
Lecture Notes in Computer Science 1826
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Walter Cazzola Robert J. Stroud
Francesco Tisato (Eds.)

Reflection
and Software Engineering

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Walter Cazzola
Università degli Studi di Milano Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
and
Università di Genova - DISI
Via Dodecaneso 35, 16146 Genova, Italy
E-mail: cazzola@disi.unige.it

Robert J. Stroud
University of Newcastle upon Tyne, Department of Computer Science
Newcastle upon Tyne NE1 7RU, UK
E-mail: R.J.Stroud@ncl.ac.uk

Francesco Tisato
Università degli Studi di Milano Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
E-mail: tisato@disco.unimib.it

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Reflection and software engineering / Walter Cazzola. . . (ed.). -
Berlin ; Heidelberg ; NewYork ; Barcelona ; Hong Kong ; London ;
Milan ; Paris ; Singapore ; Tokyo : Springer, 2000
(Lecture notes in computer science ; Vol. 1826)
ISBN 3-540-67761-5

CR Subject Classification (1998): D.2, D.1.5, F.3, D.3

ISSN 0302-9743
ISBN 3-540-67761-5 Springer-Verlag Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a company in the BertelsmannSpringer publishing group.
© Springer-Verlag Berlin Heidelberg 2000
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Stefan Sossna
Printed on acid-free paper SPIN: 10721153 06/3142 5 4 3 2 1 0

Preface

This volume represents a first attempt to bring together ideas from two previ-
ously unrelated research areas, namely Software Engineering and Computational
Reflection, and to evaluate the benefits that each can bring to the other.

Computational reflection, or for short reflection, is quite a young discipline
that is steadily attracting attention within the community of object-oriented
researchers and practitioners. The properties of transparency, separation of con-
cerns, and extensibility supported by reflection have largely been accepted as
useful for software development and design. Reflective features have been in-
cluded in successful software development technologies such as the JavaTM lan-
guage. Reflection has proved to be useful in some of the most challenging areas
of software engineering, including component-based software development, as
demonstrated by extensive use of the reflective concept of introspection in the
Enterprise JavaBeansTM component technology. Nevertheless, there are still cog-
nitive barriers separating reflection from the discipline of software engineering,
and, more specifically, object-oriented reflection from object-oriented software
engineering. Only a few authors have begun to explore the opportunities offered
by the inter-disciplinary application of concepts from reflection and software en-
gineering, that is, from the novel research area of reflective software engineering.

It is our belief that current trends in ongoing research in object-oriented
reflection and software engineering clearly indicate that an inter-disciplinary ap-
proach would be of utmost relevance for both. The overall goal of this volume
is to support the circulation of ideas between these disciplines. Several interac-
tions can be expected to take place between software engineering and object-
oriented reflection, some of which we cannot even foresee. Both the application
of reflective techniques and concepts to software engineering and, vice versa,
the application to object-oriented reflection of software engineering techniques,
methodologies, and concepts, are likely to support improvement and deeper un-
derstanding of these areas.

Software engineering may benefit from a cross-fertilization with object-orient-
ed reflection in several ways. Reflective features such as transparency, separa-
tion of concerns, and extensibility are likely to be of increasing relevance in
the modern software engineering scenario, where the trend is towards systems
that exhibit sophisticated functional and non-functional requirements; that are
built from independently developed and evolved COTS components; that sup-
port plug-and-play, end-user directed reconfigurability; that make extensive use
of networking and internetworking; that can be automatically upgraded through
the Internet; that are open; and so on. Several of these issues highlight the need
for a system to manage itself to some extent, to inspect components’ interfaces
dynamically, to augment its application-specific functionality with additional
properties, and so on. From a pragmatic point of view, several object-oriented
reflection techniques and technologies lend themselves to be employed in ad-

VI Preface

dressing these issues. On a more conceptual level, several key object-oriented
reflection principles could play an interesting role as general software design
principles. Even more fundamentally, object-oriented reflection may provide a
cleaner conceptual framework than that underlying the rather ‘ad-hoc’ solutions
embedded in most commercial platforms and technologies, including component-
based software development technologies, system management technologies, and
so on. The transparent nature of reflection makes it well suited to address prob-
lems such as evolution of legacy systems, customizable software, product families,
and more. The scope of application of object-oriented reflection concepts in soft-
ware engineering conceptually spans activities related to all the phases of the
software life-cycle, from analysis and architectural design to development, reuse,
maintenance, and evolution.

The reverse also holds. In the last two decades, object-oriented reflection
has generated a rich offspring in terms of reflective programming languages and
reflective systems. The background of most researchers in the field is in disci-
plines that were traditionally insulated from software engineering (e.g., artificial
intelligence). It is thus likely that several applications of software design and
development concepts, principles, techniques, and methodologies from software
engineering to object-oriented reflection are still to be clearly detected and in-
vestigated.

It should be highlighted that the purpose of supporting a dialogue among
software engineering and object-oriented reflection researchers and practitioners
is more than simply stimulating a (useful) cross-discipline application of estab-
lished results. We believe that both disciplines have reached a point where each
needs concepts from the other in order to achieve significant improvements in
several areas.

During OOPSLA’99, the editors of this volume organized and held a workshop
(OORaSE’99 - 1st OOPSLA Workshop on Reflection and Software Engineering)
with the aim of focusing interest on this emerging area and providing a meeting-
point for researchers working on ideas straddling the research topics. The event
proved a success both for the interest aroused and for the quality of the con-
tributions presented. This volume is a natural follow-up to the workshop. It
contains the best contributions presented at the workshop, improved both by
the exchange of opinions that the authors had with the others attendees, and
by the advice given to them by the reviewers of the volume. The volume also
contains some contributions from experts in this field of research.

Preface VII

We would like to thank all the researchers who submitted papers to our
workshop, both for their interest in our proposal and for their efforts in the
emerging area of reflection and software engineering. We would also like to thank
the members of our program committee:

Shigeru Chiba, University of Tsukuba, Japan
Stéphane Ducasse, University of Geneva, Switzerland
Serge Demeyer, University of Berne, Switzerland

University of Antwerp, Belgium
John Lamping, Xerox Parc, USA
Satoshi Matsuoka, Tokyo Institute of Technology, Japan
Dave Thomas, Founder OTI Inc. and President, Bedarra Corp., Canada

and the external reviewers:

Franz Achermann University of Geneva, Switzerland
Massimo Ancona University of Genoa, Italy
Gregor Kiczales Xerox Parc, USA
Cristina Videira Lopes Xerox Parc, USA

who helped us in judging and selecting the submitted works for presentation at
the workshop and then helped to improve the best papers in order for them to
be published in this book. We would also like to thank the invited authors who
accepted our invitation to contribute to this volume, and last but not least the
Department of Informatics, Systems and Communication of the University of
Milano Bicocca for its financial support.

April W. Cazzola, R. J. Stroud, and F. Tisato

Contents

Reflection and Software Engineering Foundations

Shifting Up Reflection from the Implementation to the Analysis
Level . 1

Walter Cazzola, Andrea Sosio, and Francesco Tisato
(DISCo - University of Milano Bicocca, Italy).

Towards a True Reflective Modeling Scheme . 21
Jean Bézivin (LRSG, University of Nantes, France), and Richard Lemesle
(Société Soft-Maint, France).

Reflective Software Adaptability and Evolution

Declarable Modifiers: A Proposal to Increase the Efficacy of
Metaclasses (Invited Contribution) . 39

Ira R. Forman (IBM Austin, TX).

Managing Evolution Using Cooperative Designs and a Reflective
Architecture . 59

Emiliano Tramontana (Department of Computing Science,
University of Newcastle upon Tyne, UK).

Reflective Middleware

The Role of Reflective Middleware in Supporting the
Engineering of Dynamic Applications . 79

Fábio M. Costa, Hector A. Duran, Nikos Parlavantzas, Katia B. Saikoski,
Gordon Blair, and Geoff Coulson (Distributed Multimedia Research
Group, Department of Computing, Lancaster University, Lancaster,
UK).

Active Network Service Management Based on Meta-level
Architectures . 99

Alex Villazón and Jarle Hulaas (CUI, University of Geneva,
Switzerland).

X Contents

Engineering Java-Based Reflective Languages

OpenJava: A Class-Based Macro System for Java
(Invited Contribution) . 117

Michiaki Tatsubori, Shigeru Chiba, Kozo Itano (University of Tsukuba,
Japan), and Marc-Olivier Killijian (LAAS-CNRS, France).

OpenJIT Frontend System: An Implementation of the Reflective
JIT Compiler Frontend (Invited Contribution) . 135

Hirotaka Ogawa, Satoshi Matsuoka, Fuyuhiko Maruyama,
Yukihiko Sohda (Tokyo Institute of Technology, Japan), Kouya Shimura,
and Yasunori Kimura (Fujitsu Laboratories Limited, Japan).

Kava - A Reflective Java Based on Bytecode Rewriting
(Invited Contribution) . 155

Ian Welch and Robert J. Stroud (University of Newcastle upon Tyne,
UK).

Dynamic Reconfiguration through Reflection

Using Reflection to Support Dynamic Adaptation of System
Software: A Case Study Driven Evaluation . 169

Jim Dowling, Tilman Schäfer, Vinny Cahill, Peter Haraszti, and
Barry Redmond (Department of Computer Science, Trinity College
Dublin, Ireland).

On the Integration of Configuration and Meta-level
Programming Approaches . 189

Orlando Loques, Julius Leite, Marcelo Lobosco (Instituto de Computação,
Universidade Federal Fluminense, Niterói, RJ, Brazil), and
Alexandre Sztajnberg (Instituto de Matemática e Estat́ıstica/UERJ,
RJ, Brazil).

Carp@ – A Reflection Based Tool for Observing Jini Services 209
Michael Fahrmair, Chris Salzmann and Maurice Schoenmakers
(Technische Universität München, Germany).

Author Index . 229

	Reflection and Software Engineering
	Preface
	Contents

