A Multiagent-based Peer-to-Peer Network
in Java for Distributed Spam Filtering

Jorg Metzger, Michael Schillo, and Klaus Fischer

German Research Center for Artificial Intelligence,
Stuhlsatzenhausweg 3, 66123 Saarbriicken, Germany
{jmetzger, schillo, kuf}@dfki.de
http://www.dfki.de/

Abstract. With the growing amount of internet users, a negative form
of sending email spreads that affects more and more users of email ac-
counts: Spamming. Spamming means that the electronic mailbox is con-
gested with unwanted advertising or personal email. Sorting out this
email costs the user time and money. This paper introduces a distributed
spam filter, which combines an off-the-shelf text classification with mul-
tiagent systems. Both the text classification as well as the multiagent
platform are implemented in Java. The content of the emails is analyzed
by the classification algorithm ’support vector machines’. Information
about spam is exchanged between the agents through the network. Iden-
tification numbers for emails which where identified as spam are gener-
ated and forwarded to all other agents connected to the network. These
numbers allow agents to identify incoming spam email. In this way, the
quality of the filter increases continuously.

0.1 Keywords

Multiagent Systems, Peer-To-Peer Networks, Spam Filter, Text Categorization
with Support Vector Machines.

1 Introduction

One of today’s greatest problems of email traffic is the lack of authentification
of email servers and senders. Without the possibility to identify the sender of an
email, there are people who take advantage of this security gap. They send spam
email to a huge amount of people, who did not solicited them. The cost of send-
ing spam emails is very low, giving an incentive to force a high number of users to
spend time (and online fees) to filter unwanted messages. There are several ways
to get email addresses. Spammers, the sender of spam email, scan mailing lists,
homepages and forums. This is done with the help of spambots, programs which
automatically scan the internet for email addresses. These lists of valid email
addresses are sold to other spammers which use them for their own purposes.
Statistics about the amount of spam received since 1996 have shown that in the
last two years, the amount of spam email has increased exponentially [10]. These

2 Jorg Metzger, Michael Schillo, and Klaus Fischer

statistics are representative for most users of email accounts. There is no global
legal protection from this problem. On the server side, the configuration of your
mailserver can be configured to sort out email according to certain criteria and
to block email from certain domains. For effective protection, regular reconfigu-
ration of the server settings in necessary. There is also the risk of deleting email
which is not spam. So this is not a satisfactory solution. For this reason, a lot of
software has been developed to recognize and filter spam email. An frequently
used approach is the creation of rules to filter emails. Programs like RIPPER
possess a database of rules [1]. It is difficult to adapt these rules to changes of
the email content and to keep them up-to-date. Other spam filters [6,13] work
with algorithms developed for text classification. Although these filers delete a
huge amount of spam, they only work isolated from other filters. So they cannot
give information about spam to other filters to upgrade their knowledge on new
forms of spam. There exists only one commercial distributed spam filter [12]
which exchanges spam information over a network in a distributed fashion. The
Vipul’s Razor filter agents connect to servers which maintain a database with
identification numbers for spam emails. They identify spam emails with the help
of the identification numbers. Although this filter system is basically compara-
ble with our spam filter network, it has several disadvantages. Our network has
no need of centralized servers. Instead, antispam agents are connected as nodes
of a peer-to-peer network which can communicate directly with each other to
exchange information. Furthermore, the Vipul’s Razor filter agents cannot deal
with a new form of spam which more and more often appears.

With this work, we introduce a network of spam filter agents which combines the
power of text classification algorithms with a peer-to-peer network. The follow-
ing section describes the basics of text classification and multiagent systems on
which we base our work. In Section 3 we introduce our spam filter network and
show how it has been implemented in Java. The paper closes with summarizing
remarks and future lines of research.

2 Basics

2.1 Support Vector Machines

Users of our filter network should have the opportunity to let the spam filter
classify incoming email into the categories spam or nonspam automatically. The
user can correct the classification result if needed. Today, there exits a huge
number of classification algorithms to choose from. Several comparisons of the
different methods have demonstrated that the classification algorithm Support
Vector Machines (SVM) outperforms most of the other algorithms (for example
Naive Bayes and k-nearest neighbor) [2, 5] and reaches rates of accuracy in clas-
sifying spam over 95 percent [11]. In order to classify text, its content has to be
represented as a feature vector. We choose a word as feature. The corresponding
vector is composed of various words from a dictionary formed by analyzing the
text contents. The weighting of the feature vector is constructed as follows. If
a particular word occurs in the content of the text, the corresponding value of

A Multiagent-based P2P Network for Distributed Spam Filtering 3

Fig.1. SVM construct the hyperplane which maximizes the border between the two
classes. The classifier on the right is the better one.

the feature is 1, otherwise 0. This is called the ’binary representation’ of the fea-
ture vector. These vectors can be described as data points in an n-dimensional
space. The basic idea of SVM is to find a hyperplane which best separates the
data points into two classes. In this way, the number of classification errors is
minimal. Figure 1 shows the best separating hyperplane between the circles and
squares in the two-dimensional space.

More precisely, the decision surface by SVM for linearly separable data points
is a hyperplane which can be written as w” 2 —b = 0. z is an arbitrary data point
to be classified and the vector w (vector of the hyperplane) and the scalar b are
learned from the training data. Let D = {(z;,y;)} denote the training set with
feature vector z; € R and y; € {—1,1} be the classification for z; (y; = +1 if
z; € Spam and y; = —1 if x; € Nonspam), the SVM problem is to find w and
b that satisfy the following constraints

wle; —b>1 ify; =1, (1)

wla;—b< -1 ify;=-1
and that the vector 2-norm of w is minimized (maximizing the separating hyper-
plane). Training examples that satisfy (1) are termed support vectors. The sup-
port vectors define two hyperplanes, which both go through the support vectors

of the respective class. This quadratic optimization problem can be efficiently
solved and a new vector 2* can be classified as follows

N
f(x*) = sign{wTz* —b} with w= Zv,-m,- (2)
i=1

The course of the hyperplane is only determined by the positions of the NV
support vectors z; with weighting v; which the algorithm calculates.

2.2 Multiagent Systems and FIPA-OS

Multiagent Systems (MAS) consist of several autonomous agents, which work in-
dependently and distributed [14]. For that purpose several interfaces are defined.

4 Jorg Metzger, Michael Schillo, and Klaus Fischer

The MAS makes available basic services, where communication and interaction
protocols are specified. The agent platform we use is fully implemented in Java.
The FIPA Open Source (FIPA-OS) platform [7] is continuously improved as an
open source project and conforms to the agent standards set up by the Founda-
tion for Intelligent Physical Agents (FIPA) [3]. FIPA-OS provides ’white pages’
and ’yellow pages’ services for the agents. The Directory Facilitator (DF) is a
special agent which mediates between all agents on the platform. This includes
tasks like registration, service information on other agents, deregistration etc.
An index of the names of agents which are currently registered with the agent
platform is maintained by the agent management service (AMS) and can be
accessed by the DF. The Message Transport System (MTS) is responsible for
the platform to platform transport and encoding of the messages. The agents of
the MAS work together to achieve the common goal of spam filtering. In order
to exchange information about spam, the agents must interact together at a
semantically rich level of discourse. FIPA-OS provides an agent communication
language (ACL) which describes a standard way to package messages, in such
a way that it is clear to other compliant agents what the purpose of the com-
munication is. These rules ensure that the semantic integrity of the language is
retained. Negotiation, cooperation and information exchange are supported.

In the next section, we will show how the combination of multiagent systems
and text classification leads to a functional distributed spam filter network.

3 Structure of the Distributed Spam Filter

In the following, we describe our novel approach on spam filtering based on the
advantages of ’support vector machines’ and multiagent systems. We explain the
design and the implementation of a peer-to-peer spam filter network. Within
the network, data concerning spam is exchanged between the agents. For each
email, an identification number is created as described in Section 3.1. If the
email is identified as spam by the classification algorithm, the corresponding
number is sent to all other agents connected to the network. The antispam
agents compare the identification numbers of all incoming email with those spam
numbers collected from other agents. The concrete procedure of the antispam
agents is described in Section 3.2. The last Section shows the interface in detail
and the possibilities available for the user to influence the classification of email
and to correct false decisions made by the spam filter.

3.1 Creation and Comparing of Hash Values

One of the necessary functions of the antispam agent is the ability to compare
two different emails. For reasons of security, it is not desirable to send the plain
text of the content of emails over to network to other agents and compare them
word by word. The user certainly does not want other users to be able to re-
construct the contents of the received email from the data sent. Representations
of the email content like word vectors cannot be sent over the network as well.

A Multiagent-based P2P Network for Distributed Spam Filtering 5

Instead, a unique identification number for every email is generated locally and
send to other agents if the corresponding email is spam. Therefore, it is impos-
sible to conclude from this identification number (hash value) to the content
of the corresponding email. Many procedures have been developed to deal with
this issue. One popular solution is to hash the content of the email into a SHA-
digest (secure hash algorithm) [9]. Although the SHA-digests which were created
through hashing are easily to compare, they have a serious disadvantage. They
cannot deal with a new form of spam. The content of this new form of spam
is varied slightly from user to user, i.e. they contain details like the address of
the receiver. So, although the email is from one sender and basically identical,
the content of the spam message is slightly different for every user who receives
it and hence, the SHA-algorithm generates a different digest for each message.
Therefore, the SHA-algorithm cannot be used to compare the message contents.
Our identification number generated for the content of emails follows a different
idea.

For a certain amount of representative letters of the alphabet, the relative fre-
quency of their occurrence in the content of the email is recorded. We line up
the frequencies of these letters to a hash value. If we want to compare two hash
values, the difference of the frequencies for each letter are formed and added up.
The greater this value is, the more different are the frequencies of the letters and
the more different are the two corresponding emails. This kind of identification
number has several advantages:

— Emails with slightly different content are recognized as similar and spam
email created in this way can be identified.

— Hash values of messages with the same content are equal to each other, their
difference is zero.

— The hash value does not disclose any information on the contents of the
emails to other users.

3.2 Spam Classification Procedure of the Antispam Agent

The principal unit of the spam filter network is the antispam agent. Every agent
is assigned to a user. The agent is situated in the FIPA-OS platform treated in
Section 2.2. The platform provides the antispam agent with a list of all other
active agents in the network. This service is done by the Directory Facilitator.
The agent stores the list of active agents in his own database, allowing the
antispam agent to start communication with the other antispam agents. It sends
them a request for new information about spam which the other agents have
collected in the time where it was not connected to the network. Now, the other
agent itself adds the sending agent to its database of active agents. The exchange
of information is provided by the ’inform’ communication act, part of the FIPA
communication standard.

At the beginning of the classification process (cf. Fig. 2), the antispam agent
downloads new messages from the mailserver of the user. The connection to a
POP3 or IMAP server can be established using the Java Email Interface [4]. The

6 Jorg Metzger, Michael Schillo, and Klaus Fischer

Email
IMAP Create yes o
POP3 e Hash Value Database ? op
o G
Classification
Forward
=R Hash Value

Fig. 2. Functionality of the antispam agent

configuration for the individual email account can be specified and saved by the
user. After downloading and optionally deleting the email from the server, the
antispam agent generates hash values for each of the downloaded emails. The
process of generating hash values is explained in more detail in Section 3.1. These
values are compared with the hash value entries of spam in the local database of
the agent. Note that the database only contains hash values of messages which
where clearly classified as spam by the agent itself or by another agent which sent
this spam hash value through the network. If the hash value of the new email
matches with one in the database, the email is spam. In case the content of the
two compared emails only differs slightly, the difference of the two belonging
hash values is rather small. The more different the content of two emails is, the
greater the difference between the hash values is. The user can specify a threshold
value. Emails whose similarity to each other lies over this threshold are regarded
as similar. With the help of this similarity measure, spam emails from the same
sender which only differ in a few letters (e.g. personal address of the receiver) are
recognized as equal and are filtered. The spam email is transferred to a specific
folder for later review (optionally the email can be deleted directly). If the hash
value is not sufficiently similar to one of the spam hash values, it has passed
the first filter. It is forwarded to the classification algorithm. Before the SVM
algorithm can start to classify, the text of the email has to be preprocessed. The
necessary preprocessing steps are as follows:

— Removing HTML-Tags
Because the Email will be classified with the help of word occurrences, all
other parts of the email must be deleted. There is also the possibility that the
tags contain (for the user invisible) information to mislead the classification
algorithm. Therefore all HTML-Tags are deleted.

A Multiagent-based P2P Network for Distributed Spam Filtering 7

— Clreating the Bag of Words
The words of the content of the email without HTML-Tags are collected into
a list, also called the bag of words.

— Stemming
The content of the bag of words is processed by the Porter Stemmer [8]. The
amount of words to be considered for classification is reduced by stripping
all suffixes of words to receive their root forms, i.e. stripping the words
’introduction’, 'introduced’ to ’introduc’. The meanings of the words remain,
but the number of words to be considered is reduced.

— Using Stop List (optionally)
To reduce the amount of words further, general words without special mean-
ing which often appear in texts can be cut off, i.e. words like ’the’, ’of’, ’on’
etc. This method is not undisputed, some authors explain that using the
stop list reduces the accuracy of the classification algorithm [2].

— Representing Text as Attribute Vectors
The remaining words are mapped into an attribute vector. If the attribute
(word) is in the bag of words, its corresponding attribute receives the value 1
independently how often the word occurs in the text. Otherwise this attribute
gets the value 0. The created vector is called 'binary vector’, because it only
consists of values € {0,1}. It is used in many text classification algorithms
providing good classification results.

After the preprocessing, the actual classification is taken over by the sup-
port vector machines algorithm as a second filter. Before this algorithm can be
applied, its classifier has to be trained based on training data. Training data
consists of labelled email vectors, which have already been classified. The SVM
algorithm builds up a training matrix from those classified vectors. Hereafter, the
algorithm is ready to classify the unlabelled vectors of new emails. The prepro-
cessed binary vector of the email is arranged either into the class spam’ or the
class 'nonspam’. The vector is classified using the matrix generated of training
vectors. After the algorithm has arranged the email, the user has the possibility
to change the classification judgement made by the SVM algorithm. Especially
if the training matrix of vectors is small, there is a risk of misclassification. To
increase the classification accuracy, the classified vector is taken into the local
training matrix of the agent. With the growth of the matrix, the SVM algorithm
quickly reaches a precision of over 95 percent [11]. Only if the email is classified
as spam, its hash value is transferred to all other connected agents, which store
this hash value in their local database. If they receive the same spam message,
the recognize it at once, because the hash values generated from the newly re-
ceived email is equal to the one received by the other antispam agent. Because
it is impossible to infer the original content of the corresponding email from the
hash value, the data transfer within the spam filter network preserves privacy, an
important design objective. We explain why we do not send the classified email
vectors through the network to antispam agents with a small amount of train-
ing vectors. This would power up their ability to classify emails correctly after a
short time inside the spam filter network. But there are several big disadvantages

8 Jorg Metzger, Michael Schillo, and Klaus Fischer

which stand against sending vectors over the network. First of all, there is the
possibility to recreate the content of the emails by analyzing the corresponding
vector. This security gap does not appear when sending hash values which where
created to guarantee security. Furthermore, malicious users could try to reduce
the quality of the network by sending thousands of misleading vectors to other
antispam agents.

3.3 Interface of the Antispam Agent

Figure 3 shows the user interface to the database of hash values from an antispam
agent which is connected to the network. The hash value generated from the
current email is displayed in the box below the list. This value is compared
to all values of the database. The list of hash values is regularly updated by
exchanging spam information with other agents. The similarity threshold for
emails can be adjusted with the slider on the right from 70 % up to 100 %.
The tab ’All Email’ leads to the list of emails loaded from the server. The tab
"Classification’ shows the result of the SVM algorithm in classifying the current
email. The other agents connected to the network can be seen under the tab
"Agents’. This interface allows to easy control the classification activity of the
user’s antispam agent. This is important for the acceptance of such a tool.

4 Conclusions

In order to deal with the huge amount of spam received day by day, power-
ful email filters with high reliability are needed. We combined multiagent sys-
tems with text categorization to identify spam. Information about spam emails
spreads over the network to all other agents. If one agent has classified a cer-
tain spam email, all other agents profit from the hash value sent to them. They
recognize the same spam email with absolute reliability. Similar emails (with
different personal address for example) are also detected and recognized. By
the data exchange, agents which enter the network are quickly provided with
actual information about spam. Newly created agents receive hash values from
other agents of the network and set up quickly an up-to-date database with
spam information. The second filter, support vector machines, greatly supports
the antispam agents at the task of classification of incoming unknown email in
order to create new hash values. Every user can influence the creation of his
individual training matrix by changing the classification results of SVM. Thus,
he can specify the email to be classified as spam to its own taste. A lot of advan-
tages arise from the use of the MAS platform FIPA-OS. Agents can register and
deregister with FIPA-OS on the fly without influencing the stability of the sys-
tem. FIPA-OS enables the communication between antispam agents and allows
simultaneous and asynchronous email classification. This form of spam filtering
is attractive for both the normal user as well as enterprises.

A Multiagent-based P2P Network for Distributed Spam Filtering 9

AntiSpam-Agent-3

Fig. 3. Screenshot of the user interface of the antispam agent

5 Future Work

There are still two disadvantages within our spam filter approach. Firstly, a
huge amount of data overhead is produced by the regularly exchange of hash
values. Furthermore, it is possible for malicious users to flood our network with
thousands of false hash values. In order to eliminate these drawbacks, we are
currently working on a simulation platform of a distributed spam filter network
with up to 100 agents where antispam agents will evaluate the hash values they
receive and establish trust to agents which provide useful and correct hash val-
ues to identify spam. After exceeding certain thresholds, benevolent agents that
receive the same spam mails will group together, exchange hash values within
their group and use only hash values provided by trusted group members to
identify spam. In this way, we will eliminate the two disadvantages mentioned
above. The amount of data which is transferred over the network will be reduced
by forcing the hash value exchange within the group of agents which receive the
same spam. Malicious agents will be excluded from the groups of benevolent
agents and will be prevented from flooding these groups with false hash values.

10 Jorg Metzger, Michael Schillo, and Klaus Fischer

Within the scope of the simulation platform, we will evaluate if the exchange of
hash values within the network of antispam agents increases the total number
of spam mails which are identified correctly.

With a few changes, our spam filter could also be used to assign emails to
certain categories of interest. A user could sort emails about ’sports’ or 'news’ in
the corresponding folders. Furthermore the filter network can be enhanced with
several other components in the future. A whitelist filter which specifies a list of
trusted email senders has already been included. Email from these people will
never be classified as spam. Further filters can be implemented: Blacklists could
be set up with addresses of people and organizations which sent spam email in
the past. Their email could be blocked by the filter. The modular structure of the
antispam agents with all modules written in Java provides space for additional
identification methods for spam.

References

1. W.W. Cohen (1996): Learning Rules that classify e-mail. Proceedings of the AAAI
Spring Symposium on Machine Learning in Information Access 18-25, AAAI Press.

2. V. Vapnik, H. Drucker, D. Wu (1999): Support Vector Machines for Spam Cate-
gorization. In: IEEE Transactions on Neural Networks, 10(5):1048-1054.

3. Homepage of the Foundation for Intelligent Physical Agent (FIPA).
http://www.fipa.org

4. Java Mail (TM) API Design Specification. Sun Microsystems, Inc.:
http://java.sun.com/products/javamail/JavaMail-1.2.pdf

5. S. Shankar, G. Karypis (2000): A Feature Weight Adjustment Algorithm for Docu-
ment Categorization. Proceedings of the Sixth International Conference on Knowl-
edge Discovery and Data Mining (ACM SIGKDD 2000).

6. P. Pantel and D. Lin (1998): SpamCop - A Spam Classification and Organization
Program. Proceedings of AAAI-98 Workshop on Learning for Text Categorization
95-98, AAAI Press.

7. Nortel Networks Corporation FIPA-OS Informations:
http://www.nortelnetworks.com/products/announcements/fipa

8. M.F. Porter (1980): An algorithm for suffix stripping. In: Program, 14(3):130-137.

9. Secure Hash Standard (1995): Federal Information Processing Standards Publica-
tion 180-1. National Institute of Standards and Technology.

10. Spam Statistic: http://www.raingod.com/angus/Computing/Internet/Spam/
Statistics/index.html

11. V.N. Vapnik, D. Wu (1998): Support Vector Machine for Text Categorization.
AT&T Research Labs, http://citeseer.nj.nec.com/347263.htm

12. Vipul’s Razor Homepage. http://razor.sourceforge.net

13. J.D.M. Rennie (2000): ifile: An Application of Machine Learning to E-Mail Filter-
ing. Proceedings of the KDD-2000 Workshop on Text Mining, Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.

14. M. Wooldridge, N. Jennings (1995): Intelligent Agents: Theory and Practice. In:
Knowledge Engineering Review 10(2):115-152, Cambridge University Press.

