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Abstract. We propose a new framework for calibrating parameters of
energy functionals, as used in image analysis. The method learns pa-
rameters from a family of correct examples, and given a probabilistic
construct for generating wrong examples from correct ones. We intro-
duce a measure of frustration to penalize cases in which wrong responses
are preferred to correct ones, and we design a stochastic gradient algo-
rithm which converges to parameters which minimize this measure of
frustration. We also present a first set of experiments in this context,
and introduce extensions to deal with data-dependent energies.
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1 Description of the Method

Many problems in computer vision are addressed through the minimization of
a cost functional U. This function is typically defined on a large, finite, set
2 (for example the set of pictures with fixed dimensions), and the minimizer
of x — U(x) is supposed to conciliates several properties which are generally
antithetic.

Indeed, the energy is usually designed as a combination of several terms, each
of them corresponding to a precise property which must be satisfied by the opti-
mal solution. As an example among many others, let us quote probably the most
studied cost functional in computer vision, namely the Mumford/Shah energy
(cf. [5]), which is used to segment and smooth an observed picture. Expressed
in a continuous setting, it is the combination of three terms, one which ensures
that the smoothed picture x, defined on a set D C IR? is not too different from
the observed one &, another which states that the derivative of the smoothed
picture is small, except, possibly, on a discontinuity set A, and a last one which
ensures that the discontinuity set has small length. These terms are weighted by
parameters, yielding an energy function of the kind

U(x)z/D(g(s)—x(s))QdHa/D IV % 2ds + BH(A) (1)
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where H(A) is Haussdorf measure of the discontinuity set.
In this paper, we consider cost functionals of the kind

d
U(z) = Up(z) + Z 0,U; ()

where the 6; are positive parameters. Whatever vision task this functional is
dedicated to (restoration, segmentation, edge detection, matching, pattern reco-
gnition, ... ), it is acknowledged that variations in the values of the parameters
have significant effects on the qualitative properties of the minimizer. Very often,
these parameters are fixed by trial and error, while experimenting the optimiza-
tion algorithm. We here propose a systematic way for tuning them, based on a
learning procedure.

The method is reminiscent to the qualitative box estimation procedure which
has been introduced by Azencott in [T]. It relies on some a priori knowledge which
is available to the designer. The basic information can be expressed under the
statement: For some configurations x and y in 2, one should have U(z) > U((y).
In other terms, y is a “better” solution than .

When this is known for a number of pairs of configurations, {(z,yx), k =
1,..., N}, we get a system of constraints which take the form, for k =1,... , N:

d
Uo(ye) = Uo(x) + D :(Uilyx) — Uilax)) <0
i=1

If we let 0 = (91, .. ,Gd), A = Uz(yk) - Ui(l‘k), and A, = (Akla R 7Akd)7 this
can be written

A0k+<97 Ak> Soak: 1,... 7Na
(-, .) being the usual inner product on IR®.

Solving such a system of linear inequalities can be performed by a standard
simplex algorithm. However, when the system has no solution (which is likely to
occur if there are many inequalities, and/or if they are deduced for the obser-
vation of noisy real data), it is difficult to infer from the simplex method which
parameter should be selected. We thus define a new cost functional in the pa-
rameters, or measure of frustration, which is large when the inequalities are not
satisfied: denote by ot the positive part of a real number «, and set

N
Fo(0) = [Aok + (0, Ap)]T
k=1

It is practically more convenient to use a smooth approximation of this fun-
ction, so that we let, for A > 0

N | =

N
Fa(0) = 5 ax[Aok + (0, Ap)]
k=1

with ¢ () = Alog (e% +e > ) + a. Given properly selected examples, the mini-
mization of F) is the core of our estimation procedure. We therefore study some
related properties.
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2 Properties of the Function F)

Proposition 1. For all A > 0, F)\ is a conver function of 6. Moreover,
lim Fy(0) = Fo(6).
A—0F

This is more or less obvious and left to the reader. Let us, however, write down
the derivatives of Fy, for A > 0, since they will be used in the sequel (recall
that the first derivative is a vector and the second derivative a d x d symmetric
matrix). One has:

F{(0) = é (1 + tanh B(A% +0, Ak>)D Ay, (2)
F(0) = }\ZN: (1 — tanh? B(A% + (0, Ak>)D Agt A (3)
k=1

Denote by XA the covariance matrix of the Ay, namely X4 = Z,iv:l AR LA,

Proposition 2. The matriz X A is positive definite if and only if, for all A > 0,
the function F) is strictly convez, and if and only if, for some A > 0, the function
F is strictly convex

Proof. If, for some X > 0, and for some 6, FY () is not definite positive, there
exists a vector u € IR? such that ‘u.F}'(0).u = 0. But one has

b Y (0).u = i:l (1 — tanh? B(A% + (0, A@)D (u, Ap)?

and this expression can vanish only if, for all k, (u, Ag) = 0, but this implies
that ‘uX au = 0 so that X 4 cannot be definite.

Conversely, if X4 is not positive, one shows similarly that there exists u such
that (u, Ag) = 0 for all k, but this implies that, for any A > 0, for any 6 and
any t € IR, F(0 + tu) = F»(0) so that F\ cannot be strictly convex.

Thus, non convexity is equivalent to the existence of a fixed linear relation among
Akla A ,Akd.

We now address the question of the existence of a minimum of F). We assume
A > 0 and strict convexity, ie X’ o > 0. The convex function F) has no minimum
if and only if it has a direction of recession, ie. if and only if there exists a
vector u € IR? such that, for all 6, t — F\(6 + tu) is decreasing. By studying
the derivative of this function, we can show that, in order to have a direction of
recession, there must exist some w such that (A, u) <0 for all k, with a strict
inequality for some & in order to have strict convexity. If v provides a direction
of recession, then t.u will be a solution of the original set of inequalities as soon
as t is large enough. This is a very unconvenient feature, since, in particular, it



Calibrating Parameters of Cost Functionals 215

will completely cancel out the role of Uy. Such a situation is in fact caused a
lack of information in the original set of examples (g, yx),k =1,..., N, in the
sense that this set fails to provide situations in which the role of Uy has some
impact.

3 Learning from Examples

3.1 Objective Function from Small Variations

We now provide a framework in which this simple technique can be applied when
some examples of “correct configurations” are available. They may come, either
from simulated, synthetic data, or from real data which have been processed by
an expert. The idea is to generate random perturbations of the correct confi-
gurations and to estimate the parameters so that the perturbed configurations
have a higher energy than the correct ones.

Let us first assume, that a single configuration yq is provided. Our goal is
thus to design the parameters so that yy will be, in some local sense, a mi-
nimizer of the energy. The key of the learning process is to define a process
which generates random perturbations of a given configuration. This process of
course depends on the application, and should provide a sufficiently large range
of new configurations from the initial one. Formally, it will be associated to a
transition probability P(yo,.) on {2, which will produce variations of the correct
configuration yg. Assume this is done K times independently, and that a sample
Z1,...,ZTx has been drawn from this probability. From the fact that yg is a good
configuration, we assume that, for all k, U(yo) — U(z) < 0. Slightly changing
the notation, define A(yp,x) to be the vector composed with the U;(yo) — U;(z)
fori = 1,...,d and h(yo,x) = Us(yo) — Uo(x). The previous method leads to
minimize

K
FE0) = 5 ax (o, + (0, Ao, 22)]
k=1

Now, when K tends to infinity, the limit of F/{( /K is almost surely given by
(since the samples are drawn independently)

FA(©) = LBy, {ar A0, 74) + (0. Aluo, 20))])
where E,, is the expectation with respect to the probability P(yo,.). This func-
tional becomes our measure of frustration, which should be minimized in order
to calibrate 6.
Assume now that several examples are provided, under the form of a learning
set y1,...,yn: the new objective function is

FAO) = 3 D" By, {ar Ay, 0) + (0, Ay, 1))
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3.2 Minimizing Fj
To simplify the notation, we restrict again to the case of a single example yo. We
still have the fact that, for any A, the function F) is convex, with first derivative

Fy(0) = E,, {(1 + tanh Ll\(h(yo, )+ (6, Alyo, .)))]) Alyo, .)} 4)

According to the discussion of section 2] the transition probability P should,
to avoid directions of recession, explore a sufficiently large neighborhood of g,
to provide enough information on the variations of U. Because of this, it is likely
that the gradient in (H) cannot be efficiently computed, neither analytically nor
numerically. To minimize F in such a case, we use a stochastic gradient learning
procedure, which we describe now:

Learning Procedure

0. Start with some initial value O
1. At time n, 0, being the current parameter, draw at random a sample X"
from the transition probability P(yo,.), and set

Ousr = = ss (1 tanh | L0100m, X + 9, Ao, X)) ) Ao X7
)

where (Y, n > 1) is a decreasing sequence of positive gains satisfying Y, Yn =
+00 and Y, 72 < +o0.

Standard results in stochastic approximation (see [2], for example), show
that, in the absence of direction of recession, the sequence (6,,) generated by
this algorithm almost surely converges to the minimizer of F).

If there are more than one example y1, ... , Y, the previous algorithm simply
has to be modified by taking, at each step, yo at random in the set {y1,... ,yn}-

3.3 Remark

Notice that, under its most general form, and when the perturbations explore a
large set of configurations, there is very little chance that there exists a parameter
set for which all the constraints are truly satisfied, that is for which the energy of
the correct configurations y; are smaller than the energies of all the perturbations
which might be generated by P(y;,.). This could be made possible by designing
an energy with a very large number of terms, which will then essentially work
as an associative memory (like an Hopfield neural net [4]), in which the correct
configurations are stored, but this certainly is not a desirable feature of an energy
function in image processing. A more efficient goal is to learn some common
important trends of the correct configurations, and not all their peculiarities, in
which case having some residual frustration is not a problem.
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4 Tllustration

4.1 Description

We illustrate this methodology with binary example. Let {2 be the set of confi-
gurations z = (xs,5 € S := {1,...,M}?) with 25 = 0 or 1 for all s. We define
an energy U(x) on {2 as follows.

Let Up(x) = >, . For a radius r > 0 and a direction a € [0, 27, we define
an energy term U, , which operates as an edge analyzer in the direction «, with
scale 7.

For s = (i,7) € S, let B,(r) be the discrete ball of center s and radius r, ie.
set of all s’ = (i',5') € S such that (i —i')% + (j — j')? < r2. For each direction
a, divide this ball in two parts B (r,«) and B; (r,«) according to the sign of
(i —i')cosa+ (j — j') sina, then define

Ura(z) = Z Z Ts' — Z Ty

s€S |s'eBY (r,@) s'e€By (r,a)

Finally, select a series of pairs (r;, ;) for i =1,... ,d, and set

U(l‘) = eoUo(l‘) + Z eiUm,ai (Z‘)

Our experiment will consist in learning the parameters 6, . .. , 64 on the basis
of a single image yy, and then try to analyze which features of the image have
emerged in the final model. Notice that we have added a parameter, 6y, for
the first term Uy, which is also estimated. If there exist parameters such that
U(zx) > Ulyp) for all configurations = which can be generated by P(yo,.), the
extraneous parameter is redundant (only its sign matters), and this creates a
direction of recession for the minimized functional. But such a case did not seem
to happen in the present set of experiments, so that, even with one additional
parameter, the measure of frustration did remain strictly convex.

For learning, the perturbations P(yo,.) consist in adding of deleting balls
of random centers and radii to the configuration yq. To validate the estimated
parameters, we run an energy minimization algorithm (simulated annealing with
exponentially fast decay of temperature) with different starting configurations
(including the learned image yq itself) to see whether yq is close to the minimizing
solutions.

4.2 Experiments

We have used three pictures (disc, square and triangle, see fig. [T), and estimated
parameters independently for each picture. The results were quite different for
each image.

The disc-picture seems to have been perfectly stored, in the sense of an asso-
ciative memory, by the learned parameters: starting with any initial picture, the
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final restored picture is a disc, with only minor variations. This is not surprising,
in fact, since the energy function is itself based on disc-shaped analyzers.

The square picture is stabilized by the restoration algorithm, again with
minor variations, so that the estimation has suceeded in making this picture
(almost) a local minimum of the energy. However, starting from other configu-
rations does not always result in a white square on a dark background, and a
phenomenon reminiscent of phase transition can be observed (see fig. B)). This is
due to the fact that, in the square picture, the number of white pixels is almost
equal to the number of black pixels.

Finally, the triangle picture is not even stabilized by the restoration algo-
rithm. It is in fact significantly modified, as shown in fig. Bl As stated before,
it would not be difficult to design an energy with additional terms in order to
perfectly store the triangle. It is however more interesting to stay with a given
energy, and analyse which features for the triangle picture have been learned.
This can be seen in fig. [7l, where the restored picture from a uniformly white
input clearly has nothing to do with a triangle, but shares essential local features,
in particular regarding the orientations of the boundaries.

Fig. 2. Starting with a white picture with parameters estimated from the disc
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HEGD

Fig. 3. Starting with a black picture with parameters estimated from the disc

BRI

Fig. 4. Starting from the disc with parameters estimated from the square

Fig.5. Starting with a white picture with parameters estimated from the square,
exhibiting a phase-transition-like phenomenon

Fig. 6. Output of the restoration algorithm, initialized with the triangle, and using
parameters estimated from the triangle
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RN LV

Fig. 7. Starting with the white picture with parameters estimated from the triangle

5 Extension to Data-Dependent Cost Functions

5.1 Generalities

In a typical use of energy minimization methods for image analysis, one (or
several terms) in the energy depends on an extraneous configuration of observed
data &, like the first term in equation (). Such situations directly arise from the
Bayesian framework which has been introoduced in [3], and applied many times
since then.

In this case, the calibrated parameters should be able to adapt to variations
of the data, and 64, ... , 04 should be functions of £. One simple way to address
this is to model each 6; as a linear combination of some fixed functions of £, as
in regression analysis:

K
b; = Z Bij®;(€)
=1

The functions @; are fixed in the learning procedure. They should be relevant
statistics of the data, for the given application. From a formal point of view, we
are back to the framework of section B.2], with the new energy terms

Uij(&y) = 2;(§)Ui(y)
and parameters (3;;. However, in this case, it is clear that learning can only
be performed on the basis of sufficiently large number of correct analyses, of
the kind (£1,41),-.-,(En,yn), since we are going to estimate functions of the
variable £.

An alternative to choosing fixed functions @; is to set ®; = ®(h; + (W;, &))
where h; € IR and W; is a vector of same dimension as &, which also have to be
estimated. Here @ is a fixed function, typically sigmoidal. It is not hard to adapt
the stochastic gradient descent algorithm to deal with this model, which will
have more learning power than the initial linear combinations. The counterpart
of this is that the measure of frustration is not convex anymore.

We now illustrate this approach by considering a simple unidimensional fra-
mework.
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5.2 A 1D Example

We consider the issue of smoothing a function ¢ : [0,1] — IR. Fixing a discre-
tization step § = 1/M, we let & = £(kd) and consider the cost function

N

U&z) =D (& —z)* + XD _(ak — wx1)?

k=1 =2

where z is the unknown smooth signal.
To calibrate the parameters, we let (@1(£),...,P,(§)) be regularly spaced
quantiles of the distribution of (& — &x—1) and look for A in the form

p
A= Xdi(y)
1=1

The learning dataset is generated by first simulating the smooth signal = by
random linear combinations of cosine functions on [0, 1]:

K
z(t) = Z ay cos(wpt + ¢p)

p=1

where the «,, w, and ¢, are random; £ is obtained from z by adding a gaussian
white noise of random variance o2. The random perturbations in the learning
procedure consisted in adding a small variantion to one or several zy’s.

The learning procedure achieved the estimation of A\ as a linear function of
the distribution of the & — &;_1. It is an odd function of the quantiles, which
implies that it is not affected if a constant value is added to & — &1 (ie. a
linear term added to &;). It can be very tightly approximated by the polynémial
2507 + 3.1 % ¢, which means that Zq A(g) is a linear combination of the 8th
centered moment and the variance of the & — &;_1.

The cost function U has been minimized on test data generated indepen-
dently, and some results are shown in fig. [§

6 Conclusion

In this paper, we have developed a new learning framework for calibrating para-
meters of energy functionals, as used in image analysis. Given a probabilistic way
for building wrong examples from correct ones, we have introduced a stochastic
gradient algorithm which consistently estimates parameters, in order to minimize
a measure of frustration designed to wrong examples to have a larger energy than
correct ones. An extension of the method in the case of data-dependent ener-
gies have been proposed, resulting in an adaptive set of parameters reacting to
the statistical distribution of the data. The approach has been illustrated by a
preliminar series of experiments.

We are now aiming at developping this approach to deal with realistic ima-
ging problems. We are, in particular, studying image segmentation energies, and
developing 2D perturbations to learn parameters.
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Fig. 8. Smoothing 1D data. Left and right: two distinct examples; up: observed and
estimated signals; down: true and estimated signals.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 9. Plot of the \; vs. the quantiles
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