Skip to main content

Gales and the Constructive Dimension of Individual Sequences

  • Conference paper
  • First Online:
Book cover Automata, Languages and Programming (ICALP 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1853))

Included in the following conference series:

Abstract

A constructive version of Hausdorff dimension is developed and used to assign to every individual infinite binary sequence A a constructive dimension, which is a real number cdim(A) in the interval [0, 1]. Sequences that are random (in the sense of Martin-Löf) have constructive dimension 1, while sequences that are decidable, r.e., or co-r.e. have constructive dimension 0. It is shown that for every Δ0 2-computable real number α in [0, 1] there is a Δ0 2 sequence A such that cdim(A) = α. Every sequence’s constructive dimension is shown to be bounded above and below by the limit supremum and limit infimum, respectively, of the average Kolmogorov complexity of the sequence’s first n bits. Every sequence that is random relative to a computable sequence of rational biases that converge to a real number β in (0,1) is shown to have constructive dimension H(β), the binary entropy of β.

Constructive dimension is based on constructive gales, which are a natural generalization of the constructive martingales used in the theory of random sequences.

This work was supported in part by National Science Foundation Grant 9610461.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Cai and J. Hartmanis. On Hausdorff and topological dimensions of the Kolmogorov complexity of the real line. Journal of Computer and Systems Sciences, 49:605–619, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  2. G. J. Chaitin. On the length of programs for computing finite binary sequences. Journal of the Association for Computing Machinery, 13:547–569, 1966.

    MATH  MathSciNet  Google Scholar 

  3. G. J. Chaitin. On the length of programs for computing finite binary sequences: statistical considerations. Journal of the ACM, 16:145–159, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. J. Chaitin. A theory of program size formally identical to information theory. Journal of the Association for Computing Machinery, 22:329–340, 1975.

    MATH  MathSciNet  Google Scholar 

  5. K. Falconer. The Geometry of Fractal Sets. Cambridge University Press, 1985.

    Google Scholar 

  6. F. Hausdorff. Dimension und äusseres Mass. Math. Ann., 79:157–179, 1919.

    Article  MathSciNet  Google Scholar 

  7. A. N. Kolmogorov. On tables of random numbers. Sankhyā, Series A, 25:369–376, 1963.

    MATH  MathSciNet  Google Scholar 

  8. A. N. Kolmogorov. Three approaches to the quantitative definition of ‘information’. Problems of Information Transmission, 1:1–7, 1965.

    Google Scholar 

  9. A. N. Kolmogorov. Combinatorial foundations of information theory and calculus of probabilities. Russian Mathematical Surveys, 38:29–40, 1983.

    Article  MATH  Google Scholar 

  10. G. Kreisel. Note on arithmetical models for consistent formulae of the predicate calculus. Fundamenta Mathematicae, 37:265–285, 1950.

    MATH  MathSciNet  Google Scholar 

  11. L. A. Levin. On the notion of a random sequence. Soviet Mathematics Doklady, 14:1413–1416, 1973.

    MATH  Google Scholar 

  12. M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its Applications. Springer-Verlag, 1997.

    Google Scholar 

  13. D. W. Loveland. The Kleene hierarchy classification of recursively random sequences. Transactions of the American Mathematical Society, 125:497–510, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. W. Loveland. A new interpretation of von Mises’ concept of a random sequence. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 12:279–294, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. H. Lutz. Dimension in complexity classes. In Proceedings of the Fifteenth Annual IEEE Conference on Computational Complexity. IEEE Computer Society Press, 2000.

    Google Scholar 

  16. P. Martin-Löf. The definition of random sequences. Information and Control, 9:602–619, 1966.

    Article  MathSciNet  Google Scholar 

  17. P. Martin-Löf. Complexity oscillations in infinite binary sequences. Zeitschrift für Wahrscheinlichkeitstheory und Verwandte Gebiete, 19:225–230, 1971.

    Article  MATH  Google Scholar 

  18. P. Odifreddi. Classical Recursion Theory. Elsevier, 1989.

    Google Scholar 

  19. B. Ya. Ryabko. Noiseless coding of combinatorial sources. Problems of Information Transmission, 22:170–179, 1986.

    MATH  MathSciNet  Google Scholar 

  20. B. Ya. Ryabko. Algorithmic approach to the prediction problem. Problems of Information Transmission, 29:186–193, 1993.

    MathSciNet  Google Scholar 

  21. B. Ya. Ryabko. The complexity and effectiveness of prediction problems. Journal of Complexity, 10:281–295, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  22. C. P. Schnorr. A unified approach to the definition of random sequences. Mathematical Systems Theory, 5:246–258, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  23. C. P. Schnorr. Zufälligkeit und Wahrscheinlichkeit. Lecture Notes in Mathematics, 218, 1971.

    Google Scholar 

  24. C. P. Schnorr. Process complexity and effective random tests. Journal of Computer and System Sciences, 7:376–388, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Kh. Sheń. The frequency approach to the definition of a random sequence. Semiotika i Informatika, 18:14–42, 1982. (In Russian.).

    MATH  Google Scholar 

  26. A. Kh. Sheń. On relations between different algorithmic definitions of randomness. Soviet Mathematics Doklady, 38:316–319, 1989.

    MathSciNet  MATH  Google Scholar 

  27. R. J. Solomonoff. A formal theory of inductive inference. Information and Control, 7:1–22, 224–254, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. M. Solovay, 1975. reported in [?].

    Google Scholar 

  29. L. Staiger. Kolmogorov complexity and Hausdorff dimension. Information and Computation, 102:159–194, 1993.

    Article  MathSciNet  Google Scholar 

  30. L. Staiger. A tight upper bound on Kolmogorov complexity and uniformly optimal prediction. Theory of Computing Systems, 31:215–229, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  31. S. A. Terwijn. Personal communication, 2000.

    Google Scholar 

  32. M. van Lambalgen. Random Sequences. PhD thesis, Department of Mathematics, University of Amsterdam, 1987.

    Google Scholar 

  33. V. G. Vovk. On a randomness criterion. Soviet Mathematics Doklady, 35:656–660, 1987.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lutz, J.H. (2000). Gales and the Constructive Dimension of Individual Sequences. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds) Automata, Languages and Programming. ICALP 2000. Lecture Notes in Computer Science, vol 1853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45022-X_76

Download citation

  • DOI: https://doi.org/10.1007/3-540-45022-X_76

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67715-4

  • Online ISBN: 978-3-540-45022-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics