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smolinski1@llnl.gov

Abstract
The 0-1 multiple knapsack problem appears in many domains from financial portfolio management to cargo ship
stowing. Methods for solving it range from approximate algorithms, such as greedy algorithms, to exact algorithms,
such as branch and bound. Approximate algorithms have no bounds on how poorly they perform and exact algorithms
can suffer from exponential time and space complexities with large data sets. This paper introduces a market model
based on agent decomposition and market auctions for approximating the 0-1 multiple knapsack problem, and an
algorithm that implements the model (M(x)). M(x) traverses the solution space rather than getting caught in a local
maximum, overcoming an inherent problem of many greedy algorithms. The use of agents ensures that infeasible
solutions are not considered while traversing the solution space and that traversal of the solution space is not just
random, but is also directed. M(x) is compared to a bound and bound algorithm (BB) and a simple greedy algorithm
with a random shuffle (G(x)). The results suggest that M(x) is a good algorithm for approximating the 0-1 Multiple
Knapsack problem. M(x) almost always found solutions that were close to optimal in a fraction of the time it took BB
to run and with much less memory on large test data sets. M(x) usually performed better than G(x) on hard problems
with correlated data.

Keywords: Market Algorithm, Autonomous Agents, Agent Decomposition,Market Negotiation, Knapsack Problem, Heuristic.

1. Introduction     

The 0-1 multiple knapsack problem is a generalization of
the 0-1 Knapsack problem arising whenm containers (or
knapsacks), of given capacitiesci (i = 1, … , m) are
available, along withn items, of which each item has a
valuevj and sizesj > 0 (j = 1, … , n). Thesem knapsacks
are to be filled with some or all of then items such that
each item is placed in at most one knapsack, all items
placed in a particular knapsack fit in that knapsack, and the
total value of all items placed in all of the knapsacks is
maximized. A precise definition of the 0-1 multiple-
knapsack, as stated in (Martello and Toth 1990), is:

maximize ��
= =

m

i

n

j1 1

vjxij

subject to �
=

n

j 1

sjxij ≤ ci , i ∈ M = {1, …, m}

�
=

m

i 1

xij ≤ 1 j ∈ N = {1, …, n}

xij = 0 or 1, i ∈ M , j ∈ N
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where xij = 1 if item j is assigned to knapsack i; 0
otherwise. The 0-1 multiple knapsack problem is NP-hard
in the strong sense.

Multiple knapsack problems appear in such domains
as financial portfolio management and naval ship stowing.
For example, the CAD Research Center1 has developed a
software program, ICODES (Pohl et al. 1997), to aid Naval
and Marine stow planners with stowing cargo items onto
ships. A ship hasm stow areas (knapsacks) each with
capacityci i ∈ {1, …, m} . A cargo list hasn items each
with a valuevj and sizesj j ∈ {1, …, n}, where vj is
determined by loading priorities (items with a higher
loading priority will have a higher preciousness pj = vj / sj).
The goal for stowing a ship is to maximize the total value,
determined by the loading priorities, onto the ship, while
satisfying a number of constraints: items fit, an item can be
stowed in at most one stow area, trim, stability and weight
allocation constraints are satisfied, etc. Typical problems
in this domain have thousands of cargo items and dozens of
stow areas.

This research develops a model for approximating the
0-1 multiple knapsack problem based on agent
decomposition and market negotiation. A simple algorithm
that implements this model, M(x), is compared to a bound
and bound algorithm (BB) and a greedy algorithm with a
random shuffle (G(x)). The results suggest that M(x) is a
good algorithm for approximating the 0-1 Multiple

1
CADRC, Cal Poly, San Luis Obispo, CA 93407;www.cadrc.calpoly.edu
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Knapsack problem. It almost always found solutions that
were close to optimal in a fraction of the time it took BB to
run and with much less memory on large test data sets.
M(x) usually performed better than G(x), especially on hard
problems with correlated data (pj = 1 for j ∈ {1,…,n}).
Hard problems are where the number of rounds for G(x) to
converge to a desirable solution is greater than a few
rounds. M(x) was able to converge to good solutions with
fewer rounds than G(x).

This paper is organized as follows. Section 2 presents
approaches to solving 0-1 multiple knapsack problems, and
highlights problems with them. Section 3 discusses the use
of markets to negotiate for resources. It suggests that a
method based on agent decomposition may work well for
approximating the 0-1 multiple knapsack problem if a
market paradigm is used. Section 4 describes a market-
oriented model and algorithm for approximating the 0-1
multiple knapsack problem based on agent decomposition
and auction negotiation mechanisms. The model is a
computational market based on a sealed bid and a
continuous auction (Steiglitz et al. 1996 and Engelbrecht-
Wiggans et al. 1983). Section 5 describes the results
obtained from running M(x) and other algorithms on a
suite of test data. Conclusions and future work are given in
Section 6.

2 Methods

The simplest approach used to solve the 0-1 multiple
knapsack problem is a greedy first fit: an item is placed into
the first knapsack that can hold it (Garey and Johnson 1979
and Martello and Toth 1990). This algorithm runs
relatively fast, however, rarely achieves an optimal
allocation and has no lower bound on performance.

To find better solutions to this problem, other
approaches are used. Two deterministic approaches used to
solve the 0-1 multiple knapsack problem are branch and
bound (Markland 1989) and bound and bound (Martello
and Toth 1985). Both of these algorithms are guaranteed to
find an optimal solution. However, they both have time
complexities with upper bounds that areO(mn). Also,
assuming a surrogate relaxation technique is used to
calculate the upper bound at the decision nodes, they both
have space complexities that areO(nC), whereC is the size
of the knapsack solved with the surrogate relaxation
problem.

What is desired is a method that will produce
solutions that are better than those found by simple greedy
algorithms, yet with time and space complexities which are
not exponential in the size of the problem. Choices include
a hill climbing algorithm and a stochastic search algorithm
(e.g. genetic algorithm). Unfortunately, as Figure 1
suggests, multiple knapsack problems tend to have jagged,
discontinuous search surfaces with isolated global
optimums. Hill climbing algorithms work poorly on search

surfaces such as these where derivatives do not always
exist. Stochastic methods, such as genetic algorithms, tend
to have a very difficult time finding optimal solutions on
sparse surfaces where the global optimum is isolated. It is
usually by sheer luck that these algorithms find the optimal
solution under these conditions (Goldberg 1989 and
Michalewicz 1992).

One approach to solving complex problems is to
divide a single problem into several, smaller problems, then
solve each sub-problem independently. The result is
obtained by combining all of the individual solutions.
Using this approach each knapsack could be considered
individually to find the optimal solution for each, thus
reducing the computational complexity and memory
requirements. However, because individual solutions may
be inter-dependent, this will not always provide a valid,
much less an optimal, answer. For example, an item could
be in the solution set for more than one knapsack.
Constraints for the whole problem must be respected during
problem decomposition.

To satisfy inter-dependent constraints among the sub-
problems, they must be solved together. Objects in the
problem domain can be modeled as autonomous agents, or
object- agents (Aly 1994, Eastman et al. 1992, and Pohl et
al. 1997) where the interests (or goals) of the agents are
consistent with the goals and constraints of the whole
problem. For the 0-1 multiple knapsack problem, each
knapsack will have an agent assigned with interests in
acquiring certain items. Each agent tries to maximize the
value of the items selected, subject to the constraint that
they fit in their knapsack. There are well known pseudo-
polynomial time exact algorithms and polynomial time
approximation algorithms to solve individual 0-1 knapsack
problems. However, similar to the divide and conquer
method, finding a feasible solution for each agent does not
guarantee a feasible solution to the whole problem. It is
possible that more than one agent will want the same
item(s) in its solution set.

When conflicts arise, agents must negotiate with each
other to resolve them. While much research has been
conducted on conflict resolution (Davis and Smith 1983,
Durfee 1988, Durfee and Lesser 1987, 1989, Roth 1985,
Zlotkin and Rosenschein 1996), many of these approaches

FIGURE 1. PARTIAL SOLUTION SPACE FOR ASAMPLE 0-1 MULTIPLE
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rely upon negotiation through the exchange of partial
plans, which may generally be very difficult to develop for
this problem. Chapman (1987) showed that general
planning, based on his TWEAK representation, is
undecidable even with finite initial states. Remembering
that the reason for decomposing the problem was to
produce a method for solving the problem that is fast and
effective, this negotiation method may be ineffective
because it is not guaranteed to be fast (or even to halt). For
a method of a agent decomposition to be effective, a fast,
possibly approximate, negotiation mechanism is needed.

3. Using Markets for Negotiation

In the previous section, it was shown that decomposing the
problem left us with a reconstruction problem that is just as
hard to solve as the original problem. For a “divide-and-
conquer” method to be successful, the sub-problems must
be naturally disjoint. The sub-problems that arise with this
method of problem decomposition are not disjoint. It is
believed that the complexity of problems in the classes NP-
Hard are due to the inability to naturally decompose the
problems further. However, agent decomposition can still
be used by using a market heuristic for negotiation. The
nice thing about markets is that they can achieve their
effects through simple interactions. They are able to solve
complex resource allocation problems with very little
information (prices), which makes them a desirable
approach for resolving conflicts that arise when allocating
resources (Clearwater 1996)

Markets may not always provide the best means for
allocation. For example, the existence of firms suggests
that centrally planned problem solving paradigms may
work better on smaller resource allocation problems.
Intuitively, this makes sense. Even though a problem may
theoretically be computationally complex (i.e. NP-Hard),
small instances of the problem may be solved in a
reasonable amount of time. This paper demonstrates that
the market paradigm works well for multiple knapsack
problems whose size is sufficiently large. This is because
the running time for M(x) isO(mnN) (N = number of
rounds), where as BB exhibits much greater average
running times for larger problems (BB has a worst case
running timeO(mn)). M(x) is not guaranteed to find the
globally optimal solution, but compared to BB, it performs
well on large test data sets.

3.1 Market Applications

Market-oriented algorithms have been applied successfully
towards solving complex resource allocation problems such
as distributed multi-commodity flow in the trucking
industry (Wellman 1993, 1996), query processing and data
migration in a distributed database (Stonebraker et al.

1994), task scheduling in a distributed operating system
(Huberman 1995, Malone et al. 1988, Miller and Drexler
1988), network and file system resource allocation
(Ferguson et al. 1988, Gagliano and Mitchem 1996, Kurose
and Simha 1989, Kuwabara et al. 1996, Miller et al. 1996,
and Yemini 1981), allocating tradeable pollution permits
(Marron and Bartels 1996), task allocation in discrete
manufacturing systems (Baker 1996, Tilley 1996), and load
balancing in distributed systems (Ferguson et al. 1996).
Most of the current research has focused on developing one
of two types of economic models. One is an exchange
based economy (Sandholm 1993), the other is a price based
economy (Miller and Drexler 1988, Stonebraker et al.
1994, Waldspurger et al. 1992, and Wellman 1993, 1996).
Neither model fits the 0-1 multiple knapsack problem,
where an approach using auctions is needed (Miller et al.
1996 and Steiglitz et al. 1996).

3.2 Market Types

Most market oriented approaches used to solve resource
allocation problems use one of three types of models: price
based economy, exchange based economy, and an auction.

In a price based economy producers and consumers
participate in a market for goods and resources. Producers
buy resources and transform them into commodities and
sell them to consumers. Producers may also be consumers.
Goods and resources are allocated through a market place
in which equilibrium is determined by pricing mechanisms.
Algorithms of this genre are typically used to solve
problems of scheduling and resource allocation over time,
where the elements of the problem are continuously
changing and naturally distributed. For example, in
Wellman (1993) this model is used to solve a
multicommodity flow problem where the resources are
geographically distributed and constantly changing. These
algorithms are not appropriate for solving the 0-1 multiple
knapsack problem since all items in the problem domain
are known and constant. Thus, the modeling of producers
does not make sense.

In an exchange based approach each agent is endowed
with limited resources. The agents exchange these
resources until their marginal rates of substitution are
equal. They only exchange resources in the direction of
increasing overall utility. In other words, they exchange
resources such that at least one agent is made better off and
no agent is made worse off. A Pareto optimal allocation is
achieved when no exchange can take place without making
some agent worse off. The problem with this approach is
that it must converge to an equilibrium point, which may be
far from a globally optimal solution. The market is unable
to move from this equilibrium point because exchanges are
constrained to occur in the direction of increasing utility.
The rate of convergence degrades catastrophically (with
discrete optimization problems) as the number of items
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increases because in the worst case, all combinations of
exchanges will have to be considered before equilibrium is
reached.

The auction market is similar to a price based
economy but withoug producers. Agents bid for the items
offered in a central market. Prices are determined through
tatonnementor non-tatonnementprocesses. Intatonnement
processes (Walras 1954 and Cheng and Wellman 1998),
each agent is endowed with specific initial wealth. Initial
prices for resources are set to arbitrarily. An agent
computes its demand for a resource based on its utility
function and budget constraints. It sends its demand to a
central auctioneer, which in turn computes the aggregate
demand for the resources. If excess demand is positive, the
price of the resource is incremented. If excess demand is
negative, the price is lowered. Once the price is adjusted,
excess demand is computed again. This process continues
until supply exactly equals demand (equilibrium is
reached). Determining an equilibrium price can be
computationally expensive because an unknown number of
price postings and aggregate demand calculations must
take place before equilibrium is reached. Innon-
tatonnementprocesses, agents are allowed to trade before
the economy (or market) has reached equilibrium. Such a
process is fast because trading begins before equilibrium is
reached. A possible disadvantage is that intermediate
trading never decreases an agent’s utility. As in an
exchange based economy, this can result in a Pareto
equilibrium allocation that is not a global optimum (a local
optimum of the solution surface).

Auction strategies include single sided call auction,
sealed bid auction, continuous auction, and double auction
(Scarf 1984 and Steiglitz et al. 1996). The method
described in this paper is a combination of a sealed bid and
continuous auction. Algorithms using sealed bid auctions
to solve the 0-1 multiple knapsack are simple and fast
because a non-tatonnement process of calculating a clearing
price is used. Highest bids are selling. A variation of a
continuous auction approach is integrated into the
algorithm. Agents may trade and sell items back to the
auctioneer in hope of getting a better allocation of
resources. By relaxing the constraint that every trade
results in no agent being made worse off, the algorithm
may traverse the entire solution space.

4. Developing a Market Oriented Algorithm

M(x) implements a model, based on agent decomposition
and market negotiation. That model includes consumers,
an auctioneer, items, and mechanisms for trade amongst
the agents and the auctioneer. M(x) implements the
auctioneer’s and consumers’ behavior as well as protocols
for the trading mechanisms within this model.

The computational market in M(x) uses both a sealed
bid auction and a continuous auction (Marron and Bartels

1996). In a sealed bid auction the auctioneer first collects
bids for groups of items from all the consumers, then
determines the clearing price. Consumers who bid at the
clearing price or higher get to purchase the items. M(x)
implements a slight change where items are considered one
at a time. This makes for a simple calculation of the
clearing price: the highest bid. In a continuous auction,
agents continuously post bid and ask prices for items. M(x)
has a phase similar to a continuous auction when items are
either sold back to the market or are swapped between
consumers. Without this phase M(x) would be a variation
of a greedy algorithm. Because the auction is continuous, it
is able to traverse the entire solution space. A greedy
algorithm might stop on a local maximum.

Individual agents try to maximize utility by bidding
for items that have high utility for them. An item’s value is
the same regardless in which knapsack it is placed, but
utility for an item is based on preferences, which vary over
time and between agents. The bidding strategy
implemented by M(x) assumes consumers prefer small
precious items. A consumer would be willing to bid higher
for such items. Items that do not fit into a knapsack have
no utility for the associated consumer. The auctioneer tries
to maximize the total sales for items. This research
describes one bidding strategy and one market mechanism,
though other combinations of bidding strategies and market
mechanisms can be implemented using the market model
developed in this research.

4.2 Market Model

The model is shown in Figure 2. It describes an auction
and consumers. The auction consists of an agent (the
auctioneer) and the items to be auctioned. Each consumer
represents a knapsack. Interactions between agents are
one of three types: 1) consumers purchase items from the

FIGURE 2. MARKET MODEL.
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auctioneer (Purchase protocol), 2) consumers sell items to
the auctioneer (Sell protocol), 3) consumers swap items
with each other (Exchange protocol). The Purchase
protocol defines how items will be allocated through the
auction. The Sell and Exchange protocols allow algorithms
that implement the model to traverse the solution space.
Each algorithm is free to define the particular mechanics of
agent behavior and exchange.

4.3 Purchase Protocol

This section describes the purchase protocol in M(x). It is
assumed that a consumer will prefer items with larger
preciousness and smaller size. Items that do not fit into the
knapsack will not be bid upon. The utility consumeri
receives from having itemj (Uij), after item j has been
placed in its knapsack is:

Uij =
i

ij
c

)(ap where

pj = vj / sj ( pj is the preciousness of itemj) and

bi = �
=

n

j 1

sjxij (sum of item sizes in consumeri’ s knapsack)

and
ai = ci - bi

The utility consumeri will receive from consuming itemj
(U’ ij), before itemj has been purchased is:

U’ ij =
�
�

�
�

�

≤+��
�

�
��
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cisjibif1
ci

sjai
pj
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Assuming that consumeri has an initial wealth, or
endowment of resourcesri:

ri =
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, for i = 1 … m,where
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(min(� �ji sc / , 1))

and Bij, the bid consumeri makes for itemj, equalsU’ ij,
then the total amount consumeri spends can be bound by:
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This means every consumer has enough resources to bid for
all the items that form the optimal solution and their
bidding strategy is consistent with their initial endowment
of resourcesri. This bidding strategy is simple, does not
require agents to build internal models of the state of the
system, and makes bid calculations fast.

The auctioneer simply tries to maximize its profitP:

P = �
=

m

i 1
�

=

n

j 1

Bijxij

This is achieved by selling the most precious items first.
The auctioneer sorts the items in decreasing preciousness
prior to bidding, allowing convergence to a good solution
quicker when the size of the problem is large. Of course,
this introduces a bias towards placing items with higher
preciousness into the solution space first, which may cause
the algorithm to converge to a sub-optimal solution.

As an example, consider the configuration in Figure
3. If the next item to be bid on has size 5 and value 10,
consumer 1 would bid 0 since the item would not fit into its

knapsack, and consumer 2 would bid�
�

�
�
�

�

5

0
�
�

�
�
�

� +
10

55 + 1 = 1

for the item. Thus the item is sold for 1 unit to consumer
2.

With the agents’ behavior defined, a purchasing
mechanism needs to be developed. The Purchase protocol
is based on a sealed bid auction. The clearing price for an
item is determined by the highest bidder, where items enter
a market one at a time. If there are no bids greater than
zero, the item is not sold. This process continues until all
items have entered the market exactly once.

4.3 Sell Protocol

Using only the purchase protocol can find good results with
some data sets, however, it is more likely to find a local
minimum. It would be desirable for the algorithm to
traverse the solution space. To do this, a sell protocol is
introduced where after every round of bidding, each
consumer is allowed to sell back some of its items to the
market (POST procedure). After the items are sold back,
they are placed at the end ofitems (the complete list of
items). The agents then enter into another round of bids,

FIGURE 3. EXAMPLE CONFIGURATION.
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and so on for numrounds. It is assumed, for now,
consumers will choose to sell back their least precious items
first. If the number of items sold back each round is
constant, it is likely that the algorithm will get stuck in a
local neighborhood, which suggests that maybe the number
of items sold back should vary from round to round. The
number of items sold back to the market in M(x) decreases
with subsequent rounds. This is similar in principle to a
simulated annealing algorithm where configurations
stabilize over time (Kirkpatrick et al. 1983, van Laarhover
and Aarts 1987, Varanelli and Cohoon1993). M(x) will
make larger surface jumps in the beginning rounds and
smaller jumps in the later rounds.

Because the goal was to develop a fast algorithm, M(x)
implements a method for calculating the price an item is
sold back to the auctioneer that requires little computation.
Assuming that the auctioneer buys an item back for an
amount equal to what it was previously sold, and assuming
the auctioneer will always buy back items posted by a
consumer, the algorithm does not have to compute the sell
back price and keep track of individual budgets. This is
because of the assumption that each consumer has enough
initial resources to purchase its optimal solution and that its
bidding strategy is consistent with and will never exceed its
budget. If bid and sell back prices varied, then consumers
would have to alter their bidding strategies as their budgets
fluctuate. This would introduce a layer of complexity that
would ultimately translate into computational complexity.

4.3.1 RANDOM BEHAVIOR IN SELL PROTOCOL

Random behavior is not desirable under unbounded
rationality. However, an agent’s knowledge of the solution
space is limited because unbounded rationality would
dictate unbounded computational resources. Under
bounded rationality an algorithm can get stuck in a local
neighborhood in the solution space. One way to move from
this neighborhood would be to introduce random behavior,
which results in occasional random walks across the
solution space.

M(x) incorporates this behavior. Two things happen
every sell_randomrounds in the POST procedure. First,
the number of items thrown out every round (numthrows:
such thatkround % sell_random≠ 0, wherekround is the
current round) is decremented bynumthrowdec. Second,
numthrows/2 items are sold back by every consumer
(choosingnumthrows/2 items prevented all items from all
knapsacks from being sold back on any particular round
kround: kround % sell_random = 0). The variables
sell_randomand numthrowsare initialized before bidding
begins. Thesell_randomparameter should have a value
that is about twice the logarithm of the number of rounds
with an upper bound around 30 and a lower bound around
9 (which produced the best results for the particular data
this algorithm was run on). Also, a value fornumthrows

should be chosen such that the number of items thrown out
the first round from any knapsack will be on average
between 50-100% of the items in the knapsack. With
larger ratios ofn / m, the average number of items thrown
out in the first rounds should be close to 100%. This puts
all items into the solution space quickly. With smaller
ratios ofn / m, the average number of items thrown out in
the first rounds should be close to 50%. This mixes up the
ordering of the items initemsquickly. It is important to
give all items (as well as all combination of items) an
opportunity to enter the solution space. The number of
items thrown out the last round should be close to one, but
not less than one. This means a value ofnumthrowdecis
wanted:
numthrows - numthrowdec( numrounds / sell_random )≥ 1.
Solving fornumthrowdec:
( numthrows -1 ) / ( numrounds / sell_random )≥ numthrowdec
� numthrowdec= � �)_//( randomsellnumroundsnumthrows - 1.

4.4 Exchange Protocol

Not all transactions in an economy are done through the
market place. For instance, neighbors often exchange
things like tools, sugar, salt. These transactions do not
require pricing mechanisms, but simply take place through
direct trade. Without these trades, convergence to an
optimal solution can take very long. For instance, much
time and effort is saved by borrowing sugar from a
neighbor vs. making a special trip to the store to buy it.

In the POST procedure of M(x), everyexchange
rounds consumers swapsnumthrowsrandom items with
their nearest neighbor, defined by the neighbors directly
before and directly after them in the list of agents. The
value of exchange should be chosen such that
exchange≠ sell_random and 1≤ exchange ≤ 4 (M(x)
performed best with this value ofexchange). One possible
reason for such a small value ofexchangeis that frequent
bartering gives the opportunity for all items to be placed in
all knapsacks.

4.4 Final Algorithm

The final algorithm is shown in Listing 1. The time
complexity of M(x) is ( )mnnumroundsO ×× (or ( )nnO log

for sort, whichever is larger) and the space complexity is
( )mnO × . However, the space complexity can be reduced

to ( )mnO + if the state is represented by a single
dimensional array withn structures, where each structure
represents one item and has a field that signifies which
knapsack that item is stored in. M(x) stores the state in an
× m matrix.
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5 Experimental Results

This section analyzes the results from running M(x) over a
complete test suite. M(x) is compared to two algorithms:
A bound and bound algorithm, BB, (Martello and Toth
1985), and a simple first fit greedy algorithm with a
random shuffle, G(x).
The test data generation algorithm used is described in
Martello and Toth (1990). Tests were run on 100 different
types of data, with 20 different data sets for each type. The
types were broken up into two different groups of data with
50 different n/m ratios. The two groups were strongly
correlated and uncorrelated. The strongly correlated data
types had values ofsI = vI which was uniformly random in
[1, 100]. The uncorrelated data types had values ofsI and
vI which were both uniformly random in [1, 100]. Within
these three groups there were 50 different types comprised
of all combinations ofN = {20, 40, 60, 80, 100, 120, 140,
160, 180, 200} andM = {2, 4, 6, 8, 10}. The capacities of
the knapsacks were calculated as:
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The size of the test data was limited to N = 200 and M
= 10. The reason for this is that the calculation of the
upper bounds in BB requiredO(nC) space, whereC is the
size of the knapsack in the surrogate relaxation problem.
Since C grows in size asn grows (from test generation
algorithm), the size of the problem that could be solved by
BB was limited by the development environment.

From Figure 4, it is clear that the relative running time
of M(x) vs. BB decreases as the number of items increases.
The same thing does not appear to happen with respect to
an increase in the number of knapsacks. It looks as if the
relative running times grows polynomially (and may even
decline afterm ≈ [ ]10,8 ) asm increases. However, one can
claim that as the problem size grows, M(x)’s relative
running times to BB decline.

BB works very well on smaller data sets. When the
problem size is small, BB performed better than M(x),
where M(x) had average running times as much as 33 times
BB, to get within 1% of error. This is due in part to the
data itself, where a solution within 1% of optimal meant
the optimal solution. Therefore, M(x) had to run until the
optimal was found. On larger test data M(x) was a clear

FIGURE4. AVERAGEPERCENTRUNNING TIME OF M(X) VS. BB(-1) ON CORRELATED

DATA OVER 20 DATA SETS TOGET WITHIN 1% ERROR(LOG SCALE).

winner, where average running times for M(x) were a
fraction of BB, even on tighter error constraints.

Experiments were also run on M(250) and BB using a
similar test suite. In most cases M(250) performed well on
correlated data. The mean result was usually within 1% of
the optimal solution (in many cases the median percent
error was 0%) and the running times for M(250) were a
fraction of BB on the larger data sets.

There was a noticeable difference in performance
between correlated and uncorrelated data sets for both M(x)
and G(x) (where correlated items had equal preciousness
and uncorrelated had varying preciousness). With
uncorrelated items, M(x) and G(x) were generally able to
reach good solutions in one round for largen. Because of
the way M(x) and G(x) are structured, the benefits of
sorting the items in descending preciousness are realized
with uncorrelated items since the most precious items are
put into the solution space in the first round, which enables
the algorithms to immediately identify good solutions. This
is not the case with correlated items since all items have the
same preciousness. Also, the running time of G(1) is much
less than M(1) since G(1) is a simple first fit algorithm and
M(1) is a sealed bid auction. Therefore, G(x) generally
performed better than M(x) with uncorrelated data, except
under tighter error constraints.

M(x) performed better than G(x) on correlated data,
especially with tighter error constraints (Figure 5.). Test
data showed that G(x) is much less likely to converge to a
good solution within a limited number of rounds. In

FIGURE 5. AVERAGE PERCENTRUNNING TIMES OFG(X) AND M(X) VS. BB
OVER 20 DATA SETS WITHDECREASINGERRORCONSTRAINTS.
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general, M(x) performed better than G(x) on data sets
where x is greater than [5,10] rounds. This happens when
a good solution can’t be found by a simple first fit
algorithm. M(x) almost always found good solutions in
fewer rounds than G(x).

6. Conclusions and Future Work

This paper contributes a novel approach to solving the 0-1
multiple knapsack problem that is simple, robust, and easy
to implement. Using agents and markets to model
algorithms that approximate the 0-1 multiple knapsack
problem works well since it is a resource allocation
problem; markets have proven so effective at solving
complex resource allocation problems; and it allows for
sufficiently efficient implementations. Markets based on
auctions permit agents to negotiate with very simple
interactions, resulting in very little computational effort,
while allowing complex and desirable behaviors to emerge
from these simple interactions.

A model is provided that can guide the development
of algorithms to solve the 0-1 multiple knapsack problem.
One particularly effective and efficient algorithm (M(x))
has been implemented. M(x) uses rounds where agents sell
back items, making it effective at finding near optimal
solutions. This distinguishes it from simple greedy
algorithms by allowing the algorithm to traverse the
solution surface. Greedy algorithms stop sooner, but
perhaps at a local optimum. The use of agents prevents
consideration of infeasible solutions while traversing the
solution space, which allows M(x) to traverse sparse
solution surfaces, often found with 0-1 multiple knapsack
problems, effectively. A computationally simple bidding
strategy was chosen for M(x), thus making the algorithm
efficient.

The test results confirm that M(x) performs very well.
M(x) was generally able to find good solutions in a fraction
of the time it took BB to run on larger data sets, and with
much less memory. M(x) performed better than G(x) on
harder problems and was able to converge to good solutions
with fewer rounds than G(x).

procedure: M
input: numrounds, sell_random, exchange, knapsacks, items;
output: xstar;
begin

1. [initialize]
for i = 1 to m do ai = size of knapsack i;
for i = 1 to m do for j = 1 to n do xij = 0;
sort itemsin descending preciousnessp.
numrounds = x;
(check exchange≠ sell_random);
if sell_random< numroundsthen
numthrowdec=(� �)_//( randomsellnumroundsnumthrows )- 1;

elsenumthrows= 1;
WinningValue =0;

2. [Bid]
while ( numrounds> 0 ) do

begin
Value =0; numrounds = numrounds -1;
for j = 1 to n do

Find ( i: 1 ≤ i ≤ m) whereBi1 ≥ Bl1 > 0

for all l: (1 ≤ l ≤ m andl ≠ i),
if no suchi exists or ifitems[1] is stowedthen

put items[1] at the back ofitems;
elsexij = 1, ai = ai - size ofitems[1],

mark items[1] as stowed and moveitems[1]
to the back ofitems,
Value = Value +value ofitems[1] ;

if Value> WinningValuethen
for i = 1 to m do for j = 1 to n do

xstarij = xij , WinningValue = Value;
[Sell back items]
call POST(a ,x Value ,sell_random ,numthrows,

numthrowdec, exchange);
end;
return xstar;

end.

procedure: POST
input: a, x, Value, sell_random, numthrows, numthrowdec, kround, exchange;
output: a, x, Value;
begin

1. [Sell back random item]
if (kround%sell_random) == 0then

for i = 1 to m do for numthrows / 2do
Find (randomj:xil = 1),

if such aj existsthen
xij = 0, ai = ai + size ofitems[j], mark items[j] as
unstowed, putitems[j] in the back ofitems,
Value = Value -value ofitems[j];

else do nothing;
numthrows = numthrows - numthrowdec;

2. [Barter]
else if(kround%exchange) == 0then

for i = 1 to m do for j = 1 to n xtempij = 0
for numthrowsdo for i = 1 to m - 1 do

Find (nextj andl:xij = 1 andx(i+ 1) l = 1 andxtempij ≠ 1
andxtemp(i+1)l ≠ 1),
if such aj andl existthen

Swap the items,if one of the items does not fit into the
Knapsack it was swapped intothen mark it as
unstowed and put into back ofitems, Updatex, a,and
Value, xtempij = 1 andxtemp(i+1)l = 1;

else do nothing;

3. [Sell back least precious]
else

for i = 1 to m do for numthrowsdo

Find ( j: 1 ≤ j ≤ n andxij = 1) wherepl ≥ pj for all l:

(1 ≤ l ≤ n andl ≠ j andxil = 1),
if such aj existsthen [sell that item back]

xij = 0, ai = ai + size ofitems[j],
mark items[j] as unstowed and move to back of

items, Value = Value -value ofitems[j];
else do nothing;

return x, a, Value, numthrows;
end.

LISTING 1. FINAL ALGORITHM
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More work could be done in developing more
algorithms that use the model from this research, which
includes trying new bidding strategies and different market
mechanisms. For instance, Park et al. (1999) discuss the
trade-offs in a continuous double auction between two
extreme bidding strategies where either agents use all
relevant information to build internal models on other
agents’ behaviors before they make bids (e.g. Kreps 1990)
or agents require no knowledge about the outside world and
do not build models (e.g. M(x)). Exploring more complex
bidding strategies (possibly adaptive strategies) may give
insight into these trade-offs for this particular problem.

Developing parallel algorithms based on M(x) could
yield even faster algorithms. Friedman and Oren (1995)
argue that distributed resource allocation can be
logarithmic in m and linear in n, which suggest that
parallelization would be possible. It is unlikely that BB can
be parallelized since it is a depth-first search algorithm,
which is inherently sequential (Reif 1985). It is also
unlikely that G(x) can be parallelized, at least completely,
since first fit decreasing bin packing is P-Complete2.
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