
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Improving genetic algorithms' efficiency using intelligent fitness functionsImproving genetic algorithms' efficiency using intelligent fitness functions

PLEASE CITE THE PUBLISHED VERSION

http://dx.doi.org/10.1007/3-540-45034-3_64

PUBLISHER

© Springer-Verlag Berlin Heidelberg

VERSION

AM (Accepted Manuscript)

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Cooper, Jason, and Chris J. Hinde. 2019. “Improving Genetic Algorithms' Efficiency Using Intelligent Fitness
Functions”. figshare. https://hdl.handle.net/2134/12885.

https://lboro.figshare.com/
http://dx.doi.org/10.1007/3-540-45034-3_64

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Improving the Efficiency of Genetic Algorithms
Using Intelligent Fitness Functions

Jason Cooper and Chris Hinde

Department of Computer Science
Loughborough University

Loughborough
LE11 3TU

UK
j.l.cooper@lboro.ac.uk

c.j.hinde@lboro.ac.uk

Abstract. Genetic Algorithms are an effective way to solve optimisa-
tion problems. If the fitness test takes a long time to perform then the
Genetic Algorithm may take a long time to execute. Using conventional
fitness functions Approximately a third of the time may be spent testing
individuals that have already been tested. Intelligent Fitness Functions
can be applied to improve the efficiency of the Genetic Algorithm by
reducing repeated tests. Three types of Intelligent Fitness Functions are
introduced and compared against a standard fitness function The Intel-
ligent Fitness Functions are shown to be more efficient.

Keywords : Genetic Algorithms

1 Introduction

Genetic Algorithms (ga) [5] are based on Darwin’s theory of evolution [2]. They
were invented in the 1950s, some of the early papers being by Fraser [3, 4] and
Bremermann [1]. Later on work by Holland[6–9] popularised genetic algorithms
and Holland’s work is often cited as the origins of Genetic Algorithms. A ga
consists of a population of individuals, each individual represents a possible set
of parameters for the algorithm. Each individual is tested and assigned a level of
fitness depending on how well they solve the problem. The fitness levels are then
used to decide which individuals should be used to produce the next generation.
The better the fitness of an individual the more likely they are to produce the
next population.

The next generation is produced using two genetic operators after selecting
the parents. Parents are selected based on their fitness level. The higher their
fitness the more likely they are to be chosen as parents. The first operator is
crossover where two individuals swap part of their genes. The second is mutation
where an part of an individuals genes are changed. The combination of these
operators with parent selection and a fitness function enables the ga to evolve
better solutions.

2 Need for efficiency

In a ga the majority of the time maybe spent fitness testing the individuals. If
a fitness test for an individual takes 1 minute to run then a fitness test of 6000
individuals will take approximately 4 days and 4 hours.

One method which may increase the number of generations that are produced
is to reduce the population size. Slow fitness functions associated with small
population sizes can lead to problems with premature convergence and lack in
diversity of the population.

A test of 6000 individuals does not mean that 6000 locations in the search
space have been examined. Individuals with the same genomes keep appearing.
The graph shown in figure 2 shows how many fitness test have been performed
against how many unique tests have been performed (how much of the search
space has been searched). The graph shown in figure 2 is the results of running
a ga on the test problem and the parameters described in section 4.

The graph in figure 2 shows that on hard problems it is easy for a ga to spend
a third of its time fitness testing individuals it has already tested before. This is
not an obvious result considering that in the example the size of the search space
is 240 so the chances of randomly duplicating an individual are very small. The
reason that there are so many duplicates produced in the ga is because they are
not randomly created each time. The next generation is based on the previous
generation which was based on the one before. It is this fact that directs the
search of the ga but it is also this that causes individuals to appear multiple
times.

The graph in figure 2 shows that if the fitness test takes 1 minute to test an
individual then the ga would have wasted approximately one and a half days.
In the case of a fitness test that was evolving transmission strategies for sending
data over a network a simple fitness test could take a week or more. The ga
would have wasted over 38 years of time. To make the ga more efficient it needs
to reduce the number of fitness tests it is repeating.

If a fitness test takes a long time to run it may be possible to use an approx-
imation for the fitness test which will take less time to test an individual but
not give accurate results. A survey of approximations was produced by Yaochu
Jin [10]. Rasheed, Ni and Vattam [11] have used approximations to speed up
the run time of ga’s. Unfortunately there are problems that have no known
approximations that might be used; real world network transmissions is just one
of them.

3 Intelligent Fitness Functions Concept

The standard fitness function in a ga takes an individual as the parameters for
an algorithm and evaluates the result. The better the result the better the fit-
ness. Intelligent fitness functions have memory; they can calculate an individuals
fitness based on the information stored from previous evaluations. There are two
types of memory that an intelligent fitness function can use :

– Short Term Memory
– Long Term Memory

The short term memory is cleared at the start of each new generation and so
can only store information about the current generation. The long term memory
never gets cleared, but is not able to store every piece of information about
previous generations. The fitness function needs to decide what to keep and
what to overwrite as it has a limited memory.

An example of the use of short term memory is to check whether an individual
is a duplicate of one encountered earlier in the current generation. If it is it
returns a low fitness level to stop premature convergence and to increase the
diversity of the population.

An example of long term memory to store copies of the best few individuals
so far with their fitness. Then when it is asked to fitness test an individual it
checks to see if it has tested it before and if it has it simply returns the fitness
level it had last time it tested it. This will reduce the number of tests that are
performed multiple times by the ga.

4 Test Problem

The problem that is used to test the intelligent fitness functions is one that has
been designed as hard for a ga to solve. An individuals is mapped into and
array, i, which consists of “dim” eight bit integers. The array is then used to
calculate the distance from a point C, coordinates ck, using equation 1. The
result of equation 1 is then used in equation 2 to calculate a fitness value for the
individual.

dist =

√√√√dim∑
k=1

(ik − ck)2 (1)

Fitness = cos
(

2 ∗ π ∗ dist

rad
∗ amp ∗

(
2−

dist
ahl

)
+ height ∗

(
2−

dist
hhl

))
(2)

The default values used for the tests were the following
dim = Number of Dimensions = 5
rad = radius = 50
height = 10.0
amp = amplitude = 5
hhl = height half life = 200
ahl = amplitude half life = 200

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000

R
es

ul
t

Distance

Hard Test Problem

Fig. 1. A graph of the hard test problem with one dimension

5 The Fitness Functions

5.1 Standard Fitness Function

The standard fitness function is a normal ga’s fitness function that calculates
the fitness of each individual in the current generation.

5.2 Intelligent Fitness Function

Three intelligent fitness functions were tested. One had a short term memory
which was used to discover if the current individual being tested has already
been tested in this generation. If it has then the individual was given a fitness
value of 0.

One had a long term memory which was used to discover if it had a record of
testing the individual in a previous generation. If the individual has been tested
before then the fitness value in memory for that individual is used. If there is no
record found then it tests the individual and if it does well enough it stores it in
the long term memory for later reference.

The final intelligent fitness function had both a long term memory and a
short term memory. The short term memory had precedence over the long term
memory.

6 Result

All the standard fitness function and the intelligent fitness function reached the
same level of fitness at the same number of generations.

On graphs in figures 2 to 11 the closer the two lines the more efficient the ga.
The graph shown in figure 2 shows the efficiency of the standard fitness function.
The graph shown in figure 3 shows the efficiency of the Intelligent fitness function
with short term memory. The graph shown in figures 4, 6, 8 and 10 shows the
efficiency of the intelligent fitness function with long term memory of sizes 100,
500, 1000 and 2000 individuals. The graph shown in figures 5, 7, 9 and 11 shows
the efficiency of the intelligent fitness function with short term memory and long
term memory of sizes 100, 500, 1000 and 2000 individuals.

The graph in figure 2 shows that approximately one third of tests carried out
by a standard fitness function fitness have already been carried out previously
by it.

The graph in figure 3 shows that an intelligent fitness function with short
term memory can evolve more generations in the same number of fitness tests
as a standard fitness function.

Figure 4 shows that a small long term memory enables the ga to evolve for
a more generations than a standard fitness function over the same number of
fitness tests performed.

The graph in figure 5 shows that an intelligent fitness function with a short
term memory and a small long term memory is almost the same as one with just
a short term memory.

The graphs in figures 6, 8 and 10 shows that as the size of the long term
memory is increased the efficiency of the ga is also increased.

The graphs in figures 7, 9 and 11 shows that as the size of the long term
memory is increased in an intelligent fitness function, with long term memory
and short term memory, then the efficiency of the ga increases better than in
an intelligent fitness function with just long term memory.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000

N
um

be
r

of
 te

st
s

Generation

StandardFitness Function
Actual Solution Space Searched

Fig. 2. Fitness tests performed and solution space searched when run over 10000 gen-
erations, with a population size of 6, a genome length of 40

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000

N
um

be
r

of
 te

st
s

Generation

Intelligent Fitness Function with Short Term Memory
Actual Solution Space Searched

Fig. 3. Fitness tests performed and solution space searched when run over 10000 gen-
erations, with a population size of 6, a genome length of 40 with a short term memory

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000

N
um

be
r

of
 te

st
s

Generation

Intelligent Fitness Function with Long Term Memory
Actual Solution Space Searched

Fig. 4. Fitness tests performed and solution space searched when run over 10000 gen-
erations, with a population size of 6, a genome length of 40 with a long term memory
of 100 individuals

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000

N
um

be
r

of
 te

st
s

Generation

Intelligent Fitness Function with Both Short Term and Long Term Memory
Actual Solution Space Searched

Fig. 5. Fitness tests performed and solution space searched when run over 10000 gen-
erations, with a population size of 6, a genome length of 40 with a short term memory
and a long term memory of 100 individuals

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000

N
um

be
r

of
 te

st
s

Generation

Intelligent Fitness Function with Long Term Memory
Actual Solution Space Searched

Fig. 6. Fitness tests performed and solution space searched when run over 10000 gen-
erations, with a population size of 6, a genome length of 40 with a long term memory
of 500 individuals

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000

N
um

be
r

of
 te

st
s

Generation

Intelligent Fitness Function with Both Short Term and Long Term Memory
Actual Solution Space Searched

Fig. 7. Fitness tests performed and solution space searched when run over 10000 gen-
erations, with a population size of 6, a genome length of 40 with a short term memory
and a long term memory of 500 individuals

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000

N
um

be
r

of
 te

st
s

Generation

Intelligent Fitness Function with Long Term Memory
Actual Solution Space Searched

Fig. 8. Fitness tests performed and solution space searched when run over 10000 gen-
erations, with a population size of 6, a genome length of 40 with a long term memory
of 1000 individuals

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000

N
um

be
r

of
 te

st
s

Generation

Intelligent Fitness Function with Both Short Term and Long Term Memory
Actual Solution Space Searched

Fig. 9. Fitness tests performed and solution space searched when run over 10000 gen-
erations, with a population size of 6, a genome length of 40 with a short term memory
and a long term memory of 1000 individuals

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000

N
um

be
r

of
 te

st
s

Generation

Intelligent Fitness Function with Long Term Memory
Actual Solution Space Searched

Fig. 10. Fitness tests performed and solution space searched when run over 10000
generations, with a population size of 6, a genome length of 40 with a long term
memory of 2000 individuals

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000

N
um

be
r

of
 te

st
s

Generation

Intelligent Fitness Function with Both Short Term and Long Term Memory
Actual Solution Space Searched

Fig. 11. Fitness tests performed and solution space searched when run over 10000
generations, with a population size of 6, a genome length of 40 with a short term
memory and a long term memory of 2000 individuals

7 Conclusion

When using a ga which has a fitness function which takes a long length of
time to run the ga’s efficiency can be improved by the use of intelligent fitness
functions. The use of a short term memory on its own in an intelligent fitness
function makes a small difference to a ga’s efficiency. The effect on a ga by an
intelligent fitness function with long term memory increases as the size of the
long term memory increases. When an intelligent fitness function has both long
term memory and short term memory then the efficiency of the ga is increased
more than using either of the memories on their own.

Acknowledgements

The authors of this paper would like to acknowledge the support of Nortel Net-
works, both financially and intellectually.

References

1. Bremermann H.J. (1962). Optimization through evolution and recombination. in
[12]. pp. 93-106.

2. Darwin, C. The Origin Of Species. Oxford University Press, Walton Street, Oxford.
OX2 6DP, UK. Based on: On The Origin Of Species by Means of Natural Selection, or
the Preservation of Favoured Races in the Struggle for Life. Second Edition, London
1859. First Published 24 Nov 1859.

3. Fraser A.S. (1957a). Simulation of Genetic Systems by Automatic Digital Computers
1, Introduction. Australian J. of Biol.Sci., Vol. 10, pp. 484-491.

4. Fraser A.S. (1957b). Simulation of Genetic Systems by Automatic Digital Com-
puters 2, Effects of Linkage on Rate of Advance under Selection. Australian J. of
Biol.Sci., Vol. 10, pp. 492-499.

5. Goldberg D.E., 1989, Genetic Algorithms in Search, Optimization, and Machine
Learning. ISBN 0-201-15767-5.

6. Holland, J. H. Adaption in Natural and Artificial Systems. A Bradford Book, The
MIT Press. ISBN 0-262-08213-6.

7. Holland J.H. (1973). Genetic Algorithms and the Optimal Allocation of Trials. In
SIAM Journal on Computing, 2(2):88-105, June.

8. Holland J.H. (1975). Adaption in Natural and Artificial Systems. MIT Press.
9. Holland J.H. (1992). Adaption in Natural and Artificial Systems. MIT Press, Second

Edition.
10. Yaochu Jin. Fitness Approximation in Evolutionary Computation - A Survey. Ap-

proximation and Learning In Evolutionary Computation Workshop, GECCO 2002.
Pg 3 – 4.

11. Khaled Rasheed, Xiao Ni, Swaroop Vattam. Comparison of Methods for Using
Reduced Models to Speed Up Design Optimization. Approximation and Learning In
Evolutionary Computation Workshop, GECCO 2002. Pg 17 – 20.

12. Yovits M.C., Jacobi G.T. & Goldstein G.D. (1962). Self Organizing Systems. Spar-
tan Books, Washington D.C.

