
Journal of Algorithms 44 (2002) 308–320

www.academicpress.com

Resource augmentation
for online bounded space bin packing✩

János Csirika and Gerhard J. Woegingerb,c,∗,1

a Department of Computer Science, University of Szeged, Aradi vértanúk tere 1, H–6720 Szeged,
Hungary

b Department of Mathematics, University of Twente, PO Box 217, NL-7500 AE Enschede,
The Netherlands

c Institut für Mathematik, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria

Received 2 January 2001

Abstract

We study online bounded space bin packing in the resource augmentation model of
competitive analysis. In this model, the online bounded space packing algorithm has to
pack a listL of items in(0,1] into a small number of bins of sizeb � 1. Its performance
is measured by comparing the produced packing against the optimal offline packing of the
list L into bins of size 1.

We present a complete solution to this problem: For every bin sizeb � 1, we design
online bounded space bin packing algorithms whose worst case ratio in this model comes
arbitrarily close to a certain boundρ(b). Moreover, we prove that no online bounded space
algorithm can perform better thanρ(b) in the worst case.
 2002 Elsevier Science (USA). All rights reserved.

Keywords:Online algorithm; Competitive analysis; Resource augmentation; Approximation
algorithm; Asymptotic worst case ratio; Bin packing

✩ A preliminary version of this paper appeared in the Proceedings of the 27th International
Colloquium on Automata, Languages and Programming, Lecture Notes in Comput. Sci., Vol. 1853,
Springer-Verlag, 2000, 296–304.

* Corresponding author.
E-mail addresses:csirik@inf.u-szeged.hu (J. Csirik), g.j.woeginger@math.utwente.nl

(G.J. Woeginger).
1 Supported by the START program Y43-MAT of the Austrian Ministry of Science.

0196-6774/02/$ – see front matter 2002 Elsevier Science (USA). All rights reserved.
PII: S0196-6774(02)00202-X

J. Csirik, G.J. Woeginger / Journal of Algorithms 44 (2002) 308–320 309

1. Introduction

Resource augmentation(or extra-resource analysis) is a technique for analyz-
ing online algorithms that apparently was part of online algorithms from the very
beginning. It can be traced back to two early papers by Graham [1,2] from 1966
and 1969, and its also been used in 1985 in the seminal paper of Sleator and Tar-
jan [3]. Officially, it was introduced to the field and identified as a powerful tool
in 1995 by Kalyanasundaram and Pruhs [4]. It is a relaxed notion of competitive
analysis in which the online algorithm is given better resources than the optimal
offline algorithm to which it is compared. This is, e.g., the case, if the machines
of the online algorithm run at slightly higher speed than those of the offline algo-
rithm, or if the online algorithm has more machines than the offline algorithm, or
if the production deadlines of the online algorithm are less stringent than those of
the offline algorithm. The main idea behind the resource augmentation technique
is to give the online algorithm a fairer chance in competing against the omniscient
and all-powerful offline algorithm from classical competitive analysis. During the
last few years the resource augmentation technique has become a very popular
tool, and it has been applied to many problems in scheduling (cf., e.g., Phillips
et al. [5] and Edmonds [6]), in paging (Albers et al. [7]), and in combinatorial
optimization (Kalyanasundaram and Pruhs [8]). In this paper, we will study the
online bounded space bin packing problem in this resource augmentation model.

In the classical bin packing problem, a listL = 〈a1, a2, . . .〉 of itemsai ∈ [0,1]
has to be packed into the minimum number of unit-size bins. Theofflineoptimum
OPT1(L) is the minimum number of unit-size bins into which the items inL can
be fit. A bin packing algorithm is calledonline if it packs all itemsai solely on
the basis of the sizes of the itemsaj , 1 � j � i, and without any information
on subsequent items. A bin packing algorithm usesk-bounded spaceif for each
item ai , the choice of bins to pack it into is restricted to a set ofk or feweractive
bins. Each bin becomes active when it receives its first item, but once it is declared
inactive (orclosed), it can never become active again. An onlinebounded space
bin packing algorithm is an online algorithm that usesk-bounded space for some
fixed valuek � 1. The bounded space restriction models situations in which bins
are exported once they are packed (e.g., in packing trucks at a loading dock that
has positions for onlyk trucks, or in communication channels with buffers of
limited size in which information moves in large fixed-size blocks).

We investigate the behavior of online bounded space bin packing algorithms
that pack the listL into bins of sizeb � 1. This larger bin sizeb is the augmented
resource of the online algorithm; the offline algorithm has to work with bins of
size 1. For an online algorithmA and a bin sizeb, we denote byAb(L) the number
of bins of sizeb that algorithmA uses in packing the items inL; this number
Ab(L) includes both the active and the inactive bins. Theworst case performance
of algorithmA for bin sizeb, denoted byRb(A), is defined as

310 J. Csirik, G.J. Woeginger / Journal of Algorithms 44 (2002) 308–320

Rb(A) = lim
OPT1(L)→∞sup

L

Ab(L)/OPT1(L). (1)

A small worst case performance means a good quality of the online algorithm.
We stress the fact that the worst case performance compares an online algorithm
against a completely unrestricted offline algorithm without any reference to
bounded space. Another possible performance ratio (that will not be considered
in this paper) compares an online bounded space bin packing algorithm against
a weakoffline algorithm that also obeys the bounded space restriction. Such a
weak offline algorithm would produce a packing of the itemsa1, a2, . . . into a
sequence of bins that results according to thek-bounded space rule. To the best
of our knowledge, this second type of performance ratio has not been investigated
so far in the literature, not even for classical online bounded space bin packing
without any resource augmentation. We will not consider this concept in the rest
of this paper, and we leave it for future research.

Online bin packing is a classical problem in optimization and theoretical
computer science. A well-known result by Lee and Lee [9] on classical
online bounded space bin packing (without resource augmentation) yields an
online algorithmA with R1(A) ≈ 1.69103. We refer the reader to Csirik and
Woeginger [10] for more information and for an up-to-date survey of this area.

Our results and organization of the paper.In this paper we present a complete
analysis of online bounded space bin packing in the resource augmentation model:
For every bin sizeb � 1, we determine the best possible worst case performance
ρ(b) over all online bounded space bin packing algorithms. The precise values
ρ(b) are defined in Section 2. In Section 3 we state several auxiliary results. In
Section 4 we discuss technical properties of the functionρ(b). In Section 5 we
design and analyze an online algorithm whose worst case performance comes
arbitrarily close toρ(b). Finally, in Section 6 we prove that no online algorithm
can beat the boundρ(b).

2. Statement of the main result

Throughout the paper,L = 〈a1, a2, . . . , an〉 is a list of items in(0,1], andb � 1
is the bin size for the online algorithm. We associate withb an infinite sequence
T (b) = 〈t1, t2, . . .〉 of positive integers as follows:

t1 = �1+ b
 and r1 = 1

b
− 1

t1
, (2)

and fori = 1,2, . . . ,

ti+1 =
⌊

1+ 1

ri

⌋
and ri+1 = ri − 1

ti+1
. (3)

J. Csirik, G.J. Woeginger / Journal of Algorithms 44 (2002) 308–320 311

An equivalent way for defining this sequenceT (b) is the following: Suppose
that we want to fill a bucket of size 1/b greedily with reciprocal values of
positive integers. First, we pack the largest possible reciprocal value that fits into
the bucket, but without filling it completely. Then we add the largest reciprocal
value that fits without filling the rest capacity completely, and then this process is
repeated over and over again. In this ‘bucket’ interpretation, the valueri represents
the rest capacity after the reciprocal value of the positive integerti has been put
into the bucket. Note that the smallest integer whose reciprocal would fit into a
space ofr � 1 is�1/r�. If 1/r happens to be an integer, we must not fill the bucket
completely, and hence we have to pack the reciprocal of�1/r� + 1 instead. The
reader may want to verify that the recursive definitions in (2) and (3) exactly agree
with these interpretations. Altogether, this discussion demonstrates that

1

b
=

∞∑
i=1

1

ti
= 1

t1
+ 1

t2
+ 1

t3
+ 1

t4
+ · · · . (4)

Finally, we define

ρ(b) =
∞∑
i=1

1

ti − 1
. (5)

In Section 3 we will prove that the infinite sum in the right-hand side of (5)
converges for every value ofb. The following lemma provides the reader with
some intuition on the (somewhat irregular and somewhat messy) behavior of the
functionρ(b); see also the picture in Fig. 1 for an illustration. The lemma will be
proved in Section 4.

Fig. 1. The graph of the functionρ(b).

312 J. Csirik, G.J. Woeginger / Journal of Algorithms 44 (2002) 308–320

Lemma 2.1. The functionρ(b) : [1,∞) → R has the following properties:

(i) ρ(1) ≈ 1.69103andρ(2) ≈ 0.69103.
(ii) 1/m � ρ(m) � 1/(m − 1) for integersm � 2.
(iii) ρ(b) is strictly decreasing on[1,∞).
(iv) Asb tends to2 from below,ρ(b) tends to1. Asb tends to infinity,ρ(b) tends

to 0.
(v) At every irrational value ofb > 1, the functionρ(b) is continuous.
(vi) At every rational value ofb > 1, the functionρ(b) is not continuous.

The following theorem summarizes the main result of this paper. Its proof is
split into the proof of the upper bound in Theorem 5.4 in Section 5, and into the
proof of the lower bound in Theorem 6.1 in Section 6.

Theorem 2.2 (Main result of the paper).For every bin sizeb � 1, there exist
online bounded space bin packing algorithms with worst case performance
arbitrarily close to ρ(b). For every bin sizeb � 1, the boundρ(b) cannot be
beaten by an online bounded space bin packing algorithm.

Note that by settingb = 1 in Theorem 2.2 we get a worst case performance
of ρ(1) ≈ 1.69103. Hence, this special case reproves the well-known result of
Lee and Lee [9] on classical online bounded space bin packing. The best known
lower bound for general (not bounded space) online bin packing is 1.5401; see
Van Vliet [11].

3. Some useful facts

In this section we collect several facts on the sequenceT (b) that will be used
in the later sections. First, we observe that for everyb � 1 the corresponding
sequenceT (b) = 〈t1, t2, . . .〉 is growing rapidly: By the equations in (3), we
haveri−1 � 1/(ti − 1) and 1/ti+1 < ri = ri−1 − 1/ti . Consequently, 1/ti+1 <

1/(ti − 1) − 1/ti . Rewriting this yields the inequalityti+1 > ti(ti − 1), which in
turn is equivalent to

ti+1 − 1 � ti(ti − 1) for all i � 1. (6)

Next, consider some fixed indexj � 1. A straightforward inductive argument
based on (6) yields thattj+k − 1 � (tj − 1)k+1 holds for allk � 0. From this we
get that

∞∑
i=j

1

ti − 1
=

∞∑
k=0

1

tj+k − 1
�

∞∑
k=0

(tj − 1)−k−1 = 1

tj − 2
. (7)

J. Csirik, G.J. Woeginger / Journal of Algorithms 44 (2002) 308–320 313

For j = 1 this inequality demonstrates that the infinite series in Eq. (5) indeed
converges, and that the functionρ(b) is well-defined.

The following result will be used in the proof of Lemma 5.3.

Lemma 3.1. Letz � 1 be an integer. Then the sequenceT (b) fulfills the inequality

tz + 1

tz
·

∞∑
i=z

1

ti
�

∞∑
i=z

1

ti − 1
. (8)

Proof. By (2) and (3), the sum in the left-hand side of (8) is at most 1/tz +
1/(tz+1 − 1). On the other hand, the sum in right-hand side of (8) is at least
1/(tz − 1) + 1/(tz+1 − 1). These two bounds together withtz+1 � tz(tz − 1) + 1
from (6) imply the claimed inequality. ✷

4. Some properties of the function ρ(b)

This section is devoted to the proof of Lemma 2.1. Since by (6) the underlying
series converges fast, the valuesρ(1) andρ(2) in statement (i) of Lemma 2.1
are easy to approximate by a computer program. For statement (ii), consider an
integerm � 2. Since the sequenceT (m) starts witht1 = m + 1, the definition
of ρ(b) in (5) immediately yieldsρ(m) � 1/m. Moreover, by settingj = 1 in
inequality (7) we get that

ρ(m) =
∞∑
i=1

1

ti − 1
� 1

t1 − 2
= 1

m − 1
for all integersm � 2. (9)

This completes the proof of statement (ii). We turn to statement (iii). Let 1�
a < b, and letT (a) = 〈ti〉 and T (b) = 〈t ′i 〉 denote the two infinite sequences
associated witha andb. Definej � 1 to be the smallest index withtj �= t ′j . Since
a < b, this impliestj � t ′j − 1. Then

ρ(a) − ρ(b) =
∞∑
i=j

1

ti − 1
−

∞∑
i=j

1

t ′i − 1
>

1

tj − 1
− 1

t ′j − 2
� 0, (10)

where we used (7) to derive the first inequality andtj � t ′j − 1 in the second
inequality. Hence,a < b indeed impliesρ(a) > ρ(b).

Next, we turn to statement (iv). Letm � 2 be an integer and consider the
value bm = 2m/(m + 2). It can be verified that the seriesT (bm) starts with
the termt1 = 2, which is followed by the all the terms of the sequenceT (m).
Consequently,ρ(bm) = 1 + ρ(m) holds and from (9) we get that 1+ 1/m �
ρ(bm) � 1 + 1/(m − 1). As m goes to∞, bm tends to 2 from below, andρ(bm)

tends to 1 from above. Sinceρ(b) is a decreasing function by statement (iii), we

314 J. Csirik, G.J. Woeginger / Journal of Algorithms 44 (2002) 308–320

have thus proved the first part of statement (iv). The second part of statement (iv)
follows by combining statements (ii) and (iii).

We turn to statement (v). Letb � 1 be an arbitrary irrational number, and let
ε > 0 be an arbitrary real number. Consider the sequenceT (b) = 〈ti〉, and letj be
the smallest index with 1/(tj − 2) < ε. Sinceb is irrational and by the definition
of T (b),

1

b
<

(
j−1∑
i=1

1

ti

)
+ 1

tj − 1
. (11)

(For rational valuesb, besides the stated inequality also equality may hold true.)
Our goal is to show that for everyc sufficiently close tob, ρ(c) is at mostε away
from ρ(b). We will deal separately with the two casesc > b and c < b. First
consider an arbitraryc > b such that 1/c >

∑j−1
i=1 1/tj . Then

∣∣ρ(b) − ρ(c)
∣∣� ∞∑

i=1

1

ti − 1
−

j−1∑
i=1

1

ti − 1
=

∞∑
i=j

1

ti − 1
� 1

tj − 2
< ε, (12)

where we used inequality (7). Next consider an arbitraryc < b with 1/b < 1/c <

1/(tj −1)+∑j−1
i=1 1/tj . By (11), such values ofc indeed exist. Then the sequence

T (c) starts with thej termst1, . . . , tj−1, tj , and we have

∣∣ρ(c) − ρ(b)
∣∣� ∞∑

i=j+1

1

ti − 1
� 1

tj+1 − 2
< ε. (13)

The inequalities in (12) and (13) demonstrate thatρ(b) is continuous atb, exactly
as we desired. This completes the proof of statement (v).

Finally, we turn to statement (vi). Letb � 1 be an arbitrary rational number. We
consider the additive representation of 1/b as a finite sum of Egyptian fractions
obtained by the greedy algorithm (cf., e.g., Niven and Zuckerman [12] or pages
271–277 of Wagon [13]). AnEgyptian fractionsimply is the reciprocal value
of a positive integer. Every positive rational number can be represented as the
sum of a finite number of Egyptian fractions. One way of getting such a finite
representation of 1/b is by a greedy algorithm: Repeatedly subtract the largest
possible Egyptian fraction until you reach zero. It is known that this greedy
algorithm terminates after a finite number, sayj , of steps. Comparing the outcome
of this procedure to (2)–(4), we see that

1

b
=
(

j−1∑
i=1

1

ti

)
+ 1

tj − 1
, (14)

J. Csirik, G.J. Woeginger / Journal of Algorithms 44 (2002) 308–320 315

wheret1, . . . , tj−1, tj are just the firstj terms of the sequenceT (b). Sinceb > 1,
we havetj � 3. Now consider an arbitrary real valuec < b just slightly smaller
thanb that fulfills

1

c
<

1

b
+ 1

(tj − 1)(tj − 2)
=
(

j−1∑
i=1

1

ti

)
+ 1

tj − 2
. (15)

By the choice ofc, the sequenceT (c) starts with thej termst1, . . . , tj−1, tj − 1
that are followed by the termst ′j+1, t

′
j+2, Then

ρ(c) =
j−1∑
i=1

1

ti − 1
+ 1

tj − 2
+

∞∑
i=j+1

1

t ′i − 1
>

j−1∑
i=1

1

ti − 1
+ 1

tj − 2
(16)

and

ρ(b) =
j−1∑
i=1

1

ti − 1
+ 1

tj − 1
+

∞∑
i=j+1

1

ti − 1

<

j−1∑
i=1

1

ti − 1
+ 1

tj − 1
+ 1

tj+1 − 2
. (17)

Here we used (7). By applyingtj+2 − 2 � tj (tj − 1) − 1 from (6), the last two
inequalities yield

ρ(c) − ρ(b) >
1

tj − 2
− 1

tj − 1
− 1

tj+1 − 2

� 1

(tj − 2)(tj − 1)
− 1

tj (tj − 1) − 1
. (18)

Since tj � 3, the value of the right-hand side in (18) is strictly bounded away
from 0. Hence, the functionρ is not continuous inb, and this completes the proof
of statement (vi).

5. Proof of the upper bound

In this section, we prove the upper bound stated in Theorem 2.2. As usual,
let b � 1 denote the bin size, and letT (b) = 〈t1, t2, . . .〉 be the integer sequence
associated withb. Let � � 3 be an integer. We introducet� intervalsIj with
j = 1, . . . , t� that form a partition of the interval(0, b]. For 1� j � t� − 1,
we define the intervalIj = (

b
j+1, b

j

]
. Moreover, we define the last interval

It� = (0, b/t�].
Our online algorithm keeps one active binBj for every intervalIj (j =

1, . . . , t�). Hence, it usest�-bounded space. All items from the intervalIj ∩ (0,1]

316 J. Csirik, G.J. Woeginger / Journal of Algorithms 44 (2002) 308–320

are packed into the corresponding active binBj . If a newly arrived item does
not fit into Bj , this bin is closed, and a new corresponding bin for intervalIj

is opened. In other words, the items from intervalIj ∩ (0,1] are packed into
the active binsBj according to the NEXT-FIT algorithm. This completes the
description of the online algorithm.

To analyze this online algorithm, we define the followingweight function
w : (0,1] → R. For itemsx in Ij with 1 � j � t� − 1, we definew(x) = 1/j .
For itemsx in the last intervalIt� , we definew(x) = (xt�)/(bt� − b). The weight
of a packed bin equals the sum of the weights of the items contained in this bin.
The weightw(L) of an item listL equals the sum of the weights of the items inL.

Lemma 5.1. Every bin of sizeb that has been closed by the online algorithm
contains items of total weight at least1.

Proof. First assume that the closed bin belongs to an intervalIj with 1 � j �
t� − 1. Then it contains exactlyj items, and each of these items has weight 1/j .
Next assume that the closed bin belongs to the intervalIt� . Then the bin has been
closed, since a new item fromIt� did not fit into it. Hence, the total size of its
items is at leastb − b/t�. Since on the intervalIt� the weight function is linear
with slopet�/(bt� − b), the weight of such a bin is at least 1.✷
Lemma 5.2. Let 1 � z � � − 1 be an integer. Then for every positive real number
x � b/tz, we havew(x)/x � (tz + 1)/(btz).

Proof. First assume thatx is from some intervalIj with tz � j � t� − 1. Then
x � b/(j + 1) andw(x) = 1/j , and thusw(x)/x � (j + 1)/(jb) holds. Since
the expression(j + 1)/(jb) is decreasing inj and sincej � tz, we get that
w(x)/x � (tz + 1)/(btz) holds, exactly as we desired. Next assume thatx is in
the intervalIt� . Then

w(x)/x = t�/(bt� − b) � (tz + 1)/(btz),

where the final inequality follows fromt� � tz + 1. ✷
Lemma 5.3. In any packing of the listL into unit-size bins, every unit-size bin
receives items of total weight at most

�∑
i=1

1

ti − 1
+ 1

(t� − 1)2 . (19)

Proof. Consider some fixed unit-size binB that contains the itemsf1 � f2 �
· · · � fn with total size at most 1. We distinguish three cases that depend on the
distribution of the item sizesfi in the intervals(b/tj , b/(tj − 1)].

J. Csirik, G.J. Woeginger / Journal of Algorithms 44 (2002) 308–320 317

Case 1. For i = 1, . . . , � we havefi ∈ (b/ti, b/(ti − 1)]. We denote byF the sum
of the sizes of the remaining itemsfi with i > �. By the definition of the values
ti in (2) and (3), we conclude that

F =
n∑

i=�+1

fi � 1−
�∑

i=1

b

ti
= b · r� � b

t�+1 − 1
. (20)

Hence, all itemsf�+1, . . . , fn are in the last intervalIt� . By the definition of the
weight function, the weight of the binB then is upper bounded by

�∑
i=1

1

ti − 1
+ t�

bt� − b
F � n

�∑
i=1

1

ti − 1
+ t�

(t� − 1)(t�+1 − 1)

� n

�∑
i=1

1

ti − 1
+ 1

(t� − 1)2 .

Here we used (20) to derive the first inequality, and (6) to derive the second
inequality. This completes the analysis of the first case.

Case 2. There exists an integerz with 1 � z � � − 1 such that the following
holds: Fori = 1, . . . , z − 1 we havefi ∈ (b/ti, b/(ti − 1)]. Moreover,fz either
does not exist (sincen = z−1 holds) or if it does exist thenfz /∈ (b/tz, b/(tz −1)]
holds. We denote byF the sum of the sizes of the remaining itemsfi with i � z.
Similarly as above, we observe that

F =
n∑

i=z

fi � n1−
z−1∑
i=1

b

ti
=

∞∑
i=z

b

ti
. (21)

By combining inequality (21) with (7) we get that the total sizeF of all items
fz, . . . , fn is at mostb/(tz − 1). Since the largest one of all these items,fz, is
not contained in the interval(b/tz, b/(tz − 1)], we conclude that the size of every
item fz, . . . , fn is at mostb/tz. Then by Lemma 5.2, their overall weight is at
mostF(tz + 1)/(btz). The weight of the binB is at most

z−1∑
i=1

1

ti − 1
+ F(tz + 1)

btz
�

z−1∑
i=1

1

ti − 1
+ tz + 1

tz

∞∑
i=z

1

ti
� n

∞∑
i=1

1

ti − 1

�
�∑

i=1

1

ti − 1
+ 1

t�+1 − 2

� n

�∑
i=1

1

ti − 1
+ 1

(t� − 1)2 .

Here we have first applied (21) to boundF from above, then the statement in
Lemma 3.1, then the inequality in (7) to bound

∑∞
i=�+1 1/(ti − 1) from above,

318 J. Csirik, G.J. Woeginger / Journal of Algorithms 44 (2002) 308–320

and in the end the inequality (6) together witht� � 2. This completes the analysis
of the second case.

Case 3. This case is essentially the second case withz = �, which needs special
treatment since the statement in Lemma 5.2 does not carry over toz = �.
Assume that fori = 1, . . . , � − 1 we havefi ∈ (b/ti, b/(ti − 1)], and that
f� /∈ (b/t�, b/(t� − 1)]; the subcase wheref� does not exist is trivial. We denote
by F the sum of the sizes of the itemsfi with i � �:

F =
n∑

i=�

fi � 1−
�−1∑
i=1

b

ti
= b · r�−1 � b

t� − 1
. (22)

Consequently, all itemsf�, . . . , fn are contained in the last intervalIt� . Then the
weight of the binB is at most

�−1∑
i=1

1

ti − 1
+ t�

bt� − b
F �

�−1∑
i=1

1

ti − 1
+ t�

(t� − 1)2

=
�∑

i=1

1

ti − 1
+ 1

(t� − 1)2 .

Here we used (22) to boundF . This completes the proof.✷
Theorem 5.4. For any bin sizeb > 1 and for any realε > 0, there exist a suf-
ficiently largek and an onlinek-bounded space bin packing algorithmA with
Rb(A) � ρ(b) + ε.

Proof. Choose a sufficiently large integer� � 3 such that 1/(t� − 1)2 � ε is
fulfilled. By the definition of the worst case ratio in (1), we may restrict our
attention to item listsL with OPT1(L) � t�/ε.

We derive from Lemma 5.1 thatAb(L) � w(L) + t�, where the termw(L)

accounts for the number of closed bins and where the termt� accounts for the
number of open bins in the final packing. We derive from Lemma 5.3 thatw(L) �
(ρ(b) + ε) · OPT1(L). Consequently,Ab(L) � (ρ(b) + 2ε) · OPT1(L). ✷

6. Proof of the lower bound

In this section, we prove the lower bound stated in Theorem 2.2. To avoid
misunderstandings, we repeat the definition of the offline optimum from the
introduction: The offline optimum OPT1(L) is the minimum number of unit-size
bins into which the items in the listL can be fit. Hence, the offline algorithm can
pack the items in arbitrary order, and it is not restricted in any way to the order in
which the items are received or to bounded space.

J. Csirik, G.J. Woeginger / Journal of Algorithms 44 (2002) 308–320 319

Now consider an arbitrary onlinek-bounded space algorithmA for bin packing
with bin sizeb. Let T (b) = 〈t1, t2, . . .〉 be the integer sequence associated withb.
Let � be an integer, and letε > 0 be a small real number such thatε · t�+1 · � � 1.
Furthermore, letN > k3t�+1 be a huge integer. We confront the online algorithm
with several phases of ‘bad’ items, and we show that algorithmA eventually must
perform poorly.

Altogether there are� phases. In thej th phase (j = 1, . . . , �), exactlyN items
of sizeb/t�−j+1 + ε arrive. Up to some exceptional cases at the very beginning
and the end of such a phase, the best that the bounded space algorithmA can
do is to pack these items together in groups of cardinalityt�−j+1 − 1 each. This
consumesN/(t�−j+1 − 1) bins. At the beginning of a phase up tok used bins
of the previous phase are active, and this may save up tok bins. Summarizing,
algorithmA uses at leastN/(t�−j+1−1)−k bins for packing the items of phasej .
Adding this up over allj = 1, . . . , �, we get that

Ab(L) �
�∑

j=1

(
N

t�−j+1 − 1
− k

)
= N ·

�∑
j=1

1

tj − 1
− k�. (23)

By (4) and by the choice ofε, the � items b/t�−j+1 + ε with 1 � j � �

together fit into a bin of size 1. Consequently, we have OPT1(L) � N . By
makingN sufficiently large, (23) yields that the worst case performanceRb(A) of
algorithmA is at least

∑�
j=1 1/(tj − 1). Since this statement holds true for every

value of�, we may make� arbitrarily large and thus make this bound arbitrarily
close toρ(b).

Theorem 6.1. For any b � 1 and for any onlinek-bounded space bin packing
algorithmA, we haveRb(A) � ρ(b).

Acknowledgments

We thank Clemens Heuberger for several discussions. We thank Bettina Klinz
for helping us in generating the picture. We thank the two referees for a very
careful reading of the paper, and for pointing out a number of mistakes in an
earlier version of this paper.

References

[1] R.L. Graham, Bounds for certain multiprocessing anomalies, Bell Syst. Tech. J. 45 (1966) 1563–
1581.

[2] R.L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math. 17 (1969)
263–269.

320 J. Csirik, G.J. Woeginger / Journal of Algorithms 44 (2002) 308–320

[3] D.D.K.D.B. Sleator, R.E. Tarjan, Amortized efficiency of list update and paging rules, Comm.
ACM 28 (1985) 202–208.

[4] B. Kalyanasundaram, K. Pruhs, Speed is more powerful than clairvoyance, in: Proceedings of the
36th IEEE Symposium on Foundations of Computer Science (FOCS’95), 1995, pp. 214–221.

[5] C.A. Phillips, C. Stein, E. Torng, J. Wein, Optimal time-critical scheduling via resource
augmentation, in: Proceedings of the 29th ACM Symposium on Theory of Computing
(STOC’97), 1997, pp. 140–149.

[6] J. Edmonds, Scheduling in the dark, in: Proceedings of the 31st Annual ACM Symposium on the
Theory of Computing (STOC’99), 1999, pp. 179–188.

[7] S. Albers, S. Arora, S. Khanna, Page replacement for generalized caching problems, in:
Proceedings of the 10th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’99),
1999, pp. 31–40.

[8] B. Kalyanasundaram, K. Pruhs, The online transportation problem, in: Proceedings of the 3rd
European Symposium on Algorithms (ESA’95), in: Lecture Notes in Comput. Sci., Vol. 979,
Springer-Verlag, Berlin, 1995, pp. 484–493.

[9] C.C. Lee, D.T. Lee, A simple online bin-packing algorithm, J. ACM 32 (1985) 562–572.
[10] J. Csirik, G.J. Woeginger, Online packing and covering problems, in: Online Algorithms: The

State of the Art, in: Lecture Notes in Comput. Sci., Vol. 1442, Springer-Verlag, 1998, pp. 147–
178.

[11] A. van Vliet, An improved lower bound for on-line bin packing algorithms, Inform. Process.
Lett. 43 (1992) 277–284.

[12] I.M. Niven, H.S. Zuckerman, An Introduction to the Theory of Numbers, Wiley, 1960.
[13] S. Wagon, Mathematica in Action, Freeman, 1991.

