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N

Abstract. We extend the algebraic approach of Meseguer and Monta-
nari from ordinary place/transition Petri nets to conteztual nets, covering
both the collective and the individual token philosophy uniformly along
the two interpretations of net behaviors.

Introduction

Among the models for concurrency, place/transition Petri nets (PT nets), intro-
duced by Petri in [14] (see also [15]), are one of the most largely diffused, with
many interdisciplinary applications. The reasons of the success of the net model
probably reside in the simple formal description and natural characterization of
concurrent and distributed systems: the state of a system consists of a (multi)set
of distributed resources, its actions consume some of the resources available and
release fresh resources, thus affecting only local subsystems. In particular, a com-
putation can be described as a partial order of events such that two events in the
same computation are either causally dependent — when one could not have been
executed without a resource provided by the other — or concurrent — when they
could have happened in any order, because they affect independent subsystems.

Several extensions of the basic net paradigm have been considered in the lit-
erature that either increase the expressive power or give a better representation
of existing phenomena. This paper focuses on contextual nets, also known as nets
with read arcs, or condition arcs, or test arcs [AI13[8I21]. The underlying idea
is that of reading resources without consuming them, thus providing a way of
modeling multiple concurrent accesses to the same resource. With ordinary pT
nets such readings must be rendered as self-loops, and this imposes an unfortu-
nate sequentialization of concurrent readings. On the contrary, with contextual
nets, besides pre and post-sets transitions also have ‘contexts’, that is resources
that are necessary for the enabling, but not affected by the firing. Contextual
nets have found applications e.g., to transaction serializability in databases [16],
concurrent constraint programming [12], and asynchronous systems [20].

The extensive use of PT nets has given rise to different schools of thought
concerning their semantic interpretation. In particular, the main distinction is
drawn between collective and individual token philosophies (see e.g. [19]).
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According to the collective token philosophy (CTph), one should not distin-
guish among different tokens in the same place (i.e., among instances of the
same resource), because all such tokens are operationally equivalent. This view
disregards that tokens may have different origins and histories and may, there-
fore, carry different causality information. Selecting one instance rather than
another, can make the difference from being causally dependent or not on some
previous event. And this may well be a piece of information one does not want to
discard, which is the point of the individual token philosophy (/Tph). Of course,
causal dependencies may influence the degree of concurrency in computations,
and therefore CTph and ITph lead to different concurrent semantics.

Independently of CTph and ITph, for contextual nets several different ap-
proaches have been proposed that differ for the way in which contexts are read.
For example, let us consider the nets N1, Ny and N3 in Figure [ taken from [21].
(As usual, places are represented by circles, tokens by black bullets, transitions
by boxes, pre- and post-sets by directed weighted arcs, and contexts by undi-
rected weighted arcs, with unary weights always omitted.) According to [13], the
transitions ty and ¢; can fire concurrently in Nj, but neither in Ny nor in Nj,
since the basic assumption is that a token cannot be read and consumed in the
same step. In [§], instead, the concurrent step is allowed for all three nets, the ba-
sic assumption being that ¢y and ¢; can both start together and read the context
tokens, without needing them while the actions take place. Besides its possible
merits, we find this interpretation not fully convincing as, for instance, in N3 we
would end up in a state that cannot be reached by any firing sequence. The basic
assumption of [21] that firings have duration leads to consider ST-traces, where
explicit transition-starts and transition-ends events are fired. Hence Ny can start
to and then ¢; before ¢y completes, allowing the concurrent step {tg,¢1}. On the
contrary, in Nj if either ¢ or ¢; starts, then the context for the other transition
is consumed and the concurrent step is forbidden. In this paper, we follow the
interpretation of [13] that fits better our understanding of contexts.

Collecting Tokens. The seminal paper [I0] proposed an algebraic approach to
the analysis of net behaviors relying on the basic observation that the monoidal
structure of PT net states (i.e., the markings) can be lifted to the level of com-
putations so to obtain an algebraic initial model for concurrent net behaviors
according to the CTph.
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The algebraic net theory developed under the CTph is well consolidated, and
the relationships between its computational, algebraic and logical interpretations
are by now very clear [3]. Starting with the classical ‘token-game’ semantics,
many behavioral models for Petri nets have been proposed that follow the CTph.
In particular, the commutative processes of Best and Devillers [2] reconcile the
‘diamond’ equivalence on firing and step sequences, and express very nicely the
concurrency of the model. They also admit an exact algebraic representation
by means of the universal construction 7 (_) that yields strictly symmetric strict
monoidal categories from the category of PT nets. More precisely, given a PT net
N, the objects of T(N) are the elements of the free commutative monoid over
the set of places, its arrows correspond to the commutative processes of N [T0J5].

Surprisingly, the CTph semantics for contextual nets have received poor at-
tention in the literature. Whether because the problem has been underestimated,
or simply because the /Tph is more fascinating, we cannot tell. In any case, we
think that it is useful to remove this discrepancy with the semantics of ordinary
PT nets. Moreover, although one can easily extend the diamond equivalence to
firing sequences on contextual nets, the formalization of a good algebraic model
is not at all straightforward. Inspired by a suggestion made by Meseguer in [9],
we give here a fully satisfactory treatment of this issue. The idea is to consider
monoidal categories with a commutative tensor product taken — differently from
the case of PT nets — over a non-free monoid of places. In particular, we regard
each token a as an atom that can emit several ‘negative’ particles a”, while keep-
ing track of the number of electrons around, i.e., as in [9], we assume that for
allk €N, a =a* ®k-a, with a* a shorthand for a** (+ applied k times).

Replacing context arcs on a with self-loop arcs on a”, we are able to give an
axiomatic construction of a monoidal category whose arrows between standard
markings (i.e., containing no negative particles) are (isomorphic to) the concur-
rent computations of the net according to the CTph. A key ingredient for this
result to hold is the so-called mazimum sharing hypothesis, an axiom express-
ing that concurrent readings can always be seen as sharing the same token, a
fundamental idea in CTph.

Observing Causal Dependencies. Building on the notion of process intro-
duced by Goltz and Reisig in [7], several authors have shown that the semantics
of nets in the /Tph can still be understood in terms of symmetric monoidal
categories. In particular, a simple variation of Goltz-Reisig processes called con-
catenable processes is introduced in [0] (see also [17]), which admits sequential
composition and yields a symmetric monoidal category P(N) for each net N.
Also several unfolding semantics (see e.g. [22ITT]) have been proposed that give a
denotational interpretation of the interplay between concurrency, causality and
nondeterminism.

For contextual nets both the process and the unfolding approaches have been
studied [I3I[1], giving a satisfactory understanding of the computational model
via the introduction of asymmetric event structures. The algebraic approach,
however, has been pursued only in a recent paper by Gadducci and Monta-
nari [6] using match-share categories. There, the basic idea is that, together
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with symmetries, two additional auxiliary constructors must be present: one for
duplicating tokens and one for matching them. Read arcs can then be replaced
by self-loops, and reading without consuming modeled by duplicating the con-
text, firing the transition concurrently with an idle copy of the context, and
then matching the idle copy with the corresponding produced tokens. Multiple
concurrent access is achieved by producing via duplication — and then absorbing
via matching — enough copies of the context. In [6] a suitable axiomatization of
duplicators and matchers is introduced and proved to represent faithfully the
basic fact about concurrent access: steps sharing the same context, but other-
wise disjointly enabled, can execute concurrently or in any interleaved order with
no noticeable difference. The main problem of this approach is that the initial
model contains too many arrows and, therefore, in order to obtain a bijection
with contextual processes one has to carve a suitable subcategory. Although the
arrows of this subcategory can be characterized by inspecting their structure,
the lack of a global correspondence somehow weakens the framework.

We aim at improving the approach of [6], by noticing that unwanted arrows
are due to redundant information in the model. In fact, once a context token
is read by a transition we know the ‘real’ token it is connected to: the one
duplication was applied to. Hence, the match operation, needed for expressing
concurrent readings, does not add any further information and may introduce
inconsistent behaviors. For example, given two tokens in the place a, one can
first duplicate both and then match each copy of the first token with a copy of
the second token: The resulting arrow is meaningless from the computational
viewpoint. We overcome this problem by extending to the /Tph the approach
proposed in the first part of the paper for the CTph. In particular, besides a*
and a~ we introduce the term a- for each place a, with a = a* ® k - a-.

Each context arc from a to t is then replaced by putting a” in the source of ¢
and a- in the target of ¢. This is necessary to avoid that contexts released by a
transition be consumed by another transition, and represents, in the ITph, a sort
of dual to the maximum sharing hypothesis. Then, we introduce symmetries on
markings, but requlate their use on the a*, a” and a- as to forbid the swapping of a
a* and an adjacent a” or a-. This is actually the key of our proposal, as it prevents
that electrons may migrate from atom to atom, which is essentially what happens
in [6]. We impose this restriction by omitting the corresponding symmetries.
Putting such arrows back in the model would in fact result in a redundant
framework perfectly analogous to the one of match-share categories. Our main
result is that, again, the arrows between standard markings are in bijection with
a slight refinement of contextual processes, called strongly concatenable.

Structure of the Paper. In Section [[] we recall some basics about contextual nets
and the algebraic semantics of PT nets. In Sections[2 and[3 we define algebraic se-
mantics for contextual nets under both the CTph and the ITph, providing original
characterization results for commutative and strongly concatenable contextual
processes. We remark that in the absence of read arcs, our semantics coincide
with the classical ones.
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1 Preliminaries

1.1 Contextual Nets

Contextual nets were introduced for extending PT nets with the ‘read without
consume’ operation [4J13I8]21]. The states of contextual nets are called markings
and represent distributions of resources (tokens) in typed repositories (places).
Given the set of places S, markings can be seen as multisets u: S — N, where u(a)
denotes the number of tokens that place a carries in u. The set of finite multiset
on S if a free commutative monoid on S. We denote it by S®, and indicate
multiset inclusion, difference and union by C, @& and ©, respectively. For k a
natural number and v a multiset, k-u is the multiset such that (k-u)(a) = k-u(a)
for all a. We denote by |u] the underlying set of u, that can be seen as the
multiset such that |u](a) =1 if u(a) > 0 and |u](a) = 0 otherwise.

Definition 1. A contextual net N is a tuple (S, T, 00, 01,5), where S is the set
of places, T is the set of transitions, 0y, 01: T — S® are the pre and post-set
functions, and ¢:T — S® is the context function.

Informally, o (t) @¢(t) is the minimum amount of resources that ¢ requires to
be enabled. Of these resources, those in dy(t) are retrieved and consumed, while
those in ¢(t) are just read and left on their repositories. When ¢ has accomplished
its task, it returns 04 (¢) fresh tokens and releases the context. Only at this point
other transitions will be able to consume the tokens in ¢(t), whereas they can
use the same context concurrently with ¢. Besides the usual assumption that ¢(t)
and 9y (t) ® 04 (t) are disjoint for each transition ¢, we assume that ¢(t) is a set.

Definition 2. Let u and v be markings, and X a finite multiset of transitions
of a contextual net N = (S,T,0y,01,5). We say that u evolves to v under the
step X, in symbols u [X) v, if the transitions in X are concurrently enabled at

u, i.e., |Piers(t)| & Drer X(t) - 0o(t) C u, and

v=u0 (@ X(t) -80(t)> P X))

teT teT
A step sequence from ug to u, is a sequence ug [X1) uy ... Uup—1 [Xp) Un.

Thus the execution of the step X requires that the marking u contains at least
all the tokens in the preconditions of transitions in X plus at least one token
for each place that is used as context by some transition in X. This matches
the intuition that a token can be used as context by many transitions at the
same time. From the concurrent point of view, the fact that transitions in X
are executed in a step means that they can be equivalently executed in any
order. Thus, likewise ordinary PT nets, step sequences for contextual nets can be
considered up to the equivalence induced by the diamond transformation relation
_o_defined by u [X®Y) v o u [X) uy [Y) v for any step u [X ®Y) v (and
suitable u1). The diamond equivalence is the reflexive, symmetric, transitive and
sequences concatenation closure of the relation _¢ _.
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Definition 3. Given a contextual net N, the strictly symmetric strict monoidal
category of contextual commutative processes CCP(N) has the markings of N as
objects and its step sequences, taken modulo the diamond equivalence, as arrows.

In the ITph computations are commonly described in terms of structures rep-
resenting the causal relationships between event occurrences. In the case of nets,
this is fruitfully formalized through the following notion of process. We remark
that these notions are conservative extension of the corresponding notions for
ordinary PT nets, to which they reduce in the absence of read arcs.

Definition 4. A contextual process net is a finite, acyclic (w.r.t. the preorder
in which t precedes t' if either 01(t) N (Oo(t') U () # & or <(t) NOu(t') # &)
contextual net © such that (1) for allt € To, Oo(t) and 01(t) are sets (as opposed
to multisets), and (2) for all pairs to # t1 € To, 0;(to) NO;(t1) = @, fori=0,1.

Definition 5. A contextual process 7 of a contextual net N consists of a con-
textual process net © together with a pair of functions (nr,wg), where nr:To —
Ty and ws:Se — Sn, that respect source, target and context, i.e., such that
ONn; o = g 0 Da;, for i = 0,1, and ¢y o mp = g 0 gg. Contextual processes
are considered up to isomorphisms.

1.2 Petri Nets Are Monoids

The paper [10] exploited the monoidal structure of markings to provide an al-
gebraic characterization of the concurrent computations of nets. The basic idea
was to lift the structure of states to the level of transitions, providing an al-
gebraic representation of concurrent firing. In turn, these ‘algebraic’ steps can
be sequentially concatenated in order to express more complex computations.
Since sequential composition endows computations with a categorical structure
— markings are objects, computations are arrows, and idle tokens are identities
— the parallel composition yields a tensor product. The interplay of parallel and
sequential composition regulated by functoriality of tensor products models a ba-
sic fact about concurrency, namely that concurrent transitions can occur in any
order. Under the CTph the tensor product can simply be commutative. Then,
each PT net N freely generates a strictly symmetric strict monoidal category
T (N) whose arrows are in bijection with the commutative processes of N [2].
Under the /Tph the situation is more complex. In order to be able to model
causal dependencies one cannot consider multisets of transitions. The proposal
of Degano, Meseguer and Montanari was to introduce a non commutative tensor
product — while keeping markings as objects — together with suitable arrows
for exchanging the order in which transitions fetch and produce tokens [5]. Such
arrows are called symmetries, and are formalized categorically as the components
of a natural isomorphism. This approach leads to the construction of a (non
strictly) symmetric strict monoidal category P(N) for each net N, whose arrows
define the concatenable processes of N. A more concrete construction, Q(N), was
introduced in [I8] in order to remove some deficiencies of the previous approach.
The main feature of Q(N), which captures the so-called strongly concatenable
processes, is that its objects are strings rather than multisets of tokens.
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1) (W)@ (u) =u ©®) (W) =2

(2) ((w))"=(u)" 6) (W) =(u)"

(3) (udv)'=u)" & (v)* (1) (@) =(u) &)
(4) (2)'=2 (8) (@) =2

Fig. 2.

2 Collective Contexts

As explained in the Introduction, we build the algebraic theory over a non-free
monoid of places. In particular, apart from the commutative monoidal operation
_ @ _ with unit &, we consider other two operations (-)* and (_)” that are ax-
iomatized as in Figure 2l where we omit the usual associativity, commutativity
and unit axioms for _ @ _. These mean precisely that (_)* and (_)” are monoid
homomorphisms such that (1)* @ (1)" =4d, ()" o ()" =(-), and (1) o (L) = @.
Observe that (6) actually follows from (1), (7) and (5).

By these laws we can always eliminate consecutive applications of (_)* and
()", except for sequences of (_)*. We shall write u* as a shorthand for (_)* applied
k times to « and omit the parentheses. We assume ©® = u, but we remark that
in general u* = u! # u. We call molecules the elements of this algebra. Given a
set S, we let pu(S) denote the set of molecules generated by S.

Lemma 1. For any natural number k and molecule u we have (u¥)” = u’.

Proof. By induction, applying law (6).

Proposition 1. For any natural k, and molecule u, we have u* = u*Tt @ u~

Proof. By law (1), we have u* = (u*)* @ (u*)", and (u*)” = w~ by Lemma [Il

Corollary 1. For any natural k and molecule u, we have u = u* @ k- u”.

Of course we are interested in molecules centered on the places, these can be
of two forms, either a* or a”. From the computational point of view, the a~ are
the basic contexts, which carry very little information, since the nucleus a* can
produce as many of them as needed. To understand this point, one can think of
the tokens as ticket rolls with unbounded number of tickets available. Readers
just take a ticket and return it after the use for recycle, whereas consumers must

retrieve the entire roll.

Definition 6. Given a contextual net N = (S, T, 0y, 01,5), we define the cat-
egory M(N) as the category with objects the molecules on S and with arrows
generated from the rules in Figure [3 modulo the axioms of strictly symmetric
strict monoidal categories in Figure[].

We can now characterize contextual commutative processes algebraically.
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u € u(S) teT, do(t) =u, O1(t) =v, s(t) =w
idy:u — u ttudw = vdw
au—v, fiv—w au—v, fiw— 2z
a;Biu— w a®fiuPbw —o>vdz
Fig. 3.
a; (B;7)=(c; B); v a;idy=idu;a = o
a®d (Bey)=(adp) By a® =06« a®idy =«
(a;8) @ (v;0)=(a @ 7); (B ® 9) idugyo=idy ® id,
Fig. 4.

Theorem 1. The category CCP(N) is isomorphic (via a monoidal functor) to
the full subcategory of M(N) whose objects are S5 .

A very important property needed in the proof is what we call the mazimum
sharing hypothesis, that can be expressed as below. This result contains the core
of the CTph, since it shows that whenever two or more tokens in the same place
a are used as contexts, we can always find an equivalent computation where only
one token is used (twice or more) as context.

Proposition 2. For any molecule w and natural numbers k and n, we have
e =u"tF o .

Proof. By Corollary [l we have u"t* ®u = u"t* @ u* @ k-u . By commutativity
(and associativity) of @ _ we get u"** @ u = u"T* © k- v~ @ u*. By applying
Proposition [ k& times we have the result.

For instance, let us consider the net N in Fig-
ure Bl In M(N) we have three basic arrows

tora®c — ¢, t1:bdc — ¢ and ta:c = @, a c b
but neither tg, nor t; can represent a commuta- %} i
tive contextual process, since their sources and N

targets are not elements of S®. To remedy this, to to | t |
we must put ¢y and ¢; in an environment where

the ¢ become instances of a ‘complete’ token, as Fig. 5.

ids+ @ to:a @ c — ¢ and id+ @ t1. The concur-

rent execution of tg and ¢; with shared context

is instead written as id.2 @ to @ t1. By the functoriality of _ @ _, we have that
ide2 Dtog Dt = (id+ DloDidy); (idq+ Dt1) = (id+ Dt Bidy); (id+ Do), (recall
that id.2 @id - =1id.+), i.e., to and t; can execute in any order. Also interesting
is to observe that (idc+ D to) D ((idc+ &) tl);tg) = ((idc+ D to); t2> (&5) (’L'dc+ D tl),
i.e., we have no causal information about the token consumed by ¢5: is it the one
read by tg, or the one read by 17
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3 Individual Contexts

The maximum sharing hypothesis creates obvious problems when dealing with
the ITph, whose entire point is to be able to recognize how electrons are emitted
from tokens. For ordinary PT nets, the information about causality is recovered
in the algebraic setting by using (non strictly) symmetric strict monoidal cate-
gories, i.e., by introducing symmetries for controlling rearrangements of tokens
when composing processes. At the level of states we still have standard markings.
At the level of computations (arrows), however, the tensor product is not com-
mutative anymore, so that we are able to interpret correctly the flow of causality
through token histories. Thus, the first attempt to a uniform extension of the
CTph treatment of the previous section is to introduce symmetries on molecules.
There is however another problem to solve. Since the context ¢(¢) is modeled
by a self-loop on ¢(t)”, two transitions with the same context can be concatenated
on it, as if one depended on the execution of the other. This spurious causal
dependency is to be avoided, as it gives rise to a wrong semantic model. We thus
choose to introduce a new kind of electrons, denoted by u- for representing used
(i.e., read) contexts. A transition ¢ consume a forward copy of its context ¢(t)”
and produces a backward copy ¢(t)- that cannot be read by other transitions.
We call bimolecules the (generalized) markings of the algebra that includes also
the operator (_)- subject to a set of axioms formally identical to those involving
(_)” in Figure[2. Given a set S, we write v(S) for the set of bimolecules on S.
The final and key ingredient in our construction is to abandon the symmetry
of the monoidal categories involved. In a step similar to the one that brought
from strictly symmetric to symmetric categories, we choose (non symmetric)
monoidal categories to which we adjoin exactly and only the symmetries we need.
In this way, we are able to omit those symmetries that would cause migration of
electrons from atom to atom. In the following we shall build on the construction
Q(N) for PT nets and, therefore, take a non commutative monoid of objects.
We use the symbol ® for the monoidal operation, which essentially amounts to
string concatenation. Given a string ¢, we denote by pu(q) its underlying multiset.

Definition 7. Given a contextual net N = (S, T, 0o, 01,5), we define the cate-
gory B(N) as the category with objects the bimolecules on S and with arrows gen-
erated from the rules in Figure[@ together with the symmetries yox pr: aX @ b® —
b*®aX and 'ya(svce:a‘x@cE — c“®a’, fora,b,c € S with a # b, for x,x € NU{",_},
and for 0,¢ € {7, -}. The arrows are taken modulo the azioms of strict monoidal
categories in Figure[] (whenever the v’s are defined) and the laws:

Sitpgi s’ =ty g 9)
’Ya‘s,a‘s = ida5®a57 fOT 6 € {_7 '} (10)
for any symmetries s:p’ — p and s':q — ¢, and any transition t: p(p) — w(q).

Note that we do not introduce the symmetries 7, .- and y,r ,_ that would
allow the electrons to flow from a nucleus to a different one. For example, starting
from a®a = a*®a-®a*®a” and applying the arrow a*®,_ ,+®a”, we would reach
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p € v(S) t€T, 0o(t) ®<(t) = pn(p), 01(t) ®<(t)- = n(q) p,q€ S®
idp:p — p lpqg:p— ¢ Yp,a:P®q—> qp
ap—gq, Biq—rT ap—q, B:ip’ = q
a;Bip =T a®pB:pp - q®4q
Fig. 6.
a; (B;0)=(a; B); 0 a;idg=idp; o = « (8) @ (a';8)=(a®a’); (B® B")
a®(BRo)=(a®P)Ro a®idg=idg @ @ = « idpgq=idp ® idg
(@ ®B)iVg,q'=p.p's (BO ) Vp,q3 Va.p=idp ® idq Yp.a@r=(Vp.q ® idr); (idg ® Vp,r)
Fig. 7.

a*®a*®a-®a =a*®a®a”, which is problematic. In fact, our representation
invariant is that the electrons associated to a certain nucleus ¢ in a string g are
the first k electrons (either a” or a-) that appear in ¢ to the right of a*. Thus, for
consistency, we want exactly k electrons between a* and the successive nucleus
a™ occurring in q. The absence of those symmetries maintains this invariant.

As for Q(N) in [18], we introduce an arrow t,, for all the possible lin-
earizations p and q of the source and target of each transition ¢ of N. Law (@),
considered originally in [18], establishes a link between all the instances of a sin-
gle ¢, guaranteeing both consistency and a sensible computational interpretation
for such arrows. Actually, (@) expresses that the collection of the instances of ¢
forms a natural transformation between suitable functors. The reader is referred
to [18] for a thorough discussion of this topic. Laws ({0) make the instances of
electrons associated to the same nucleus indistinguishable from each other by
asserting that the order in they are used is immaterial.

To establish our representation result we need to refine contextual processes
in order to be able to concatenate them. As for similar cases in the literature,
this leads to introduce an ordering of the tokens in the source and target of the
process net, yielding the notion of strongly concatenable contextual processes.

Definition 8. Given a net N, a strongly concatenable contextual process is a
tuple (7,0, <0, <1), where 7 is a contextual process with underlying contextual
process net O, <g and <1 are total orders on the minimal and maximal places
of ©, respectively, such that a <o b (resp. a <1 b) implies wg(a) = wg(b).

Likewise concatenable processes, a partial operation of sequential composition
can be defined. Provided the target of process 7 coincides with the source of
process 7', it merges the mazimal places of m with the minimal places of 7’
according to the orders <; and <{. The parallel composition of two processes
consists of taking their disjoint union and extending the orders on minimal and
maximal places by taking a <; b whenever a belongs to the first process and
b to the second. It can be shown that with these two operations the strongly
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concatenable contextual processes of N form the arrows of a strict monoidal
category SCCP(N). Symmetries can be defined by taking a process that contains
just places (no transitions) with suitable orderings <o and <;. Each place is
both minimal and maximal. These symmetries make SCCP(N) be a symmetric
monoidal category. Due to space limitation we cannot give more details here.
We refer to [18] for the presentation of the category of strongly concatenable
processes which is similar. We can now state the main result of the paper.

Theorem 2. The category SCCP(N) is isomorphic (via a symmetric monoidal
functor) to the full subcategory of B(N) whose objects are the elements of S©.

The proof is quite long and requires the introduction and the description
of the algebra of further kinds of processes that represent those arrows whose
sources and targets involve nuclei and electrons. In particular, we use suitable
inscriptions inside minimal and maximal places in order to represent the elec-
trons which have been moved away from the nuclei of their atoms and their
movements. However, such inscriptions are vacuous for processes whose source
and target are strings of places (as all the electrons are next to their nuclei), and
therefore we resort to strongly concatenable contextual process as in Theorem

For example, let us consider again the net N in Figure Bl In B(N) we find
the basic arrows t: a® ¢ — ¢, 1(: ¢ @a — ¢, t1:b®c — ¢, t]: ¢ @b — ¢ and
tyrec — @, with t5 = v, ity and ) =, ~;t]. The concurrent execution of #o
and t; with shared context can be written as (id+ ® 7, , ®idp); (ide2 @ g @17).
This time it differs from #) ®id.2 ®#/ which, having source and target not in S,
does not correspond to any process. The concurrent execution of ty and ¢; with
different contexts can be instead written as o = id+ ® t) ® id+ @ t{, and the
terms «; (id. ® t5) and o; (t5 ® id.) denote different processes: in the former ¢,
causes to and in the latter ty causes ts.

Besides the fact that all the arrows of B(IN) have a meaningful computa-
tional interpretation, a further advantage of the present approach with respect
to the match-share categories of [6] is that the arrows of the model category
corresponding to pure concatenable process can be distinguished just by looking
at their sources and targets, rather than by inspecting their construction.

Concluding Remarks and Future Work

Building on a illuminating suggestion of Meseguer in [9], we have shown a way
to extend the algebraic semantics of PT nets proposed in [I0] to contextual
nets, both in the collective token and the individual token interpretation. The
constructions rely on the choice of a non-free monoid of objects, whose elements
we called molecules and bimolecules. Furthermore, in treating the individual
token philosophy, we have renounced to the symmetry of the monoidal category,
being then able to select only the symmetries consistent with our computational
interpretation in terms of strongly concatenable contextual processes.
Although we have worked only at the level of single nets, we believe that
our approach can be extended to constructions between categories of nets and
models, with restrictions analogous to those well-known in the literature [I7/Ig].



186

R. Bruni and V. Sassone

Acknowledgements. Thanks to José Meseguer and the referees for helpful suggestions.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

P. Baldan, A. Corradini, and U. Montanari. An event structure semantics for P/T
contextual nets: Asymmetric event structures. In Proc. FoSSaCS’98, vol. 1378 of
Lect. Notes in Comput. Sci., pp. 63-80. Springer, 1998.

E. Best and R. Devillers. Sequential and concurrent behaviour in Petri net theory.
Theoretical Computer Science, 55:87-136, 1987.

R. Bruni, J. Meseguer, U. Montanari, and V. Sassone. A comparison of Petri net
semantics under the collective token philosophy. In Proc. ASIAN’98, vol. 1538 of
Lect. Notes in Comput. Sci., pp. 225-244. Springer, 1998.

S. Christensen and N.D. Hansen. Coloured Petri nets extended with place capac-
ities, test arcs and inhibitor arcs. In Applications and Theory of Petri Nets, vol.
691 of Lect. Notes in Comput. Sci., pp. 186—205. Springer, 1993.

P. Degano, J. Meseguer, and U. Montanari. Axiomatizing the algebra of net com-
putations and processes. Acta Inform., 33(7):641-667, 1996.

F. Gadducci and U. Montanari. Axioms for contextual net processes. In Proc.
ICALP’98, vol. 1443 of Lect. Notes in Comput. Sci., pp. 296-308. Springer, 1998.
U. Goltz and W. Reisig. The non-sequential behaviour of Petri nets. Inform. and
Comput., 57:125-147, 1983.

R. Janicki and M. Koutny. Semantics of inhibitor nets. Inform. and Comput.,
123:1-16, 1995.

J. Meseguer. Rewriting logic as a semantic framework for concurrency: A progress
report. In Proc. CONCUR’96, vol. 1119 of LNCS, pp. 331-372. Springer, 1996.
J. Meseguer and U. Montanari. Petri nets are monoids. Inform. and Comput.,
88(2):105-155, 1990.

J. Meseguer, U. Montanari, and V. Sassone. On the semantics of place/transition
Petri nets. Mathematical Structures in Computer Science, 7:359-397, 1997.

U. Montanari and F. Rossi. Contextual occurrence nets and concurrent constraint
programming. In Graph Transformations in Computer Science, vol. 776 of Lect.
Notes in Comput. Sci., pp. 280—285. Springer, 1994.

U. Montanari and F. Rossi. Contextual nets. Acta Inform., 32:545-596, 1995.
C.A. Petri. Kommunikation mit Automaten. Ph.D. thesis, Institut fiir Instru-
mentelle Mathematik, Bonn, 1962.

W. Reisig. Petri Nets: An Introduction. EACTS Monographs on Theoretical
Computer Science. Springer, 1985.

G. Ristori. Modelling Systems with Shared Resources via Petri Nets. Ph.D. thesis,
Dipartimento di Informatica, Universita di Pisa, 1994.

V. Sassone. An axiomatization of the algebra of Petri net concatenable processes.
Theoretical Computer Science, 170:277-296, 1996.

V. Sassone. An axiomatization of the category of Petri net computations. Mathe-
matical Structures in Computer Science, 8:117-151, 1998.

R.J. van Glabbeek and G.D. Plotkin. Configuration structures. In Proc. LICS’95,
pp. 199-209. IEEE Press, 1995.

W. Vogler. Efficiency of asynchronous systems and read arcs in Petri nets. In Proc.
ICALP’97, vol. 1256 of Lect. Notes in Comput. Sci., pp. 538-548. Springer, 1997.
W. Vogler. Partial order semantics and read arcs. In Proc. MFCS’97, vol. 1295 of
Lect. Notes in Comput. Sci., pp. 508-517. Springer, 1997.

G. Winskel. Event structures. In Proc. of Advanced Course on Petri Nets, vol. 255
of Lect. Notes in Comput. Sci., pp. 325—-392. Springer, 1986.



	Preliminaries
	Contextual Nets
	Petri Nets Are Monoids

	Collective Contexts
	Individual Contexts

