Time-Efficient Self-Stabilizing Algorithms
through Hierarchical Structures

Felix C. Gértner'* and Henning Pagnia?

! Swiss Federal Institute of Technology (EPFL), School of Computer and
Communication Sciences, Distributed Programming Laboratory, CH-1015 Lausanne,
Switzerland, fcg@acm.org
2 University of Cooperative Education, D-68163 Mannheim, Germany,
pagnia@computer.org

Abstract. We present a method of combining a self-stabilizing algo-
rithm with a hierarchical structure to construct a self-stabilizing algo-
rithm with improved stabilization time complexity and fault-containment
features. As a case study, a self-stabilizing spanning-tree algorithm is
presented which in favorable settings has logarithmic stabilization time
complexity.

1 Introduction

A common prejudice of the self-stabilization concept is that the notion is too
demanding to be of practical use. Self-stabilizing systems are required to recover
to a set of legal states starting from any initial configuration and in every exe-
cution [4]. Consequently, weaker notions of self-stabilization have been devised
such as pseudo-stabilization [2].

In this paper, we investigate another reason why self-stabilizing algorithms
may not be more common in practice. We characterize this reason with the
term true distribution which is borrowed from a seminal paper by Maekawa [11]
in the area of solving the distributed mutual exclusion problem. Intuitively, a
protocol is truly distributed if no site participating in the protocol bears more
responsibility than another one. Usually, true distribution is a very desirable
property, since no site may become an availability or performance bottleneck.
Many self-stabilizing algorithms are (in this sense) truly distributed. However,
truly distributed algorithms are usually more costly in terms of execution time
or space than centralized or hierarchical solutions.

Algorithm designers often argue against sacrificing true distribution because
lack thereof makes algorithms less generally applicable and differing assumptions
must be made about individual network nodes, e.g., about their robustness. In
reality, however, the processing elements on which network protocols run are
far from homogeneous. The routers within the backbone of the Internet are
highly specialized machines with mirrored disks, uninterruptible power supplies,

* Work was supported by Deutsche Forschungsgemeinschaft (DFG) as part of the
Emmy Noether programme.



skilled maintenance personnel, and no application load whereas, e.g., standard
university workstations are often low-cost PCs with aged hardware and overfull,
unbackuped disks. Even the hardware components which are directly concerned
with handling network traffic (like switches and bridges) exist in many different
forms. Moreover, real network structures are usually hierarchical (hosts attached
to subnetworks which are attached to backbone networks) and not a “general
graph” (as is assumed in many distributed algorithms). This fact can be exploited
by real network protocols, e.g., by using hierarchies in DNS, NTP or employing
hierarchical routing. However, true distribution is a conservative guideline for
algorithm design: truly distributed algorithms will also run in heterogeneous
environments. But truly distributed algorithms cannot exploit the characteristics
of these environments to be more efficient.

What is needed are more flexible algorithms, i.e., algorithms which can be
adapted or adapt themselves to different network settings. As a first step towards
such algorithms, methods can help in which truly distributed algorithms can be
adapted to heterogeneous network settings using additional structures. In this
paper, we describe such a method for self-stabilizing algorithms in which true
distribution can be sacrificed in favor of increased efficiency. Based on experiences
in other areas [8,13], we employ the concept of “adding logical structure” to the
system to yield self-stabilizing algorithms with superior time efficiency and fault-
containment properties. In particular, we apply this principle to the problem of
self-stabilizing spanning tree construction.

Our approach can be briefly characterized as decomposing the entire net-
work into a hierarchy of subnetworks and running individual instances of self-
stabilizing spanning-tree algorithms within these subnetworks. The results of
these algorithms are then combined in a wrapper algorithm which uses informa-
tion about the hierarchy to yield a global self-stabilizing spanning tree algorithm
with (in favorable settings) a logarithmic stabilization time complexity. We give
formal conditions under which the composition is correct. We argue that our
design principle makes self-stabilizing algorithms more practical by relating our
findings to “real” Internet protocols.

We present the case study of self-stabilizing spanning-tree construction in
Sect. 3 and discuss the generality and practical applicability of the approach
in Sect. 4. However, in the following section we first provide a small toolbox of
different self-stabilizing spanning-tree algorithms with which the general scheme
of Sect. 3 may be instantiated.

2 A Toolbox of Self-Stabilizing Spanning Tree Algorithms

In this section we give examples of spanning-tree algorithms for different network
settings. For references to more algorithms see the book by Dolev [5].

2.1 System Assumptions

The system is usually modeled as a graph of processing elements (processors,
processes, nodes), where the edges between these elements model unidirectional



or bidirectional communication links. In this paper, we denote by n the num-
ber of nodes in the system and by N an upper bound on n. Communication
is usually restricted to the neighbors of a particular node. We denote by ¢§ the
diameter of the network (i.e., the length of the longest unique path between two
nodes) and by A an upper bound on 4. A network is static if the communication
topology remains fixed. It is dynamic if links and network nodes can go down
and recover later. In the context of dynamic systems, self-stabilization refers to
the time after the “final” link or node failure. The term “final failure” is typical
for the literature on self-stabilization: Because stabilization is only guaranteed
eventually, the assumption that faults eventually stop to occur is an approxi-
mation of the fact that there are no faults in the system “long enough” for the
system to stabilize. It is assumed that the topology remains connected, i.e., there
exists a path between any two network nodes even if a certain number of nodes
and links may crash.

Algorithms are modeled as state machines performing a sequence of steps.
A step consists of reading input and the local state, then performing a state
transition and writing output. Communication can be performed by exchanging
messages over the communication channels. But the more common model for
communication is that of shared memory or shared registers [5]. It assumes
that two neighboring nodes have access to a common data structure, variable
or register which can store a certain amount of information. These variables
can be distinguished between input and output variables (depending on which
process can modify them). When executing a step, a process may read all its
input variables, perform a state transition and write all its output variables in a
single atomic operation. This is called composite atomicity [7]. A weaker notion
of a step (called read/write atomicity [7]) also exists where a process can only
either read or write its communication variables in one atomic step. A related
characteristic of a system model is its execution semantics. In the literature
on self-stabilization this is encapsulated within the notion of a scheduler (or
daemon) [4]. Under a central daemon, at most one processing element is allowed
to take a step at the same time.

The individual processes can be anonymous, meaning that they are indis-
tinguishable and all run the same algorithm. Often, anonymous networks are
called uniform networks [7]. A network is semi-uniform if there is one process
(the root) which executes a different algorithm [7]. While there is no way to
distinguish nodes, in uniform or semi-uniform algorithms nodes usually have a
means of distinguishing their neighbors by ordering the incoming communica-
tion links. In the most general case it is assumed that processes have globally
unique identifiers.

Two kinds of spanning trees may be distinguished: breadth-first search (BFS)
trees result from a breadth-first traversal of the underlying network topology
[10]. Similarly, depth-first search (DFS) trees are obtained from a depth-first
traversal.



2.2 Lower Bounds

The usual time-complexity measure for self-stabilizing algorithms is that of
rounds [9]. In synchronous models algorithms execute in rounds, i.e., proces-
sors execute steps at the same time and at a constant rate. Rounds can be
defined in asynchronous models too, where the first round ends in a computa-
tion when every processor has executed at least one step. In general, the i-th
round ends, when every processor has executed at least ¢ steps so communication
between any two processors in a particular system takes at least (2(d) rounds.
This is because it normally takes at least one round to propagate information
between two adjacent processors. For the case of self-stabilizing spanning-tree
construction and under certain assumptions, an arbitrary initial state may make
it necessary to propagate information through the entire network. Therefore, a
general lower bound of 2(d) rounds can be assumed for self-stabilizing spanning-
tree algorithms.

2.3 Two Basic Algorithms

The algorithm by Dolev, Israeli and Moran. One of the first papers to appear
was by Dolev, Israeli and Moran [6, 7] in 1990. It contains a self-stabilizing BF'S
spanning-tree construction algorithm for semi-uniform systems with a central
daemon under read/write atomicity. In the algorithm, every node maintains two
variables: (1) a pointer to one if its incoming edges (this information is kept in a
bit associated with each communication register), and (2) an integer measuring
the distance in hops to the root of the tree. The distinguished node in the network
acts as the root. The algorithm works as follows: The network nodes periodically
exchange their distance value with each other. After reading the distance values
of all neighbors, a network node chooses the neighbor with minimum distance
dist as its new parent. It then writes its own distance into its output registers,
which is dist + 1. The distinguished root node does not read the distance values
of its neighbors and simply always sends a value of 0.

The algorithm stabilizes starting from the distinguished root node. After
sufficient activations of the root, it has written 0 values into all of its output
variables. These values will not change anymore. Note that without a distin-
guished root process the distance values in all nodes would grow without bound.
More specifically, after reading all neighbors values for k times, the distance
value of a process is at least k + 1. This means, that after the root has written
its output registers, the direct neighbors of the root—after inspecting their in-
put variables—will see that the root node has the minimum distance of all other
nodes (the other nodes have distance at least 1). Hence, all direct neighbors of
the root will select the root as their parent and update their distance correctly
to 1. This line of reasoning can be continued incrementally for all other distances
from the root. Hence, after O(d) update cycles the entire tree will have stabilized.

The algorithm by Afek, Kutten and Yung. In the same year as Dolev, Israeli
and Moran [6] published their algorithm, Afek, Kutten and Yung [1] presented



an self-stabilizing algorithm for a slightly different setting. Their algorithm also
constructs a BFS spanning-tree in the read/write atomicity model. However,
they do not assume a distinguished root process. Instead they assume that all
nodes have globally unique identifiers which can be totally ordered. The node
with the largest identifier will eventually become the root of the tree.

The idea of the algorithm is as follows: Every node maintains a parent pointer
and a distance variable like in the algorithm above, but it also stores the identifier
of the root of the tree which it is supposed to be in. Periodically, nodes exchange
this information. If a node notices that it has the maximum identifier in its
neighborhood, it makes itself the root of its own tree. If it learns that there is
a tree with a larger root identifier nearby, it joins this tree by sending a “join
request” to the root of that tree and receiving a “grant” back. The subprotocol
together with a combination of local consistency checks ensures that cycles and
fake root identifiers are eventually detected and removed.

The algorithm stabilizes in O(n?) asynchronous rounds and needs O(logn)
space per edge to store the process identifier. The authors argue this to be
optimal since message communication buffers usually communicate “at least”
the identifier.

2.4 Summary

This section has presented two self-stabilizing spanning tree construction algo-
rithms. The one by Afek, Kutten and Yung [1] can be characterized as truly
distributed. The semi-uniform algorithm of Dolev, Israeli and Moran [6, 7] takes
a first step towards exploiting heterogeneity: it is therefore simpler than the other
algorithm but must make additional robustness assumptions. Both algorithms
can be used as building blocks for the method described in Sect. 3.

3 Adding Structure for Constructing Efficient
Self-Stabilizing Spanning-Tree Algorithms

In this section we show how sacrificing full distribution can help to improve
the efficiency of self-stabilizing algorithms. To demonstrate this, we perform a
case study of applying the general principle of “introducing structure” to the
area of self-stabilizing spanning-tree construction. By doing this, it is possible
to transform an arbitrary self-stabilizing spanning-tree algorithm into one with
increased efficiency and fault-containment properties.

3.1 System Assumptions and Base Algorithm Interface

We model a distributed system as a connected graph G = (II, E), where II =
{P1,...,P,} is the set of processing elements and E C V x V is the set of
communication links between the processing elements. The starting point for the
transformation is a set of self-stabilizing spanning-tree construction algorithms
(e.g., those presented in Sect. 2). The remaining system assumptions (shared



memory/message passing, distinguished identifiers/distinguished root, etc.) are
the minimum assumptions necessary in order for the algorithms to work.

Within the transformation, we assume that there are multiple instances of
the algorithm running concurrently throughout the network. We denote the set
of all instances by I = {A, B,C,...}. Each instance X of the algorithm consists
of a set of local algorithm modules z,2’, ..., one for each processing element
which participates in the algorithm instance X. To simplify notation, x; always
denotes the local module of instance X running in P; (e.g., the module of X
running on Ps is denoted x3). There is at most one module of X running per
processing element. Additionally, every processing element participates in at
least one algorithm instance. We capture the distribution of algorithm instances
to processing elements using a function d : I — 27 (where 27 denotes the
powerset of IT, i.e., the set of all subsets of IT). We assume that the set of all
algorithm instance names can be totally ordered (e.g., by using an alphabetic
ordering).

Every algorithm instance running on a set of processing elements has a set of
possible roots. For example, semi-uniform algorithms have only one preconfigured
root. In other algorithms (like the one by Afek, Kutten and Yung [1]), the root
will be the processing element with maximal identifier. In the case of process
crashes, the processing element with the second highest identifier will eventually
become root. Given the assumption that at most 1 process can fail by crashing
within the protocol instance, it makes sense to select at least two processing
elements, namely the ones with the highest identifiers, as possible roots for that
algorithm instance. We capture the assignment of algorithm instances to possible
roots using a function r : I — 277,

We assume that the individual instances of the algorithm do not interfere with
each other during execution, i.e., each instance is able to execute as if it were
the only algorithm running in the network. We assume that the communication
topology needed by an algorithm instance respects the given communication
topology, i.e., the communication graph of the algorithm instance is a subgraph
of G.

We are not concerned how individual algorithm instances are created, we
merely assume that they are up and running and that every processing element
P; has a means to access the interface of each algorithm module that is running
on P;. For example, bootstrapping of the algorithm can be performed off-line
or on-line by an administrator who configures and starts the local algorithm
modules as individual processes on the processing elements. Overall, we capture
the deployment of algorithm instances in the definition of a system.

Definition 1 (System). A system S = (II,I,d,r) consists of a set of pro-
cessing elements II = {Py,..., P,}, a set of algorithm instances I, a function
d: T — 27 and a function r : I — 2™, such the following holds:

1. Every processing element participates in at least one algorithm instance, for-
mally:
VPell :3X € I:Ped(X)



2. A possible root P; of an algorithm instance X always runs a local module x;,
formally:
VX el:r(X)CdX)

The basic interface of each module x; of algorithm instance X consists of two
methods:

— boolean is_root()
This method returns true if and only if the processing element on which z;
runs is considered to be the root of the spanning tree which is maintained
by algorithm instance X.

— Neighbors parent()
If the processing element P on which x; runs is not the root of the spanning
tree which is maintained by algorithm instance X, then this method will
return the identifier of the processing element P’ which is considered to be
the parent in that spanning tree. The identifier P’ is guaranteed to be the
identifier of a neighbor of P.

The algorithm interface is general enough to encapsulate any of the spanning-tree
construction algorithms presented in Sect. 2.

As an example, consider the two system setups in Fig. 1. There are three
instances A, B and C' of the algorithm running on a network of five processing
elements Py, ..., Ps. For example, on the left side of Fig. 1 algorithm instance
C runs on two processing elements P; and P5; and consequently has two local
modules called c3 and c5. Note that algorithm instances may overlap and that
every processing element is covered by at least one algorithm instance.

An application running on some processing element P; may access the inter-
face of any algorithm module running on F;. For example, an application running
on P3; may access bz and c3.

Fig. 1. Two simple system setups with three algorithm instances A, B, and C on a
network of five processing elements P, ..., Ps.

3.2 Introducing Structure

We now define an additional “overlay” structure H = (I, +) which is a rooted
tree over I. The < relation is the “parent” relation over I, i.e., a child node al-



ways points to the parent node in «. Additionally, H must satisfy two additional
properties, connectedness and consistency. We first define connectedness.

Definition 2 (Connectedness). A structure H = (I,«) is connected with
respect to some system S = (II,1,d,r) if and only if the following holds: If
X « Y in H then d(X) and d(Y') share a processing element in S, formally:

VXY €Il : X — Y = d(X)Nd(Y) #0

Basically, connectedness means that any pair of algorithm instances that are
connected in H have a processing element in common. Sometimes it is impossible
to find a connected structure for a system. This is the case for the system on the
left side of Fig. 1 because A does not overlap with any other algorithm instance.

Fig. 2 gives examples and counterexamples of connected structures: (a) and
(b) are connected structures with respect to the system on the left side of Fig. 2.
The structure (c) however is not connected since A < C holds but A and C do
not share a common processing element.

b
Q

>m
Q-+t
o=Q -+t

(a) (b)

Fig. 2. Examples and counterexamples of connected structures for the example setting
on the left: examples (a) and (b) satisfy the definition, (c) not.

Definition 3 (Counsistency). A structure H = (I, <) is consistent with re-
spect to a system S = (I1,1,d,r) if and only if the following holds: If algorithm
instance X is a parent of algorithm instance Y in H, then every possible root of
Y must run a local algorithm module of X, formally:

VX,Y€T:X — YV = r(Y) Cd(X)

Intuitively, consistency means that it is possible to “go up” in the structure
H at any root of a tree established in some algorithm instance. As an example,
consider the left side of Fig. 2 and structure (a) and assume that the possible
root of B is Py (i.e., 7(B) = {P2}). This setting is consistent, since A < B holds
and every possible root of B is a node running a local module of instance A. On
the other hand, if 7(B) = {Ps}, then the structure would be inconsistent for the
given system, since Pj is not participating in algorithm instance A.

We assume that every processing element has means to access the structure
H. In particular, a processing element can determine whether some algorithm
instance is the root of H.



3.3 Deriving a Global Spanning Tree

Given the set of algorithm instances and the additional structure H, we now want
to derive a self-stabilizing algorithm that constructs a spanning tree over the
entire set of processing elements. Basically, we want to implement the spanning-
tree interface given in Sect. 3.1 (i.e., the is_root() and the parent() methods).

First consider implementing the is_root() operation. Basically, the root of the
entire spanning tree is the root of the top-level algorithm instance. Fig. 3 depicts
the code of an implementation on a particular processing element P;.

boolean is_root()
begin
X := (root element of H)
if P; € d(X) then
return z;.is-root()
else
return false
end
end

Fig. 3. Implementing is-root() on processing element F;.

Now, consider implementing the parent() operation. The idea of the imple-
mentation is to take the “smallest” level algorithm instance (with respect to
H) and return the parent pointer of that instance. Note that “smallest” is not
always well-defined since < is a partial order. In case there are two incompa-
rable algorithm instances running on the same processing element, we use the
assumed alphabetical order between instance names as a tie breaker. Along this
line of reasoning, we now define a total order on the set of algorithm instances.

Definition 4. Given a set I of algorithm instances and a structure H = (I, ).
Let < denote the reflexive, transitive closure of <. Define the relation < over
I x I as follows: X <Y holds iff one of the following two cases is true:

1. either X XY,
2. orif - X <Y and °Y <X X, then X is “alphabetically smaller” than'Y .

Using <, we can implement parent() as shown in Fig. 4. We note that it is
also possible to implement parent() by choosing the largest algorithm instance
instead of the smallest (with respect to <) without compromising the correctness
of our approach. If the largest instance is preferred, then the parent pointers of
lower level algorithm instances dominate those of higher level instances and
lower level structures are maintained in the combined tree rather than higher
level structures. This might be preferable in some situations because it preserves
a form of locality. If higher level pointers are preferred, then the three will
generally be “less tall”, i.e., the average distance to the root will be shorter.



Neighbors parent()

begin
X := (smallest algorithm instance with respect to < running on P;)
return z;.parent()

end

Fig. 4. Implementing parent() on processing element P;.

3.4 Examples

Fig. 5 shows an example system with a connected and consistent structure. The
possible roots of the algorithm instances are also given in the figure. The overall
spanning tree which is eventually constructed and emulated by our algorithm
results from “overlaying” the individual spanning trees constructed within the
algorithm instances.

r(A) = {P}
r(B) = {2}
r(C) = {Ps, Pu}
AN
A C

Fig. 5. Example system with a connected and consistent structure together with the
possible roots of the algorithm instances.

For example, algorithm instances A and B could be running with any (semi-
uniform) self-stabilizing spanning tree algorithm which has P, pre-configured
as the root. Instance C' could be running an algorithm whose root eventually
is the processing element with highest identifier. In this case, P; may have the
highest identifier and Py the second highest. This makes sense if one of the two
processes may crash. If P3 crashes, the spanning tree constructed by instance
C will stabilize to P, as root. Without a crash, the root will be P;. The trees
computed by the three algorithm instances are shown on the left side of Fig. 6.
The “overlay” spanning tree computed by our combined algorithm is depicted
on the right side of Fig. 6. Note that at processing element P, there are two
parent pointers available (one in algorithm instance B and one in C). In such
cases, the pointer of the “smaller” instance with respect to < is chosen (i.e., B).

Fig. 7 (left) shows another example with nine processing elements and four
algorithm instances with their local spanning trees. Instance B forms the “back-
bone” of the network and is the top level instance. The resulting global spanning
tree is depicted on the right side of Fig. 7. Note that the parent pointer of P;



Fig. 6. Global spanning tree resulting from the example in Fig. 5: partial trees (left)
and global tree (right).

in the global tree is the parent pointer from instance B and hence points to Ps
(and not the pointer of instance C' because it ranks less according to <).

Fig. 7. Example with a “backbone” algorithm instance B and three “subnetwork”
instances A, C, D (left) and resulting tree (right).

3.5 Correctness of the Transformed Algorithm

We now argue that the implementation of the spanning-tree operations given
above in fact results in a self-stabilizing spanning-tree algorithm for the entire
network provided the underlying algorithm instances are self-stabilizing and the
structure is connected and consistent.

Assuming the underlying spanning-tree algorithm instances have all stabi-
lized, we now give a mathematical definition of the ordering which is emulated
by the implementation sketched above and show that it is in fact a rooted span-
ning tree.

Lemma 1. Given a system S = (II,1,d,r) and a connected and consistent
structure H = (I,«<). If all algorithm instances X € I have stabilized to rooted

spanning trees Tx = (d(X),é), then the implementation given in Sect. 3.3
emulates the following rooted global spanning tree T = (II,«—):

P—Pj&3Xel: [P, PcdX)AP,&EPANY €I: X <Y]]

Proof. Basically, H determines the basic skeleton of T'. The individual spanning
trees of the algorithm instances yield the substructures of 7. The property of



consistency guarantees that the T is in fact a tree. The fact, that S is a system
implies that every processing element is part of some instance in H. This together
with the property of connectedness implies that every node is part of T'.

It remains to be shown that the overall algorithm stabilizes, given that the
underlying algorithm instances stabilize.

Lemma 2. Given a system S = (II,1,d,r). Starting from an arbitrary initial
state, if all algorithm instances X € I stabilize to a rooted spanning tree, then
the overall algorithm will eventually stabilize to a rooted spanning tree.

Proof. Since all algorithm instances do not interfere with each other, each al-
gorithm instance will stabilize independently. Take the time ¢ as the maximum
stabilization time of any X € I. After ¢, the overall algorithm will return a
rooted spanning tree according to Lemma 1.

Theorem 1. Given a system S = (II,I,d,r) and a connected and consistent
structure H = (I,«). If all algorithm instances X € I run self-stabilizing span-
ning tree algorithms, then the implementation given in Sect. 3.8 emulates a global
self-stabilizing spanning tree.

3.6 Analysis

The composed algorithm has two main advantages. The first advantage is im-
proved stabilization time. Consider the case where all algorithm instances employ
a time-optimal self-stabilizing spanning tree algorithm (such as the one by Dolev,
Israeli and Moran [7]). This algorithm stabilizes in O(d) rounds where 4 is the
diameter of the network on which the algorithm runs. The point to note is that
all algorithm instances run in parallel and that the diameters of the subnetworks
in which the algorithm instances run can be considerably smaller than the overall
diameter §. Let d1,.. ., denote the diameters of the algorithm instances. Then
the proof of Lemma 2 shows that the stabilization time is O(maxj<;<j ;). Note
that this improvement is a result from the unique way in which self-stabilizing
algorithms may be composed in parallel.

Consider a symmetric hierarchical decomposition of the network into sub-
networks of equal size and a three level hierarchy as depicted in Fig. 8. The
number of nodes in the network is 3% = 27 and the network diameter is § = 5.
But the overall algorithm will stabilize in steps proportional to the diameter of
the largest instance network, which is 1. In general, an optimal decomposition
into algorithm instances using such a hierarchic decomposition can improve the
stabilization time in logarithmic scale. Decomposing n nodes into k levels yields
a stabilization time in the order of log;, n. Of course, this is not always feasible
because it depends on the network topology, but at least sub-optimal results
are achievable in practice since real networks like the Internet are often hierar-
chic and the diameter of the largest subnetwork is much smaller than the total
diameter.



Fig. 8. Hierarchical decomposition of 27 nodes in a three layer hierarchy. The top layer
consists of algorithm instance A, the middle layer of B, C' and D, and the bottom layer
of E,F,G (below B), H,I,J (below C) and K, L, M (below D).

The example shows that there are two extreme cases of the structure H =
(I, ). The one case arises when I consists of just a single algorithm instance. In
this case, adding structure does not have any benefit at all. The other case arises
when I contains exactly one algorithm instance for every pair of neighboring
nodes in H. In this case, the spanning tree is directly determined by H.

The second advantage of the composed algorithm is fault-containment. By
adding the fixed structure, faults can only lead to perturbations within the al-
gorithm instances in which they happen. This is in contrast to the case where
a standard spanning-tree algorithm runs in the entire network: a single fault
(e.g., of the root) can lead to a global reconfiguration. However, the level of
fault-containment again depends on the distribution of algorithm instances to
processing elements: if one processing element participates in all algorithm in-
stances then a failure of this node may also cause global disruption.

4 Discussion

Many protocols running in the Internet like DNS or NTP sacrifice true distribu-
tion to gain efficiency, but still work rather robustly in practice. Their robustness
stems from their ability to adapt their internal structures to the hierarchical and
heterogeneous structure of the Internet. One particularly instructive example is
the area of routing protocols.

When the Internet was a small network, routers used a truly distributed
protocol to update their routing tables. Every router periodically broadcasted
information to all other routers in the system and incorporated the received
data into its own table (this was called link-state routing [12]). When the In-
ternet evolved as an increasing collection of independent subnetworks (called
autonomous systems) using a set of routers connected by high bandwidth com-
munication links (the backbone), link-state routing was considered to be too



inefficient for the entire network. The hierarchical nature of the Internet is ex-
ploited through modern routing protocols: within autonomous systems modern
link-state routing strategies like OSPF [12] are applied (interior gateway rout-
ing). These are different from those running on the backbone (exterior gateway
routing, e.g., BGP [14]).

Today, the standard approach to realize local area subnetworks, is to use
switched Ethernets. In this case, it is also possible to increase the robustness by
allowing for path redundancy between switches. In general, loops in the network
topology of an Ethernet may cause data duplication and other forms of confu-
sion. However, modern switches incorporate an adaptive spanning tree protocol
to establish a unique path between all switches [3]. If a network segment becomes
unreachable or network parameters are changed, the protocol automatically re-
configures the spanning-tree topology by activating a standby path.

The spanning-tree protocol employed in switches has striking similarities
to some of the protocols described in Sect. 2. Initially, switches believe they
are the root of the spanning tree but do not forward any frames. Governed by
a timer, they regularly exchange status information. These messages contain
(1) the identifier of the transmitting switch (usually a MAC address), (2) the
identifier of the switch which is believed to be the root of the tree, and (3) the
“cost” of the path towards the root. Using this information, a switch chooses the
“shortest” path towards the root. If there are multiple possible roots, it selects
the root with the smallest identifier (lowest MAC address). Links which are not
included in the spanning tree are placed in blocking mode. Blocking links do not
forward data frames but still transport status information.

The presentation above shows that the Internet maintains a set of protocols
in a hierarchy to increase efficiency. Routing protocols contain spanning-tree
construction, and so the hierarchical deployment is very similar to the approach
sketched in Sect. 3. Algorithm instances can be replaced by self-stabilizing ver-
sions, so—apart from increasing efficiency—the hierarchical approach makes a
transparent migration towards a wider deployment of self-stabilizing algorithms
feasible.

5 Conclusions

We have presented a method to construct self-stabilizing algorithms with su-
perior stabilization time and fault-containment properties from given solutions.
The price we pay is sacrificing true distribution. We have argued that this is not
a high price to pay in practice since real networks are not homogeneous. The
only problem is to find flexible methods to map logical algorithm structures to
physical network structures. We claim that our approach is one solution to this
problem and hence may help to make self-stabilizing algorithms more practical.

The approach is general because it is applicable in almost the same way to
many other important problems including the problem of self-stabilizing leader
election and mutual exclusion. However, determining how to map the logical



structures of these algorithms to existing network structures is a non-trivial
design task and needs to be investigated further.

References

1.

10.
11.
12.
13.

14.

Y. Afek, S. Kutten, and M. Yung. Memory-efficient self stabilizing protocols for
general networks. In J. van Leeuwen and N. Santoro, editors, Distributed Al-
gorithms, 4th International Workshop, volume 486 of LNCS, pages 1528, Bari,
Ttaly, 24-26 Sept. 1990. Springer, 1991.

. J. E. Burns, M. G. Gouda, and R. E. Miller. Stabilization and pseudo-stabilization.

Distributed Computing, 7:35-42, 1993.

Cisco Systems Inc. Using VlanDirector system documentation. Inter-
net: http://www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/sw_ntman/
cwsimain/cwsi2/cwsiug2/vlan2/index.htm, 1998.

E. W. Dijkstra. Self stabilizing systems in spite of distributed control. Comm. of
the ACM, 17(11):643-644, 1974.

S. Dolev. Self-Stabilization. MIT Press, 2000.

S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming
only read/write atomicity. In C. Dwork, editor, Proceedings of the 9th Annual
ACM Symp. on Principles of Distribted Computing, pages 103—118, Québec City,
Québec, Canada, Aug. 1990. ACM Press.

S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming
only read/write atomicity. Distributed Computing, 7:3-16, 1993.

L. Fiege, M. Mezini, G. Miihl, and A. P. Buchmann. Engineering event-based
systems with scopes. In B. Magnusson, editor, Proc. Furopean Conference on
Object-Oriented Programming (ECOOP), volume 2374 of LNCS, pages 309-333,
Malaga, Spain, June 2002. Springer.

C. Génolini and S. Tixeuil. A lower bound on dynamic k-stabilization in asyn-
chronous systems. In Proc. 21st Symposium on Reliable Distributed Systems (SRDS
2002), IEEE Computer Society Press, pages 211-221, 2002.

D. E. Knuth. The Art of Computer Programming, volume III (Sorting and Search-
ing). Addison-Wesley, Reading, MA, second edition, 1997.

M. Maekawa. A /N algorithm for mutual exclusion in decentralized systems.
ACM Trans. on Computer Systems, 3(2):145-159, 1985.

J. Moy. OSPF version 2. Internet: RFC 1583, Mar. 1994.

H. Pagnia and O. Theel. Sacrificing true distribution for gaining access efficiency of
replicated objects. In Proc. 31st IEEE Hawaii Intl. Conference on System Sciences
(HICSS-31), Big Island, HI, USA, 1998.

Y. Rekhter. A border gateway protocol 4 (BGP-4). Internet: RFC 1771, Mar.
1995.



