Preprint
UCRL-JC-135996

Approximating the 0-1
Multiple Knapsack
Problem with Agent
Decomposition and Market
Negotiation

B.A. Smolinski

This article was submitted to

13" International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems
New Orleans, LA

U.S. Department of Energy June 19-22, 2000

Lawrence
Livermore
National

Laboratory September 3, 1999

N=""

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401
http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161
http://www.ntis.gov/

OR
Lawrence Livermore National Laboratory

Technical Information Department’s Digital Library
http://www.lInl.gov/tid/Library.html

Approximating the 0-1 Multiple Knapsack Problem with Agent Decomposition and
Market Negotiation

Brent A. Smolinski
Center for Applied Scientific Computing, Lawrence Livermore dfadl Laboratory
7000 East Ave, Livermore, CA 94550-9234 USA
smolinskil@IlInl.gov

Abstract

The 0-1 multiple knapsack problem appears in many domains from financial portfolio management to cargo ship
stowing. Methods for solving it range from approximate algorithms, such as greedy algorithms, to exact algorithms,
such as branch and bound. Approximate algorithms have no bounds on how poorly they perform and exact algorithms
can suffer from exponential time and space complexities with large data sets. This paper introduces a market model
based on agent decomposition and market auctions for approximating the 0-1 multiple knapsack problem, and an
algorithm that implements the model (M(x)). M(x) traverses the solution space rather than getting caught in a local
maximum, overcoming an inherent problem of many greedy algorithms. The use of agents ensures that infeasible
solutions are not considered while traversing the solution space and that traversal of the solution space is not just
random, but is also directed. M(x) is compared to a bound and bound algorithm (BB) and a simple greedy algorithm
with a random shuffle (G(x)). The results suggest that M(x) is a good algorithm for approximating the Qiiléviu
Knapsack problem. M(x) almost always found solutions that were close to optimal in a fraction of the time it took BB
to run and with much less memory on large test data sets. M(x) usually performed better than G(x) on hard problems
with correlated data.

Keywords: Market Algorithm, Autonomous Agents, Agent DecompositiBtayket Negotiation, Knapsack Problem, Heuristic.

where % = 1 if item j is assigned to knapsack i; O
1. Introduction otherwise. The 0-1 multiple knapsack problem is NP-hard
in the strong sense.
The 0-1 multiple knapsack problem is a generalization of , Multiple knapsack problems appear in such domains

the 0-1 Knapsack problem arising whem containers (or &S financial portfolio management and naval ship stowing.
P P g (For example, the CAD Research Cenhteas developed a

knapsacks), of given capacities (i = 1, ... , m) are ;

available, along withn items, of which each item has a software program, ICODES (Pohl et al. 1997), to aid Naval

valuev a;wd sizes > 0 (j = 1 ' n). Thesen knapsacks and Marine stow planners with stowing cargo items onto
i =1,..,n).

are to be filled with some or all of the items such that ships. A ship hasn stow areas (knapsacks) each with

each item is placed in at most one knapsack, all item&2PacCILyCi | U {L, ..., m. A cargo list hasn items each

placed in a particular knapsack fit in that knapsack, and th(lé"ith a _valge\t/)j allndd_s;izeg j. D .{1’ n, whﬁre v;]_ish
total value of all items placed in all of the knapsacks is etermined by loading priorities (items with a higher

maximized. A precise definition of the 0-1 multiple- loading priority will have a higher preciousness;/).

knapsack, as stated in (Martello and Toth 1990), is: The go_al for stowing a s_hip is_to_r_naximize the tot_al valu_e,
determined by the loading priorities, onto the ship, while

maximize Zm:zn: ViXi satisfying a number of constraints: items fit, an item can be
stowed in at most one stow area, trim, stability and weight

Inlj ' allocation constraints are satisfied, etc. Typical problems
subject to Z s <c, iOM={1, .., m} in this domain have thousands of cargo items and dozens of
et stow areas.
m This research develops a model for approximating the
Z xj< 1 jON={1, ...,n} 0-1 multiple knapsack problem based on agent
) decomposition and market negotiation. A simple algorithm
x;=0or1, iOM,jON that implements this model, M(x), is compared to a bound

and bound algorithm (BB) and a greedy algorithm with a
random shuffle (G(x)). The results suggest that M(x) is a
good algorithm for approximating the 0-1 Multiple

Work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
This work has been funded by LDRD UCRL-JC135996. CADRC, Cal Poly, San Luis Obispo, CA 9340#yww.cadrc.calpoly.edu

Knapsack problem. It almost always found solutions thatsurfaces such as these where derivatives do not always
were close to optimal in a fraction of the time it took BB to exist. Stochastic methods, such as genetic algorithms, tend
run and with much less memory on large test data setdo have a very difficult time finding optimal solutions on
M(x) usually performed better than G(x), especially on hardsparse surfaces where the global optimum is isolated. It is
problems with correlated datepj(= 1 for jO{1,...,n}). usually by sheer luck that these algorithms find the optimal
Hard problems are where the number of rounds for G(x) tesolution under these conditions (Goldberg 1989 and
converge to a desirable solution is greater than a fevMichalewicz 1992).
rounds. M(x) was able to converge to good solutions with One approach to solving complex problems is to
fewer rounds than G(x). divide a single problem into several, smaller problems, then
This paper is organized as follows. Section 2 presentsolve each sub-problem independently. The result is
approaches to solving 0-1 multiple knapsack problems, andbtained by combining all of the individual solutions.
highlights problems with them. Section 3 discusses the usdsing this approach each knapsack could be considered
of markets to negotiate for resources. It suggests that endividually to find the optimal solution for each, thus
method based on agent decomposition may work well foreducing the computational complexity and memory
approximating the 0-1 multiple knapsack problem if arequirements. However, because individual solutions may
market paradigm is used. Section 4 describes a markebe inter-dependent, this will not always provide a valid,
oriented model and algorithm for approximating the 0-1much less an optimal, answer. For example, an item could
multiple knapsack problem based on agent decompositiohe in the solution set for more than one knapsack.
and auction negotiation mechanisms. The model is &onstraints for the whole problem must be respected during
computational market based on a sealed bid and aroblem decomposition.
continuous auction (Steiglitz et al. 1996 and Engelbrecht- To satisfy inter-dependent constraints among the sub-
Wiggans et al. 1983). Section 5 describes the resultproblems, they must be solved together. Objects in the
obtained from running M(x) and other algorithms on aproblem domain can be modeled as autonomous agents, or
suite of test data. Conclusions and future work are given irobject- agents (Aly 1994, Eastman et al. 1992, and Pohl et

Section 6. al. 1997) where the interests (or goals) of the agents are
consistent with the goals and constraints of the whole
2 Methods problem. For the 0-1 multiple knapsack problem, each

knapsack will have an agent assigned with interests in
é’;\cquiring certain items. Each agent tries to maximize the

The simplest approach used to solve the 0-1 multipl . 4 .
knapsack problem is a greedy first fit: an item is placed imovalue of the items selected, subject to the constraint that

the first knapsack that can hold it (Garey and Johnson 197g1ey fit ir_' thgir knapsack. There are well known.pselljdo-
and Martello and Toth 1990). This algorithm runs polynomial time exact algorithms and polynomial time

relatively fast, however, rarely achieves an Opﬂmalapproximation algorithms to solve individual 0-1 knapsack

allocation and has no lower bound on performance. problems. However, similar to the divide and conquer
To find better solutions to this problem, other method, finding a feasible solution for each agent does not

approaches are used. Two deterministic approaches used%""r‘f"mee a feasible solution to the whple problem. It is
solve the 0-1 multiple knapsack problem are branch an(ﬁ)oss'blef t_hat more than one agent will want the same
bound (Markland 1989) and bound and bound (Martello'tem(s) In its solu_tlon set. . .

and Toth 1985). Both of these algorithms are guaranteed to When conflicts arise, agents must negotiate with each

find an optimal solution. However, they both have time Other to resolve th_em. Whi_le much_ research _has been
complexities with upper bounds that a@(nf). Also conducted on conflict resolution (Davis and Smith 1983,

assuming a surrogate relaxation technique is used t urfee 1988, Durfee and Lesser 1987, 1989, Roth 1985,

calculate the upper bound at the decision nodes, they bot%'Otki” and Rosenschein 1996), many of these approaches

have space complexities that @¢nC) whereC is the size
of the knapsack solved with the surrogate relaxation
problem.

What is desired is a method that will produce
solutions that are better than those found by simple greedy -
algorithms, yet with time and space complexities which are -
not exponential in the size of the problem. Choices include
a hill climbing algorithm and a stochastic search algorithm
(e.g. genetic algorithm). Unfortunately, as Figure 1
suggests, multiple knapsaCk prObIems tend to have jagged’ FIGURE 1. PARTIAL SOLUTION SPACE FOR ASAMPLE 0-1 MULTIPLE
discontinuous search surfaces with isolated global ' KNAPSACK PROBLEM
optimums. Hill climbing algorithms work poorly on search

Two knapsacks; whereg; of size knapsack
M ={5, 4}

10 items §,v;) wheres = size of itemj and
v; = value of itemj:
N={(22).(26), (3:3), (3.6), (4.4),
44),(5.5). (5.5}

rely upon negotiation through the exchange of partiall994), task scheduling in a distributed operating system
plans, which may generally be very difficult to develop for (Huberman 1995, Malone et al. 1988, Miller and Drexler
this problem. Chapman (1987) showed that general988), network and file system resource allocation
planning, based on his TWEAK representation, is(Ferguson et al. 1988, Gagliano and Mitchem 1996, Kurose
undecidable even with finite initial states. Rememberingand Simha 1989, Kuwabara et al. 1996, Miller et al. 1996,
that the reason for decomposing the problem was t@nd Yemini 1981), allocating tradeable pollution permits
produce a method for solving the problem that is fast andMarron and Bartels 1996), task allocation in discrete
effective, this negotiation method may be ineffectivemanufacturing systems (Baker 1996, Tilley 1996), and load
because it is not guaranteed to be fast (or even to halt). Fdralancing in distributed systems (Ferguson et al. 1996).
a method of a agent decomposition to be effective, a fasiyost of the current research has focused on developing one
possibly approximate, negotiation mechanism is needed. of two types of economic models. One is an exchange
based economy (Sandholm 1993), the other is a price based
3. Using Markets for Negotiation economy (Miller and Drexler 1988, Stonebraker et al.
1994, Waldspurger et al. 1992, and Wellman 1993, 1996).

In the previous section, it was shown that decomposing thil€ither model fits the 0-1 multiple knapsack problem,
problem left us with a reconstruction problem that is just agVNere an approach using auctions is needed (Miller et al.
hard to solve as the original problem. For a “divide-and-1996 and Steiglitz et al. 1996).
conquer” method to be successful, the sub-problems must
be naturally disjoint. The sub-problems that arise with this>-2 Market Types
method of problem decomposition are not disjoint. It is
believed that the complexity of problems in the classes NPMost market oriented approaches used to solve resource
Hard are due to the inability to naturally decompose theallocation problems use one of three types of models: price
problems further. However, agent decomposition can stilbased economy, exchange based economy, and an auction.
be used by using a market heuristic for negotiation. The In a price based economy producers and consumers
nice thing about markets is that they can achieve theiparticipate in a market for goods and resources. Producers
effects through simple interactions. They are able to solvé@uy resources and transform them into commodities and
complex resource allocation problems with very little sell them to consumers. Producers may also be consumers.
information (prices), which makes them a desirableGoods and resources are allocated through a market place
approach for resolving conflicts that arise when allocatingin which equilibrium is determined by pricing mechanisms.
resources (Clearwater 1996) Algorithms of this genre are typically used to solve
Markets may not always provide the best means foproblems of scheduling and resource allocation over time,
allocation. For example, the existence of firms suggestwhere the elements of the problem are continuously
that centrally planned problem solving paradigms maychanging and naturally distributed. For example, in
work better on smaller resource allocation problemsWellman (1993) this model is used to solve a
Intuitively, this makes sense. Even though a problem maynulticommodity flow problem where the resources are
theoretically be computationally complex (i.e. NP-Hard), geographically distributed and constantly changing. These
small instances of the problem may be solved in aalgorithms are not appropriate for solving the 0-1 multiple
reasonable amount of time. This paper demonstrates th&napsack problem since all items in the problem domain
the market paradigm works well for multiple knapsackare known and constant. Thus, the modeling of producers
problems whose size is sufficiently large. This is becausé€loes not make sense.
the running time for M(x) i®(mnN) (N = number of In an exchange based approach each agent is endowed
rounds), where as BB exhibits much greater averagaith limited resources. The agents exchange these
running times for larger problems (BB has a worst casgesources until their marginal rates of substitution are
running timeO(nt)). M(x) is not guaranteed to find the equal. They only exchange resources in the direction of
globally optimal solution, but compared to BB, it performs increasing overall utility. In other words, they exchange

well on large test data sets. resources such that at least one agent is made better off and
no agent is made worse off. A Pareto optimal allocation is
3.1 Market Applications achieved when no exchange can take place without making

some agent worse off. The problem with this approach is

Market-oriented algorithms have been applied successfullrg;at it must converge to an equilibrium point, which may be

towards solving complex resource allocation problems suc rirom a gIoba_IIy opt_ir_na_l soluti_on. The market is unable
as distributed multi-commodity flow in the trucking to move from this equilibrium point because exchanges are

industry (Wellman 1993, 1996), query processing and datgonstrained to occur in the direction of increasing utility.

migration in a distributed database (Stonebraker et al' € rate of convergence degrades catastrophically (with

discrete optimization problems) as the number of items

increases because in the worst case, all combinations 4P96). In a sealed bid auction the auctioneer first collects
exchanges will have to be considered before equilibrium ibids for groups of items from all the consumers, then
reached. determines the clearing price. Consumers who bid at the

The auction market is similar to a price basedclearing price or higher get to purchase the items. M(x)
economy but withoug producers. Agents bid for the itemsamplements a slight change where items are considered one
offered in a central market. Prices are determined througlt a time. This makes for a simple calculation of the
tatonnemenbr non-tatonnemenprocesses. Imatonnement clearing price: the highest bid. In a continuous auction,
processes (Walras 1954 and Cheng and Wellman 19983gents continuously post bid and ask prices for items. M(x)
each agent is endowed with specific initial wealth. Initial has a phase similar to a continuous auction when items are
prices for resources are set to arbitrarily. An agenteither sold back to the market or are swapped between
computes its demand for a resource based on its utilitgonsumers. Without this phase M(x) would be a variation
function and budget constraints. It sends its demand to af a greedy algorithm. Because the auction is continuous, it
central auctioneer, which in turn computes the aggregates able to traverse the entire solution space. A greedy
demand for the resources. If excess demand is positive, tregorithm might stop on a local maximum.
price of the resource is incremented. If excess demand is Individual agents try to maximize utility by bidding
negative, the price is lowered. Once the price is adjustedpr items that have high utility for them. An item’s value is
excess demand is computed again. This process continudse same regardless in which knapsack it is placed, but
until supply exactly equals demand (equilibrium is utility for an item is based on preferences, which vary over
reached). Determining an equilibrium price can betime and between agents. The bidding strategy
computationally expensive because an unknown number afmplemented by M(x) assumes consumers prefer small
price postings and aggregate demand calculations mugtecious items. A consumer would be willing to bid higher
take place before equilibrium is reached. Imon- for such items. Items that do not fit into a knapsack have
tatonnemenprocesses, agents are allowed to trade beforeao utility for the associated consumer. The auctioneer tries
the economy (or market) has reached equilibrium. Such & maximize the total sales for items. This research
process is fast because trading begins before equilibrium idescribes one bidding strategy and one market mechanism,
reached. A possible disadvantage is that intermediatthough other combinations of bidding strategies and market
trading never decreases an agent's utility. As in anmechanisms can be implemented using the market model
exchange based economy, this can result in a Paretteveloped in this research.
equilibrium allocation that is not a global optimum (a local
optimum of the solution surface). 4.2 Market Model

Auction strategies include single sided call auction,
sealed bid auction, continuous auction, and double auctioffhe model is shown in Figure 2. It describes an auction
(Scarf 1984 and Steiglitz et al. 1996). The methodand consumers. The auction consists of an agent (the
described in this paper is a combination of a sealed bid angctioneer) and the items to be auctioned. Each consumer
continuous auction. Algorithms using sealed bid auctiongepresents a knapsack. Interactions between agents are

to solve the 0-1 multiple knapsack are simple and faspne of three types: 1) consumers purchase items from the
because a non-tatonnement process of calculating a clearing

price is used. Highest bids are selling. A variation of a

continuous auction approach is integrated into the Auction

algorithm. Agents may trade and sell items back to the

auctioneer in hope of getting a better allocation of |
resources. By relaxing the constraint that every trade

results in no agent being made worse off, the algorithm
may traverse the entire solution space.
Sell Purchase

4. Developing a Market Oriented Algorithm

Consumers
M(x) implements a model, based on agent decomposit
and market negotiation. That model includes consume
an auctioneer, items, and mechanisms for trade amor
the agents and the auctioneer. M(x) implements t
auctioneer’s and consumers’ behavior as well as protoc
for the trading mechanisms within this model.

The computational market in M(x) uses both a sealed FIGURE 2. MARKET MODEL.
bid auction and a continuous auction (Marron and Bartels

Exchange

Exchame

auctioneer (Purchase protocol), 2) consumers sell items to
the auctioneer (Sell protocol), 3) consumers swap items

m n
P:Z Z Binij

with each other (Exchange protocol). The Purchase =1 j=1

protocol defines how items will be allocated through theThis is achieved by selling the most precious items first.
auction. The Sell and Exchange protocols allow algorithmsl'he auctioneer sorts the items in decreasing preciousness
that implement the model to traverse the solution spaceprior to bidding, allowing convergence to a good solution

Each algorithm is free to define the particular mechanics ofjuicker when the size of the problem is large.

agent behavior and exchange.

4.3 Purchase Protocol

This section describes the purchase protocol in M(x). It is3-

Of course,

this introduces a bias towards placing items with higher

preciousness into the solution space first, which may cause
the algorithm to converge to a sub-optimal solution.

As an example, consider the configuration in Figure

If the next item to be bid on has size 5 and value 10,

assumed that a consumer will prefer items with large/COnSUmer 1 would bid 0 since the item would not fit into its
preciousness and smaller size. Items that do not fit into th&napsack, and consumer 2 would tﬁgj [ﬁ] +1=1

knapsack will not be bid upon. The utility consumer
receives from having item (Uj), after itemj has been
placed in its knapsack is:

Uj= P (a%

Pi=Vi/S (pisthe preciousness of itejn and
n

where

b = Z §Xjj (sum of item sizes in consumies knapsack)
j=1
and
8 =Cj-by
The utility consumei will receive from consuming item
(U’y)), before itemj has been purchased is:
0 if bi +sj>ci

U= [pj [_a';SJ]uJ if bi +sj<ci

Assuming that consumei has an initial wealth, or

endowment of resources
r=m +p(%] ,fori=1... mwhere

p=max(p (min(c/s], 1)) for j= (1...n) and
n = Z (min(lci/s |, 1))
e

and By, the bid consumer makes for itemj, equalsU’;;,
then the total amount consumiespends can be bound by:

0< Z B < mu{%}
i=1 '

This means every consumer has enough resources to bid for
bidding strategy is consistent with their initial endowmerj 3 items:
of resources;. This bidding strategy is simple, does no;
require agents to build internal models of the state of tle‘

system, and makes bid calculations fast.
The auctioneer simply tries to maximize its prdit

10
for the item. Thus the item is sold for 1 unit to consumer
2

With the agents’ behavior defined, a purchasing
mechanism needs to be developed. The Purchase protocol
is based on a sealed bid auction. The clearing price for an
item is determined by the highest bidder, where items enter
a market one at a time. If there are no bids greater than
zero, the item is not sold. This process continues until all
items have entered the market exactly once.

4.3 Sell Protocol

Using only the purchase protocol can find good results with
some data sets, however, it is more likely to find a local
minimum. It would be desirable for the algorithm to
traverse the solution space. To do this, a sell protocol is
introduced where after every round of bidding, each
consumer is allowed to sell back some of its items to the
market (POST procedure). After the items are sold back,
they are placed at the end @éms (the complete list of
items) The agents then enter into another round of bids,

=4
& a,=5
3
b1= 6 1 2 b2= 5
................... - pereessnnnasanean,
Knapsack 1 : Knapsack 2 :
y1 =10 : y.=10

Gl=2, Vi = 3)1 (SQ=5YV2=5)v (SS= 4,v3= 4)
p.=3/2, p2=5/5=1, ps = 4/4
U= (3/2) *4/10 = 6/10, etc...

FIGURE 3. EXAMPLE CONFIGURATION.

and so on for numrounds. It is assumed, for now, should be chosen such that the number of items thrown out

consumers will choose to sell back their least precious itemthe first round from any knapsack will be on average

first. If the number of items sold back each round isbetween 50-100% of the items in the knapsack. With

constant, it is likely that the algorithm will get stuck in a larger ratios oin / m, the average number of items thrown

local neighborhood, which suggests that maybe the numbeaut in the first rounds should be close to 100%. This puts

of items sold back should vary from round to round. Theall items into the solution space quickly. With smaller

number of items sold back to the market in M(x) decreasesatios ofn / m the average number of items thrown out in

with subsequent rounds. This is similar in principle to athe first rounds should be close to 50%. This mixes up the

simulated annealing algorithm where configurationsordering of the items irtemsquickly. It is important to

stabilize over time (Kirkpatrick et al. 1983, van Laarhovergive all items (as well as all combination of items) an

and Aarts 1987, Varanelli and Cohoon1993). M(x) will opportunity to enter the solution space. The number of

make larger surface jumps in the beginning rounds andems thrown out the last round should be close to one, but

smaller jumps in the later rounds. not less than one. This means a valuenofmthrowdeds
Because the goal was to develop a fast algorithm, M(x)vanted:

implements a method for calculating the price an item isnumthrows - numthrowdec(numrounds / sell_randonz .

sold back to the auctioneer that requires little computationSolving for numthrowdec

Assuming that the auctioneer buys an item back for an(numthrows -1)/ (numrounds / sell_random2 numthrowdec

amount equal to what it was previously sold, and assuming= numthrowdes|numthrows(numrounds sell _randon)] - 1.

the auctioneer will always buy back items posted by a

consumer, the algorithm does not have to compute the sell

back price and keep track of individual budgets. This is4.4 Exchange Protocol

because of the assumption that each consumer has enough

initial resources to purchase its optimal solution and that itsot all transactions in an economy are done through the
bidding strategy is consistent with and will never exceed itSnarket place. For instance, neighbors often exchange
budget. If bid and sell back prices varied, then consumergyings like tools, sugar, salt. These transactions do not
would have to alter their bidding strategies as their bUdget?equire pricing mechanisms, but simply take place through
fluctuate. This would introduce a layer of complexity that girect trade. Without these trades, convergence to an
would ultimately translate into computational complexity. optimal solution can take very long. For instance, much
time and effort is saved by borrowing sugar from a

4.3.1 RWNDOM BEHAVIORIN SELL PROTOCOL neighbor vs. making a special trip to the store to buy it.

o) In the POST procedure of M(x), evergxchange
Random behavior is not desirable under unboundedoynds consumers swapmimthrowsrandom items with
rationality. However, an agent's knowledge of the solution{hejr nearest neighbor, defined by the neighbors directly
space is limited because unbounded rationality woulthefore and directly after them in the list of agents. The
dictate unbounded computational resources. Undefalue of exchange should be chosen such that
bounded rationality an algorithm can get stuck in a localeychanget sell_randomand 1< exchanges 4 (M(x)
neighborhood in the solution space. One way to move fro”berformed best with this value eixchangk One possible
this neighborhood would be to introduce random behavior oason for such a small value ekchanges that frequent

which results in occasional random walks across thgyrtering gives the opportunity for all items to be placed in
solution space. all knapsacks.
M(x) incorporates this behavior. Two things happen

everysell_randomrounds in the POST procedure. First, 4 4 Final Algorithm
the number of items thrown out every roungu(nthrows
such thatkround % sell_randon# 0, wherekroundis the The final algorithm is shown in LIStIng 1. The time

current round) is decremented bymthrowdec Second, complexity of M(x) is O(numroundsx nx m) (or O(nlogn)

numthr_owsz ltems are sold back by every ConsUMer¢q: sort, whichever is larger) and the space complexity is
(choosingnumthrows2 items prevented all items from all o(nxm). However, the space complexity can be reduced
knapsacks from being sold back on any particular rounqO O(n+ m) i the, state is represented by a single

kround kround % sell_random = 0 The variables i))
sell_randomand numthrowsare initialized before bidding dimensional array witt structures, where each structure
represents one item and has a field that signifies which

begins. Thesell_randomparameter should have a value X) ! ;
that is about twice the logarithm of the number of roundsknapsack that item is stored in. M(x) stores the statern a

with an upper bound around 30 and a lower bound around* M matrix.
9 (which produced the best results for the particular data
this algorithm was run on). Also, a value faumthrows

5 Experimental Results

This section analyzes the results from running M(x) over a

complete test suite. M(x) is compared to two algorithms: % running time
A bound and bound algorithm, BB, (Martello and Toth

1985), and a simple first fit greedy algorithm with a

random shuffle, G(x). 8
The test data generation algorithm used is described in &
Martello and Toth (1990). Tests were run on 100 different !
types of data, with 20 different data sets for each type. The Ficure4. AS’E?:%/?;;&?:’;’E:S%&?mm i Eféolg igGOSCRELESATED
types were broken up into two different groups of data with '

50 different n/m ratios. The two groups were strongly winner, where average running times for M(x) were a
correlated and uncorrelated. The strongly correlated datﬁaction, of BB, even on tighter error constraints

types had values of = v, which was uniformly random in ’ '
[1, 100]. The uncorrelated data types had values ahd
v; which were both uniformly random in [1, 100]. Within

1

o
©

Experiments were also run on M(250) and BB using a
similar test suite. In most cases M(250) performed well on
. . _correlated data. The mean result was usually within 1% of

these three groups there were 50 different types comprlseﬁfe optimal solution (in many cases the median percent

of all combinations oN = {20, 40, 60, 80, 100, 12(.)’. 140, error was 0%) and the running times for M(250) were a
160, 180, 200} andM = {2, 4, 6, 8, 10}. The capacities of fraction of BB on the larger data sets.

the knapsacks were calculated as: There was a noticeable difference in performance

between correlated and uncorrelated data sets for both M(x)
]) n i1 and G(x) (where correlated items had equal preciousness
¢ uniformly random in o, [0-523 ‘ZC"} and uncorrelated had varying preciousness). With
= k=1 uncorrelated items, M(x) and G(x) were generally able to
reach good solutions in one round for lange Because of
fori =1, ..., m— 1, with the capacity of theth knapsack the way M(x) and G(x) are structured, the benefits of

set to: sorting the items in descending preciousness are realized
n -1 with uncorrelated items since the most precious items are

Cm = [0.5254 —ch} put into the solution space in the first round, which enables

=1 k=1 the algorithms to immediately identify good solutions. This

is not the case with correlated items since all items have the

The size of the test data was limited to N = 200 and MS@me preciousness. Also, the running time of G(1) is much
= 10. The reason for this is that the calculation of the!€SS than M(1) since G(1) is a simple first fit algorithm and
upper bounds in BB require@(nC) space, wher€ is the M(1) is a sealed bid auction. Therefore, G(x) generally
size of the knapsack in the surrogate relaxation problemPerformed better than M(x) with uncorrelated data, except
Since C grows in size as grows (from test generation Under tighter error constraints.
algorithm), the size of the problem that could be solved by ~ M(X) performed better than G(x) on correlated data,
BB was limited by the development environment. especially with tighter error constraints (Figure 5.). Test

From Figure 4, it is clear that the relative running time data showed that G(x) is much less likely to converge to a
of M(x) vs. BB decreases as the number of items increase§00d solution within a limited number of rounds. In
The same thing does not appear to happen with respect to

an increase in the number of knapsacks. It looks as if the 350

relative running times grows polynomially (and may even 300 X

decline aftem = [810]) asm increases. However, oneca 20 A e M() m=2 =60

claim that as the problem size grows, M(x)’s relati\ tme 200 \ —8—G(x) =2 n=60

running times to BB decline. 150 \ —4—M(x) m=6 n=120
BB works very well on smaller data sets. When the 100 N %= G0 m=6 =120

problem size is small, BB performed better than M(x), 0 Z:\.— \

where M(x) had average running times as much as 33 times 0-

BB, to get within 1% of error. This is due in part to the 0.50% e %

data itself, where a solution within 1% of optimal meant Percent error

the_ optimal solution. Therefore, M(x) had to run until the FIGURE5. AVERAGE PERCENTRUNNING TIMES OF G(X) AND M(X) vS. BB

optimal was found. On larger test data M(x) was a clear OVER 20 DATA SETS WITH DECREASINGERRORCONSTRAINTS

general, M(x) performed better than G(x) on data sets A model is provided that can guide the development
where x is greater than [5,10] rounds. This happens wheof algorithms to solve the 0-1 multiple knapsack problem.
a good solution can't be found by a simple first fit One particularly effective and efficient algorithm (M(x))
algorithm. M(x) almost always found good solutions in has been implemented. M(x) uses rounds where agents sell

fewer rounds than G(x). back items, making it effective at finding near optimal
solutions. This distinguishes it from simple greedy
6. Conclusions and Future Work algorithms by allowing the algorithm to traverse the

solution surface. Greedy algorithms stop sooner, but

This paper contributes a novel approach to solving the O_Perhfaps at a IOC","I optimum. The use (.Jf agents prevents
multiple knapsack problem that is simple, robust, and easg;ons!deratlon of |nf§a3|ble solutions while traversing the
to implement. Using agents and markets to modefolution space, which allows M(x) to traverse sparse
algorithms that approximate the 0-1 multiple knapsackSOlution surfaces, often found with 0-1 multiple knapsack
problem works well since it is a resource allocation problems, effectively. A computatlonally simple b'dd_'ng
problem; markets have proven so effective at solvingStrategy was chosen for M(x), thus making the algorithm

complex resource allocation problems: and it allows forefficient.

sufficiently efficient implementations. Markets based on The test resltrltst;onflr? Ejhat l\/(lj(x) Fe_rform; ve][y wgll.
auctions permit agents to negotiate with very simpleM(X) was generally able to find good solutions in a fraction

interactions, resulting in very little computational effort, Of the time it took BB to run on larger data sets, and with

while allowing complex and desirable behaviors to emergdlUch less memory. M(x) performed better than G(x) on
from these simple interactions. arder problems and was able to converge to good solutions

with fewer rounds than G(x).

procedure: M procedure;: POST
input: numrounds, sell_random, exchange, knapsacks, items; input: a, x, Value, sell_random, numthrows, numthrowdec, kround, exchanfje;
output: xstar; output: a, x, Value;
begin begin
1. [initialize] 1. [Sell back random item]
for i= 1to mdo & = size of knapsack i if (kround%sell_random) == @hen
for i= 1tomdoforj= 1tondox;=0; for i = 1to mdo for numthrows / 2lo
sortitemsin descending preciousngss Find (randonj:x; = 1),
numrounds = x if such g existsthen
(check exchang& sell_random); Xj = 0, & = a; + size ofitems]j], markitems[j] as

unstowed, puitems[j] in the back oftems,
Value = Value value ofitems[j];
else do nothing;

if sell_randon< numroundghen
numthrowdec={numthrows/(numroundsd sell_randon)])- 1:

eI;en_umthrows: 1 numthrows = numthrows - numthrowdec
WinningValue =0; 2. [Barter]
_ else if(kround%exchange) == then
2.[Bid] for i= 1tomdo for j= 1to n xtemp = 0
Whl::IE (numrounds> 0) do for numthrowsdo for i= 1tom-1do
egin

Find (nextj andl:x; = 1 andx.1y, = 1 andxtempg # 1
andxtemp.y % 1),
if such g andl existthen
Swap the itemsf one of the items does not fit into the

Value =0; numrounds = numroundsk;
for j= 1tondo

Find(i: 1< i < m)whereB; = By >0

forall I: (1< 1< mandl #), Knapsack it was swapped intioen mark it as
if no such exists or ifitemsfl] is stowedhen unstowed and put into back éms, Updatex, a,and
putitemsfl] at the back ofitems Value, xtemp= 1 andxtemp.y = 1,
elsex; = 1, & = a; - size ofitemsfl], else do nothing;
markitemsfl] as stowed and movieemsfi]
to the back oftems, 3. [Sell back least precious]
Value = Value +value ofitemsfl]; else
if Value> WinningValuethen for i = 1to mdo for numthrowsdo
fori=1tomdofor j= 1tondo Find(j: 1< j< nandx;= 1) wherep, = p; for all I:
xstar = xj, WinningValue = Valup (1S < nandl Z j andx = 1),

[Sell back items]
call POST@ ,x Value ,sell_random ,numthrows,
numthrowdec, exchanjje

if such g existsthen [sell that item back]
Xj = 0, & = a; + size ofitems][j,
markitems[j] as unstowed and move to back of
items Value = Value ~value ofitemsj];
else do nothing;

end;
return xstar,
end.

return X, a, Value, numthrows;
end.

LISTING 1. ANAL ALGORITHM

8

More work could be done in developing more Durfee, E. H. (1988). Coordination of Distributed Problem

algorithms that use the model from this research, whicHSolvers. Kluwer Academic Publishers, Boston.
includes trying new bidding strategies and different market _ i
mechanisms. For instance, Park et al. (1999) discuss tHa'"eée; E. H. and V. R. Lesser (1987). Using Partial Global
trade-offs in a continuous double auction between tWdDIans to Coordinate Distributed Problem Solvers.Pioceedings

- . . f the Tenth International Joint Conference on tificial
extreme bidding strategies where either agents use ,

. . L ntelligence. pp. 875-883.
relevant information to build internal models on other

agents’ behaviors before they make bids (e.g. Kreps 199Q)yrfee, E. H. and V.R. Lesser (1989). Negotiating Task
or agents require no knowledge about the outside world angecomposition and Allocation Using Partial Global Planning. In
do not build models (e.g. M(x)). Exploring more complex Gasser, L. and M. N. Huhns (Eds.),Distributed Artificial
bidding strategies (possibly adaptive strategies) may givéntelligence, Vol. Il. pp. 229-243.
insight into these trade-offs for this particular problem.

Developing parallel algorithms based on M(x) could Eastman, C., S. Chase, and H. Assal (1992). System Architecture

yield even faster algorithms. Friedman and Oren (1995 or Computer Integration of Design and Construction Knowledge.
argue that distributed resource allocation can bedUilding Systems Integration Symposium, A/E/C SystBaitas,

logarithmic in m and linear inn, which suggest that

parallelization would be possible. It is unlikely that BB can Engelbrecht-Wiggans, M. Shubik and r. M. Stark (Eds.) (1983).
be parallelized since it is a depth-first search algorithmayction, Bidding, and contraction: Uses and Theolyew York
which is inherently sequential (Reif 1985). It is also uUniversity Press, New York.

unlikely that G(x) can be parallelized, at least completely,

since first fit decreasing bin packing is P-Compfete Ferguson, D.W., C. Nikolau, and Y. Yemini (1988).
Microeconomic Algorithms for Load Balancing in Distributed
Computer Systems. Proceedings of the "8 International

Acknowledgements - .
9 Conference on Distributed Computing Systems.

I would like to thank the following for their time and

suggestions: Dr. Lois Brady, Dr. Hisham Assal, Dr. Ferguson, D. F., C. Nikolaou, J. Sairamesh, and Y. Yemini
Terence Critchlow, Dr. Scott Kohn, Nathan Dykman, Dr. (1996). Economic Models for Allocating Resources in Computer
Bronis de Supinski, Larry Bolef, and Dr. Len Myers. Systems. In Clearwater (1996). pp. 156-183.

Friedman, E. J. and S. S. Oren (1995). The Complexity of
References _) _ _ Resource Allocation and Price Mechanisms Under Bounded
Aly S. (1994). Object-Agents: A New Role of Design Objects in Rationality. Economic Theory, Vol..6pp. 225-250.
CAD Systems. in Pohl, J. (EdAdvances in Computer-Based
Building Design Systems, 7th International Conference onGagliano, R. A. and P. A. Mitchem (1996). Valuation of Network
Systems Research, Informatics and CybernetRzden-Baden, Computing Resources. In Clearwater (1996). pp. 28-52.
Germany.

Garey, M.R. and D. S. Johnson (1979).Computers and

Baker, A. D. (1996). Metaphor or RE: A Case Study where |ntractability, A Guide to the Theory of NP-Completene¥. H.
Agents Bid with Actual Costs to Schedule a Factory. In Freeman and Company, New York.

Clearwater (1996). pp. 184-223.

_ o o Goldberg, D. E. (1989). Genetic Algorithms in Search,
Chapman, D. (1987). Planning for Conjunctive Goa#stificial Optimization, and Machine Learning.
Intelligence, Vol. 32(3).pp. 333-377.

Huberman, B. A. (1988).The Ecology of ComputationElsevier

Cheng, J. Q. and M. P. Wellman (1998). The WALRAS gcience Publishers B. V., North-Holland-Amsterdam.
Algorithm: A Convergent Distributed Implementation of General
Equilibrium Outcomes. Computational Economics, Vol 120p. Huperman, B. A. (1995). Distributed Computation as an
1-24. Economic System Journal of Economic Perspectives, Vol. 9(1).

pp. 141-152.
Clearwater, S. H. (1996)Market Based Control, A Paradigm for

Distributed Resource AllocationWorld Scientific, New Jersey. Kirkpatrick, S., C. D. Gelatt, M. P. Vecchi (1983). Optimization

]) o by Simulated AnnealingScience Vol. 220pp. 671-680.
Davis, R. and R. G. Smith (1983). Negotiation as a Metaphor for

Distributed Problem SolvingArtificial Intelligence, Vol. 20. pp. Kreps, D. M. (1990). Game Theory and Economic Modeling.
63-109. Oxford; New Yourk: Oxford University Press.

Kurose, J. F. and R. Simha (1989). A Microeconomic Approach
2 Seehttp://www.i.kyushu-u.ac.jp/~seki/P-complet#il.html for a list of P- to Optimal resqurce Allocation in Distributed Computer Systems.
complete problems. IEEE Transactions on Computers, Vol. 38(p. 705-717.

the Eleventh National Conference ontificial Intelligence. pp.
Kuwabara, K., T. Ishida, Y. Nishibe, and T. Suda (1996). An 256-262.
Equilibratory Market-Based Approach for Distributed Resource
Allocation and Its Applications to Communication Network Scarf, H.E. (1984). The Computation of Ekjorium Prices. In
Control. In Clearwater (1996). pp. 53-73. Scarf, H.E. and J.B. Shoven (Edsfpplied General Equilibrium
Analysis.pp. 415-492. Cambridge University Press, Cambridge.
Malone, T. W., R. E. Fikes, K. R. Grant, and M. T. Howard
(1988). Enterprise: A Market-like Task Scheduler for Steiglitz, K., M. L. Honig, and L. M. Cohen 1096). A
Distributed Computing Environments. In Huberman (1988). Computational Market Model Based on Individual Action. In
Clearwater (1996). pp. 1-27.
Markland, R. E. (1989). Topics in Management Science, Third
Edition. John Wiley and Sons, Inc., New York. Stonebraker, M., R. Devine, M. Kornacker, W. Litwin, A. Pfeffer,
A. Sah, and C. Staelin (1994). An Economic Paradigm for Query
Martello, S. and P. Toth (1985). ALGORITHM 632, A Program Processing and Data Migration in Mariposa. Rmoceedings of
for the 0-1 Multiple Knapsack ProblemACM Transactions on the Third International Conference on Parallel and Distributed
Mathematical Systems, Vol. 11(3)p. 135-140. Information Systemspp. 58-67. Austin, TX.

Martello, S. and P. Toth (1990). Knapsack Problems: Tilley, K. J. (1996). Machining Task Allocation in Discrete
Algorithms and Computer Implementationsl. Wiley & Sons, Manufacturing Systems. In Clearwater (1996). pp. 224-252.
c1990.

van Laarhover, P. J. M. and E. H. L. Aarts (1987%imulated
Michalewicz, Z. (1992). Genetic Algorithms + Data Structures Annealing: Theory and Applications. Kluwer Ac. Publ.,
= Evolution Programs.Springer-Verlag. Dordrecht.

Marron, D. B. and C. W. Bartels (1996). Computer-AssistedVaranelli, J.M. and J.P. Cohoon14993). Two-Stage Simulated
Auctions for Allocating Tradeable Pollution Permits. In Annealing. Proc. 4" ACM/SIGDA Phy. Des. Wksp., Lake
Clearwater (1996). pp. 274-299. Arrowhead, CA.pp. 1-10.

Miller, M. S., D. Krieger, N. Hardy, C. Hibbert, and E. D. Walras, L. (1954). Elements of Pure EconomicsAllen and
Tribble (1996). An Automated Auction in ATM Network Unwin. English translation by William Jaffe, originalpyublished
Bandwidth. In Clearwater (1996). pp. 96-125. in 1874.

Miller, M. and E. Drexler {988). Markets and Computation: Waldspurger, C. A., T. Hogg, B. A. Huberman, J. O. Kephart, and

Agoric Open Systems. In Huberman (1988). pp. 133-176. W. S. Stornetta (1992). Spawn: A Distributed Computational
Economy. IEEE Transactions on Software Engineering, Vol.

Park, S., E. H. Durfee, and W. P. Birmingham (1999). An 18(2). pp. 103-117.

Adaptive Agent Bidding Strategy based on Stochastic Modeling.

Proceedings of the Third Annual Conference on AutonomousvVellman, M. P. (1993). A Market-Oriented Programming

Agents, Seattle, WApp. 147-153. Environment and its Application to Distributed Multicommodity
Flow Problems. Journal of Artificial Intelligence Research, Vol.

Pohl, J., L. Myers, A. Chapman, K. Pohl, J. Primrose, and A.1, pp. 1-23.

Wozniak (1997). Decision-Support Systems: Notions, Prototypes,

and In-use Applications. TR CADRU-11-97,CAD Research Wellman, M. P. (1996). Market-Oriented Programming: Some

Center, Cal Poly San Luis Obispo, CA. Early Lessons. In Clearwater 1996. pp. 74-95.

Reif, J.H. (1985). Depth-first Search is Inherently Sequential.Yemini, Y. (1981). Selfish Optimization in Computer Networks.

Inf. Process. Lett., Vol. 20pp. 229-234. Proceedings of the 2D IEEE Conference on Decision and
Control, San Diego.pp. 281-285.

Roth, A. E. (1985). Game-Theoretic Models of Bargaining.

Cambridge University Press, Cambridge. Zlotkin, G. and J. S. Rosenschein (1996). Mechanisms for
Automated Negotiation in State Oriented Domaindournal of

Sandholm, T. (1993). An Implementation of the Contract netArtificial Intelligence Research, Vol.5. pp. 163-233.

Protocol Modeled on Marginal Calculations. Rroceedings of

10

