parent-children relationship between XML elements and the
order between the sub-elements of an element. In this paper, we model XML
DTD as a directed, node-labelled graph.

Definition 2. Formally, an XML schema graph is defined as a directed, node-
labelled graph Gt = (Vt, Et, δt, Σt, roott), where Vt is the node set including
element type nodes; Et is the set of graph edges denoting element-subelement
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relationships. Attributes are parts of elements; δt is the mapping function from
nodes to nodes that actually constrains which element can contain which sub-
elements. Every node has a unique name that is a string-literal of Σt and this
name is actually element type name. Finally, every XML schema graph has a
root element roott that is included in Vt, which is defined as the node with only
outgoing edges and without any incoming edges.

s ite

regions

nam eric a {as ia,.. .}

nam e

people

person c losed_auc tion

open_auc tions

open_auc tion

c losed_auc tions

bidder

annotation

desc ription

item id

profile inc om e

buyer person

pric e

Fig. 2. XML Schema Graph

Figure 2 shows part of the XML schema graph that constrains the XML
data tree in Figure 1, it is represented as an XML schema graph. The nodes
are element types and the solid edges are graph edges connecting nodes via the
δt function. In this model, the parent elements can actually be reached via the
δ−1
t function from the children elements and the corresponding reverse edges

are omitted in Figure 2. The node labelled “site” is the roott of this XML
schema graph. The attributes of element types are listed besides the nodes with
underline, for example, income.

2.3 Path Expression

Path expressions can be straightforwardly defined as a sequence of element type
names connected by some connectors such as ‘/’ and ‘//’ and wildcard ‘*’. For
example, path expression “/site//item” can be used to find all items of the
database whose root element rootd is “site”. The syntax definition of path ex-
pression is shown in Figure 3.

Path expressions mainly consist of two parts, path steps and connectors.
Every path expression must begin from the root, that is, begins with a connector
‘/’ or ‘//’. There are two basic kinds of path steps, Name and wildcard ‘*’. Path
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PathExpression ::= CONNECTOR PathSteps
| PathSteps CONNECTOR PathSteps

PathSteps ::= Name | Name ‘|’ PathSteps | (PathStemps) | ‘*’
CONNECTOR ::= ‘/’ | ‘//’

Fig. 3. BNF syntax of path expression

step Name means that in this step only the element instances with the tag name
Name will be matched and ‘*’ will match any element instances no matter which
type it belongs to. Between two path steps there must be a connector to specify
the relationship between them. Connector ‘/’ appearing in the beginning of a
path expression means that the path expression begins from exactly the root and
the following path step is the root element type, while connector ‘//’ appearing
in the beginning of a path expression means that the path expression begins
from the root and the following path step is the descendant of the root, that
is, ‘//’ covers for sub-path-expressions with any length. A connector appearing
between two path steps specifies the relationship between them. Connector ‘/’
constrains that between the two path steps there must exist a parent-children
relationship and ‘//’ is an ancestor-descendant relationship constraint.

3 Extent Join

In this section, we discuss the XML element extent concept and the extent join
algorithm. We present some indexes as well in this section to support the concept
and the algorithm.

3.1 XML Element Extent

Given an XML data tree Td = (Vd, Ed, δd, Σd, rootd, oid) and a corresponding
XML schema graph Gt = (Vt, Et, δt, Σt, roott), we have the following definitions.

Definition 3. pcpair(pid, cid) is a pair of oids, in which pid, cid ∈ oid and
pid is the parent of cid, for example, pcpair(&1, &2).

Definition 4. adpair(aid, did) is a pair of oids, in which aid, did ∈ oid and
aid is the ancestor of did, for example, adpair(&1, &3).

A pcpair is a special case of an adpair. Additionally, ε is defined to act as
any element instance, so adpair(ε,&3) can be used to represent adpair(&1, &3)
or adpair(&2, &3). Both adpair and pcpair can also act as logic operators, for
example, if there exists an ancestor-descendent relationship between two element
instances e1 and e2, then adpair(e1, e2) returns true. Otherwise, it returns false.

Definition 5. The set of all pcpairs of a given tag name Tag, called parent-
child element extent, is represented by Ext(any, Tag) = {pcpair(pid, cid) | cid
is an instance of Tag ∧ pcpair(pid, cid) is true}. Similarly, the set of all adpairs
of two given tag names an and dn, called ancestor-descendant element extent, is
represented by Ext(an,dn) = {adpair(aid, did) | pcpair(ε, aid) ∈ Ext(any, an)
∧ pcpair(ε, did) ∈ Ext(any, dn) ∧ adpair(aid, did) is true}.
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For examples, Ext(any,name)={(&4,&6), (&7,&9), (&11,&13)} and
Ext(site, annotation) = {(&1,&24), (&1,&29), (&1,&35)}.

Definition 6. For two given elements, an and dn, and a given path P, the
path constrained element extent is defined as PCExt(an, dn, P) = { adpair(aid,
did) | adpair(aid, did) ∈ Ext(an, dn) ∧ did ∈ P(aid)}, where P(aid) is the
element instance set that can be reached from aid via path P.

In the query processing, PCExt may be more useful than the basic XML ele-
ment extents. A PCExt is actually an element extent with a path constraint and
is a subset of the corresponding extent. For example, in PCExt(site, annotation,
“/site/closed auctions/closed auction/annotation”), the third parameter is the
path constraint on Ext(site, annotation). This constraint regulates that in this
PCExt, the instances of element annotation must be the ones that can be reached
from the corresponding instances of element site via the path expression. As a re-
sult, PCExt(site,annotation,“/site/closed auctions/closed auction/annotation”)
= {(&1,&24),(&1,&29)}.

3.2 Indexes

Neither the DOM interface nor the XML data tree provides the extent semantic
for XML data, so we introduce three structural indexes to support it, ancestor-
descendant index (ADX), parent-children index (PCX) and path index (PX). We
also propose reference index (RX) to support operations on references.

ADX is used to index Ext(Pname, Cname) where Pname is the ancestor of
Cname. Actually, ADX indexes the ancestor-descendant relationship between
specified elements. For example, ADX(site, item) = {(&1, &4), (&1, &7), (&1,
&11)}. PCX is used to index PCExt(Pname, Cname, “Pname/Cname”) where
Pname must be the parent of Cname. For example, PCX(namerica, item) is
{(&3, &4), (&3, &7)}. If the parent element name is not specified, PCX(any,
item) indexes Ext(any,item) = {(&3, &4), (&3, &7) ,(&10,&11)}, written as
PCX(item). PX(E1/P/E2) is used to index PCExt(E1,E2,“E1/P/E2”). For ex-
ample, PX(closed auctions/closed auction/buyer) = {(&21, &23), (&21, &28)}.
RX is used to support the reference semantics between XML elements. For ex-
ample, RX(buyer, person, person) is {(&23, &18), (&28, &18)}.

For the indexes above, only the principles are introduced. Their implementa-
tions are relatively simple as they have no special demands on the index struc-
tures. The traditional index structures, e.g. B+ tree, are suitable for these in-
dexes.

3.3 Extent Join Algorithm

The basic idea of the extent join algorithm is to replace the tree traversal pro-
cedures with join operations. Before the whole path expression is evaluated, the
intermediate result sets to be joined must be first computed. Then the ancestor-
descendant/parent-children relationship based multi-join operation is then per-
formed to evaluate the whole path expression. The most special characteristic of
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these indexes is that they maintain the parent-children and ancestor-descendant
relationship by the index results.

Consider the path expression “/site//closed auction/annotation/description”
that contains four path steps and three connectors. As shown in Figure 4,
each path step corresponds to an intermediate results set, i.e. an element
extent; each connector is transformed into a join operation, and the results of
joins are the path constrained element extents. For example, the join between
Ext(any, site) and Ext(site, closed auction) is PCExt(site, closed auction,
“/site/closed auc-tions/closedc auction”), and the PCExt acts as an interme-
diate result used to perform another join with Ext(closed auction, annotation)
to get another PCExt. Path expressions must be transformed into evaluation
plans to get evaluated. The art of transformation is focused on the path steps
to corresponding extents, and the following shows the full transformation rules.

s ite Closed_auc tion

Annotation

Desc ription

Ext(any,s ite) Ext(site,Closed_auct ion)

E x t (Clo sed_ auct io n ,
an n o t a t io n )

E x t (an n o t a t io n ,
D escr ip t io n

J

J

J

PCX (any ,site) A D X (sit e ,Clo sed_ auct io n )

P CX (Clo sed_ auct io n ,
an n o t a t io n )

P CX (an n o t a t io n ,
D escr ip t io n

J

J

J

(a) (b) (c )

Fig. 4. (a) path expression, (b) extent join tree, and (c) execution tree

(1) Connectors (‘/’ and ‘//’) are transformed into joins between two sets.
(2) Path step ‘*’ is rewritten with element types using the mapping function δt.

For example, δt(site) = {regions, people, closed auctions, ope auctions} and
path expression “/site/*/person” is rewritten as “/site/(regions | people |
closed auctions | open auctions)/person”.

(3) Path steps following connector ‘//’ are transformed into a corresponding
ADX operator. For example, path step S2 in “S1//S2” is transformed into
ADX(S1, S2).

(4) Path steps following connector ‘/’ are transformed into a corresponding PCX
operator. For example, path step S2 in “S1/S2” is transformed into PCX(S1,
S2).

(5) Path steps containing ‘|’s are transformed into the unions of corresponding
indexes. For example, path step (S2|S3) in “S1/(S2|S3)” is transformed into
PCX(S1, S2) ∪ PCX(S1, S3).

The third transformation rule transforms the ‘//’ connectors into ADXs.
However, to build this index for every element type pair with ancestor-descendent
relationship will take too much time and space overhead. So in the case of no
corresponding ADX available, the ‘//’ connectors must be rewritten into path
expressions connected only with ‘/’. This procedure should be achieved with
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the knowledge of the schema information, e.g. DTD of XML documents. For
the XML schema graph is a directed graph, the rewriting algorithm is actually
to find all possible paths between two nodes in a graph. Before introducing the
details of the algorithm for rewritting ‘//’ connector, we first define an important
data structure reverse path tree (RPT) as follows.

Definition 7. A reverse path tree is defined as a node-labelled tree Tr =
(Vr, Er, Σr, rootr), which organizes several path expressions with a same end
path step together, where Vr is the node set that are actually the set of corre-
sponding path steps; the edges contained in the edge set Er are connector ‘/’; Σr

is the same as Σt in Gt and rootr is the root of this tree and is just the common
end path step. We define RPT(E) as a reverse path tree rooted E which contains
all path expressions from rootr to E, and define RPT (E1, E2) as a reverse path
tree rooted E2 which contains all path expressions from E1 to E2 and some path
expressions from rootr to E2.

Desc ription

Annotation

Closed_auc tion Open_auc tion

Closed_auc tions Open_auc tions

Site Site

Desc ription

Annotation

Closed_auc tion Open_auc tion

Closed_auc tions Open_auc tions

Site

(a) RPT (desc ription) (b) RPT (c losed_auc tion, desc ription)

Fig. 5. Reverse path trees

For example, Figure 5 (a) shows RPT(description) and (b) shows RPT(clos-
ed acutions, description). We can easily retrieve path expressions with specified
starting path step by traversing up through the RPT from the tree leaves with
the given label. For example, if we only want path expressions beginning with
closed acutions from RPT(closed acutions, description), we can just traverse
up from the most left leaf node of Figure 5(b) to the root. So, the connectors
rewriting algorithm is just the RPT constructing algorithm, shown as in Figure
6. With the proposed transformation rules and the algorithm, we have the extent
join algorithm, details are shown in Figure 7.

4 Optimizing Regular Path Expressions

In Section 3, we have introduced the basic idea of extent join that uses joins over
sets to evaluate path expression queries. Its performance depends largely on the
number of joins and the size of joining sets. In this section, we present two path
expression optimization techniques to reduce the number of joins and the exe-
cution cost of path expressions when evaluating a path expression. Meanwhile,
the general cost based optimization procedure is also introduced in this section.
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4.1 Path-Shortening

Most of the existing algorithms proposed for path expressions are based on the
entire paths. Actually, a path expression can sometimes be computed with rela-
tive path rather than absolute path, depending on DTD or schema information.
A simple example is path “/site/closed auctions/closed auction/price”. From
the XML schema graph in Figure 2, we know that only through this path we
can find price elements, so the result of this path is exactly all elements tagged
price, i.e. Ext(any, price). This principle can be summarized as follows.

Problem: construct a RPT (rewrite “n1//n2”)
Input: XML Schema Graph Gt = (Vt, Et, δt, Σt, roott),

two graph nodes n1, n2

Output: result RPT rpt.
Algorithm body:
(1) rpt.rootr = n2; // set the root of rpt
(2) currentnode = rpt.rootr; // set the current node
(3) currentnode.children = δ−1

t (currentnode); // set children of current node.
(4) For every node ccinδ−1

t (currentnode) do // recursively construct the RPT
(5) if cc! = n1 and cc! = roott

(6) currentnode = cc
(7) goto (3)
(8) endfor

Fig. 6. Constructing RPT Algorithm

InputPath Expression Query P
Output: Result Set R
Algorithm body
(1) Checking the ADX and rewrite the no-index-supported ‘//’ connectors

using the algorithm in Figure 6.
(2) Transforming the rewritten path P into joins and indexes and organized

as a simple query plan.
(3) Executing the query plan including indexes and joins.

Fig. 7. Extent join Algorithm

Definition 8. Suppose that /P/E be a path starting from the root element.
If (∀e)(pcpair(p, e) ∈ Ext(any, E) → adpair(ε, p) ∈ R(P )) , then P is a unique
path from the root to E, written as UP (En) = P , where P is a path expression
and R(P) means the result set of path P.

Rule 1. Path-shortening : if UP (E) = P , then R(/P/E) = Ext(E).
However, the situation that the end node is in the unique path

does not happen very often, for example, the end node in the path



Query Processing and Optimization for Regular Path Expressions 39

“/site/closed auctions/ closed auction/annotation/description” can also be
reached by path “/site/openauc-tions/open auction/annotation/description”.
The characteristic of this path expression is that its head segment is
unique, for example, “/site/closed auctions/ closed auction” is a unique path.
In this case, we can shorten the long path into a relative shorter one
“closed auction/annotation/description”. Then we can get the general path-
shortening rule.

Rule 2. General Path-shortening : if P1/E/P2 is a path expression starting
from the root and UP (E) = P1, then R(P1/E/P2) = R(E/P2).

This optimization technique is heuristic one because it reduces the sets to be
joined by shortening the path expressions, and its key problem is how to deter-
mine if a path expression is the unique path of a given element type. Actually
we can shorten a path expression step by step till the most optimal case. The
algorithm in Figure 8 shows how to shorten a path expression. For the simplicity
of algorithm description, we assume that the path steps of the path expression
to be shortened do not include ‘*’ for they can easily be rewritten to paths not
containing ‘*’ using function δt. In this algorithm, the path expression is short-
ened from the head to the tail, and if one path step could not be shortened, the
rests then do not need to be checked any more. The reverse path tree is used to
help to shorten path steps with connector ‘//’.

Input: Path expression P = Σn
i=1SiCi , XML schema graph Gt = (Vt, Et, δt, Σt, roott)

Output: Shortened path expression P’
Algorithm body:
(1) For i = 1 to n-1 do
(2) If Si == ‘/’ && δ−1

t (Si+1) = {Si} then
(3) cs = i+1;
(4) continue;
(5) else break;
(6) end if
(7) If Si == ‘//’ then
(8) construct RPT (Si, Si+1)
(9) if all leaves of RPT (Si, Si+1) are Si then
(10) cs = i+1;
(11) continue;
(12) else break;
(13) end if
(14) end if
(15) End for
(16) P’ = Σn

i=csSiCi

Fig. 8. Path Shortening algorithm
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4.2 Path-Complementing

Path-shortening reduces the cost of evaluating a path expression by optimizing
the path itself. For example, consider the query “find all the names of items
of all regions” that can be expressed as “/site/regions/*/item/name”. From
the XML schema graph in Figure 2 we know only elements item and person
have element name, so these name element instances in database are either
item names or person names. Actually all item names can be reached by path
“/site/regions/*/item/name”, and all person names can be reached by path
“/site/people/person/name”. So for element name, these two path expressions
are complementary paths; that is, the former path can be evaluated by subtract-
ing the results of the latter from the element extent Ext(any, name). This gives
us an alternative way to compute path expressions and we can choose the better
one to get better performance.

Definition 9. Let E1 and E2 be element names, if (∀e2)(pcpair(ε, e2) ∈
Ext(any, E2) → (∃e1)(pcpair(ε, e1) ∈ Ext(any, E1) ∧ adpair(e1, e2))), then E1
is a key ancestor of E2.

Definition 10. Let E1 is a key ancestor of E2 and there exist path expres-
sions P1, P2, · · ·, Pn from E1 to E2, if (∀e2)(pcpair(ε, e2) ∈ Ext(any, E2) →
adpair(ε, e2) ∈ ∪n

i=1P (pi)), then ∪i−1
j=1pj +∪n

j=i+1pj is the complementary paths
of Pi with respect to E1 and E2 .

Rule 3. Path complementing : if ∪i−1
j=1pj + ∪n

j=i+1pj is the complementary
paths of Pi(1 ≤ i ≤ n) with respect to E1 and E2, then R(Pi) = Ext(E2) -
(∪i−1

j=1pj + ∪n
j=i+1pj).

Obviously, reverse path tree is very helpful to determine the key ancestors
of a given element type by checking the names of leaves and finding the comple-
mentary paths. Actually with reverse path tree the procedure is quite simple, so
for saving the space, the details of this algorithm are omitted in this paper.

4.3 Querying and Optimizing Path Expressions

In the above subsections, two optimization techniques are proposed for path
expression. We have mentioned that the path-shortening rule is heuristic, while
the path-complementing technique is not suitable for all cases. Therefore, a cost
based query plan selection is used for the path optimization procedure. In this
subsection, we show how to use them in path expression query processing proce-
dure. The selectivity of path expression and cost estimation are not the focuses
of this paper, so the details of these issues are ignored.

Given a path expression query P and an XML schema graph Gt = (Vt, Et, δt,
Σt, roott), the general steps of querying and optimizing path expression queries
are shown as follows.

Step 1. Rewriting of ‘*’. With the XML schema graph, path steps ‘*’ are rewrit-
ten to the unions of all possible sub-paths via function δt.

Step 2. Complementary path selection. With the XML schema graph, the com-
plementary paths of user query are found and their costs are estimated.
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Check if the cost of complementary paths is lower than that of the original
path. If does, the complementary approach is chosen. Otherwise, the original
path is chosen.

Step 3. Path shortening. Using the algorithm in Figure 8 to shorten the selected
path expressions.

Step 4. Rewriting of connector ‘//’. Checking if there exists ‘//’ connectors
with no ADX support. If does, they are rewritten using the algorithm in
Figure 6.

Step 5. Index selection and query plan construction. Select correct indexes and
transform the path expressions into query plans.

Step 6. Query plan execution. Executing the query plan including indexes and
joins.

5 Experiments

5.1 Overview

In this section, we discuss the performance evaluation of the extent join path
expression evaluation strategy and the path-shortening and path-complimenting
path expression optimization rules in terms of four benchmarks. The experi-
ments were made on a single 800MHz CPU PC with 184MB main memory. We
employed a native XML management system called XBase [8] as the underly-
ing data storage, which stores XML documents into an object database with
an ODMG-binding DOM interface. The testing programs were coded with MS
VC++ 6.0 and ODMG C++OML 2.0 [9]. The datasets used are described as
follows.

XMark is from the XML benchmark project [11]. The scale factor selected is
1.0, and the corresponding XML document size is about 100MB. The structure
of the document is modelled for a database as deployed by an Internet auction
site. The hierarchical schema is the same as in Figure 2. XMark focuses on
the core ingredient of XML benchmark including the query processor and its
interaction with the database. XMark totally specifies 20 queries that cover
a wide range including exact match, ordered access, casting, regular path
expressions, chasing references, construction of complex results, join on values,
reconstruction, full text, path traversals, missing elements, function application,
sorting and aggregation. XMach is a scalable multi-user benchmark to evaluate
the performance of XML data management systems proposed by Rahm and
Bohme [10]. It is based on a web application and considers different types
of XML data, in particular text documents, schema-less data and structured
data. The database contains a directory structure and XML documents. It is
a multiple DTD and multiple document benchmark that totally consists of 11
queries, 8 retrieval and 3 update queries. Shakes is the Bosak Shakespeare col-
lection available at http://metalab.unc.edu/bosak/xml/eg/shakes200.zip.
8 queries are designed over Shakes data set [12]. DBLP is from the DBLP
bibliography web site, available at

http://metalab.unc.edu/bosak/xml/eg/shakes200.zip
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ftp://ftp.informatic.unitrier.de/pub/users/Ley/bib/records.tar.gz.
8 queries are defined over the DBLP data set [12].

In order to full explore the performance of the extent join algorithm and query
optimization techniques proposed in this paper, we implemented 4 different query
evaluating strategies: DOMTR, EJX, EJPX and EJOPX. DOMTR evaluates
path expressions by traversing the XML date tree from top to down with no
index support, which is similar to the top-down approach. EJX is implemented
as an extent join approach with all indexes except path indexes, including ADX,
PCX and RX. Path indexes are optional for they must be specified explicitly by
users, while other indexes are indispensable to EJX. EJPX is a full extent join
algorithm with all indexes used to explore the performance of path indexes. In
the extreme cases where all indexes are available, EJX and EJPX do not need
to access the XML data trees. EJOPX is an all query optimization rule applied
extent join algorithm. It follows the optimizing steps in Section 4 to select the
most optimal query execution plan.

5.2 Extent Join

Figure 9 shows the performance comparison of DOMTR, EJX and EJPX in
terms of XMark. Extent join algorithm is much better than DOMTR in most
cases. The extent join is about 2 ∼ 20 times, sometimes hundreds of times
faster than DOMTR. However, there are some exceptions. (1) For Q2, Q3, Q13
and Q14, the performance of extent join is similar to DOMTR. The reasons
are different: a) Q2 and Q3 are order accesses to elements. In this case, even
extent join needs to traverse the XML data trees; b) Q13 is result reconstruction
and needs to traverse a relative big sub-tree to get all results; c) Q14 is a full
text query, which also needs to traverse the whole sub-tree to check if elements
are right. (2) For Q15 and Q16 containing very long path traversals, DOMTR
outperformed extent join by about 30%. Due to the much smaller selectivity of
path expression DOMTR does not need to traverse the whole XML data tree,
whereas extent join must do many join operations (e.g. Q15: 12, Q16: 14). Then
we can get a conclusion: extent join is better than DOMTR in most cases except
it needs to traverse a large XML data tree like DOMTR or the path queries are
very long which extent join must do too many join operations.

There are only some queries in XMark can be evaluated using EJPX
(Q8∼Q11, Q15∼Q17 and Q19) due to their characteristics. From Figure 9, we
can see EJPX can improve the query performance by about 10%∼30 times over
EJX. In the extreme case, such as Q15, EJPX can be thousands times faster
than EJX. However, for some queries like Q11, Q12, Q14, and Q18, which ei-
ther have join on values or are full text queries, the benefit of path indexes are
drowned.

Figure 10 shows the update performance with and without indexes in XMach.
Since only XMach has specified update queries, the test has not been done on
other benchmarks. The total size of indexes is about 0.1 to 0.2 times of the size
of the original XML document, and the response times of the update operations

ftp://ftp.informatic.unitrier.de/pub/users/Ley/bib/records.tar.gz
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are decreased by only about 10% to 20%. Thus, these indexes are much efficient
and effective both in space utilization and supports for queries.
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Fig. 9. Extent join (XMark)
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Fig. 10. Update queries (XMach)
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Fig. 11. Query optimization(XMarh)
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Fig. 12. Query optimization(XMach)

5.3 Query Optimization

Figures 11 and 12 show the performance comparison of EJX and EJOPX on
XMark and XMach respectively. EJOPX is the winner in all query results, and
queries are divided into several categories. (1) Query performance is improved
greatly. Examples are Q5∼Q7, Q18 and Q20 of XMark, whose path expressions
are shortened to a very short one, and these queries have no predicates or the
predicates are at the last step of the paths. In these cases, EJOPX can be
10∼200 times faster than EJX. (2) Query performance is improved moderately.
Q1∼Q4, Q8∼Q12 and Q17 belong to this category. They are either queries that
can only be shortened a little by path-shortening rule and the saved extent join
operations take relative small costs (Q1), or queries have some other high cost
operations, such as join on values, ordered access and references chasing, in
which the benefits of query optimization rules cannot be seen clearly (Q2∼Q4,
Q8∼Q12), or queries whose complementary paths are still very complex (Q17).
For queries of this category, EJOPX can save the evaluating time by about
10%∼400%. Most queries fall in this category. (3) Query performance is improved
slightly. Q13∼Q15 and Q16 of XMark fall in this category and the benefit of
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EJOPX on them is only 0.3%∼8%. The reasons are that these queries have
very high cost operations (Q13: complex result reconstruction, Q14: full text
scanning) or they are very long path expressions and can only be shortened very
little (Q15: 2 out of 12, Q16: 2 out of 14). The XMach results in Figure 12 also
indicates the similar result (Q2∼Q7 belong to category 1, Q8 belongs to category
2 and Q1 belongs to category 3).

Figures 13 and 14 are the performance comparison of DOMTR, EJX and
EJOPX over the two real data sets, DBLP in Figure 13 and Shakes in Figure
14. First, consider DBLP where most of queries are very long and have predi-
cates at the end. EJX is much better than DOMTR (Q2, Q3, Q4, Q5 and Q6).
There exists a containing operator in Q1 and the path expressions in it are rel-
atively short, all these factors cause DOMTR is better than EJX in this query.
The performance of EJX on Q7 and Q8 is very bad and we cannot get their
performance results, the reason should be they all contain several (4 or 5) long
path expressions with more than 10 steps. Nevertheless, EJOPX performs very
well on all queries of DBLP. For some queries of Shakes (Q2, Q3, Q5, Q6, Q7 and
Q8), the performance of EJX is not very good since they either have long and
complex path expressions (Q2, Q3, Q7 and Q8) or contain order based operators
(Q5 and Q6). However, EJOPX performs very well over the queries where EJX
performs very poor (Q2, Q3, Q4, Q7 and Q8) since these long and complex path
expression are optimized largely.
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Fig. 13. Performance comparison(DBLP)
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Fig. 14. Performance comparison(Shake)

6 Conclusions

In this paper, we have proposed the extent join approach to evaluating regular
path expressions. In order to further improve the query performance, we also
proposed two novel query optimization techniques, path-shortening and path-
complementing. The former reduces the number of joins by shortening the path
while the latter is a technique that uses an equivalent complementary path ex-
pression to compute the original path specified in a user query. They can reduce
the path computing cost by decreasing the length of paths and using equivalent
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complementary expressions to optimize long and complex paths. From our ex-
perimental results, 80% of the queries can benefit from these optimization rules,
and path expression evaluating performance can be improved by 20% ∼ 400%
on average.
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