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Abstract. A Bayesian approach to object localisation is feasible given suitable
likelihood models for image observations. Such a likelihood involves statistical
modelling — and learning — both of the object foreground and of the scene back-
ground. Statistical background models are already quite well understood. Here we
propose a “conditioned likelihood” model for the foreground, conditioned on va-
riations both in object appearance and illumination. Its effectiveness in localising
a variety of objects is demonstrated.

1 Introduction

Following “pattern theory” [15l21]], we regard an image of an object as a function
I(x), x € D C R?, generated from a template image I(x) over a support S that
has undergone certain distortions. Much of the distortion is accounted for as a warp of
the template /(x) into the image by a warp mapping T'x:

I(x) =I(Tx(x)), x € S, ()

where T'x is parameterised by X € X over some configuration space X, for instance
planar affine warps. We adopt the convention that X = 0 is the template configuration
so that T'x is the identity map when X = 0.

Using the warp framework, “analysis by synthesis” can be applied to generate the
posterior distribution for X . Given a prior distribution po (X') for the configuration X, and
an observation likelihood L(X) = p(Z|X ) where Z = Z(I) is some finite-dimensional
representation of the image I, then the posterior density for X is given by

P(X|Z) o< po(X)p(Z|X). 2)

This can be done very effectively by factored sampling [16] which produces a weighted
“particle-set” { (s 7r1),..., (sN), wxn)},of size N that approximates the posterior [7].
From this approximation of the distribution fusion of inference about X from different
sensors, over time and across scales. It also allows a structured way of incorporating
prior knowledge to the algorithm.

Much of the challenge with the pattern theory approach is in constructing a suitable
matching score. Examples of non-Bayesian approaches include correlation scores [9}
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4I10J17)) and mutual information [27]]. But factored sampling, calls for a Bayesian ap-
proach in which both the foreground and background image statistics are modelled [14].
In particular, modelling a likelihood p(Z|X) in terms of the foreground/background
statistics of receptive field outputs is employed in Bayesian Correlation [26]. Although
background statistics for Bayesian Correlation, and their independence properties, are
quite well understood foreground statistics are more complex.

Foreground statistics should be characterised by the response of a receptive field
conditioned on its location relative to the object and on the object’s pose. This can be
achieved by performing template subtraction. This increases the specifity and selectivity
between background and foreground over the method of adhoc foreground “partitioning”
implemented in [26]. The weakness of the latter approach is demonstrated in figure [1l
Even when receptive fields are mutually independent over the background, independence
need not necessarily hold over the foreground. It was hoped that the new foreground
measurements would also be decorrelated and/or independent. However, it turns out
that the statistical dependencies between measurements are not greatly affected by the
template subtraction. This paper proposes a more acutely tuned foreground likelihood,

Fig. 1. Simple foreground partitioning gives poor selectivity. An decoy object produces an
alternative likelihood peak of sufficient strength that the mean configuration (black contour) is
substantially displaced from the true location of the head. (white contours represent the posterior
distribution; wider contours indicate higher likelihood for the face object.)

conditioned explicitly on variability of pose and illumination, that pays greater respect
to the deterministic properties of the object’s geometric layout.

2 Modelling Image Observations

In the framework presented here, image intensities are observed via a bank of filters,
isotropic ones in the examples shown here, though steerable, oriented filters [23]] would
also be eminently suitable. The likelihood of such observations depends both on foregro-
und and background statistics [26] and this approach is reviewed below, before looking
more carefully at foreground models in the following section.
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2.1 Filter Bank

The observation Z = Z(I) is to be a fixed, finite dimensional representation of the
image I, consisting of a vector Z = (z1, . .., 2k ) Wwhose components

zk:/ W, (x)I(x)dx, 3)
Sk

are an inner product of the image with a filter function W, , over a finite support Sj.
In [26] it was argued that a suitable choice of filter function is a Laplacian of Gaussian
W, centred at x:

Wy (x') = V3G, (X —x)

with hexagonally tesselated, overlapping supports as in figure 2] The scale parameter of
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Fig. 2. Tessellation of filter supports. Filters are arranged in a hexagonal tessellation, as shown,
with substantial overlap (support radius » = 40 pixels illustrated).

the Gaussian is ¢ and it is adequate to truncate the Gaussian to a finite support of radius
r = 3o. The tessellation scheme was arrived at [26] by requiring the densest packing
of supports while maintaining statistical de-correlation between filters over background
scene texture. In practice, at that separation, filter responses are not only decorrelated
but also, to a good approximation, independent over the background.

2.2 Probabilistic Modelling of Observations

The observation (ie output value) z from an individual filter is generated by integration
over a support-set S such as the circular one in figure 3, which is generally composed
of both a background component B(X), and a foreground component F'(X):

z| X = / W(x)I(x)dx + W(x)I(x)dx. 4)
B(X) F(X)

MAIN NOISE SOURCE

Densities p®(z|p) and p” (z|p), 0 < p < 1 for the background and foreground com-
ponents of mixed supports must be learned. Then, a particular object hypothesis X is



310 J. Sullivan, A. Blake, and J. Rittscher
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Fig. 3. Foreground and background filter components A circular support set S is illustrated
here, split into subsets F'(X) from the foreground and B(X) from the background. Assuming
that the object’s bounding contour is sufficiently smooth, the boundary between foreground and
background can be approximated as a straight line. The support therefore divides into segments
with offsets 2rp and 2r(1 — p) for background and foreground respectively.

evaluated as a global likelihood score p(Z|X ), based on components z1, . . ., zx which
need to have either a known mutual dependence or, simpler still, be statistically inde-
pendent. Then the observation likelihood can be constructed as a product

K
p(Z1X) = [ p(z] X). ©)
k=1

containing terms p(zx|X) in which the density p(zx|X) depends, to varying degrees
according to the value of X, on each of the learned densities p” and p® for the foreground
and the background model. This places the requirement on the filter functions W, , that
they should generate such mutually independent zx. As mentioned in section [2.1] this
is known to be true for zj, over the background. Here we aim to establish independence
also over the foreground.

3 Modelling the Foreground Likelihood

The modelling of background components is straightforward [26], simply inferring a
density for responses z from a training set of filter outputs z,,, calculated from supports
S,, dropped at random over an image [26]. Then p®(z|p) can be learned for some finite
set of p-values, and interpolated for the p-continuum. A similar approach can be used
for the foreground case p” but with some important additional complexities however.

3.1 Spatial Pooling

The distribution p?(z|p) is learned from segments dropped down at random, anywhere
on the background. Over the foreground, and in the case that p = 0, p” (z|p) is similarly
learned from a circular support, dropped now at any location wholly inside the training
object. However, whenever p > 0, the support F'(X) must touch the object outline;
therefore p” (z|p) has to be learned entirely from segments touching the outline. Thus,
for p = 0, statistics are pooled over the whole of the object interior — ““spatial pooling”,
whereas for p > 0 statistics pooling is restricted to occur over narrow bands, of width
2r(1 — p), running around the inside of the template contour.
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Spatial pooling dilutes information contained in the gross spatial arrangement of
the grey-level pattern. Sometimes this provides adequate selectivity for the observation
likelihood, particularly when the object outline is distinctive, such as the outline of a
hand as in figure 2| The outline of a face, though, is less distinctive. In the extreme
case of a circular face, and using isotropic filters, rotating the face would not produce
any change in the pooled response statistics. In that case, the observation likelihood
would carry no information about (2D) orientation. One approach to this problem is
to include some anisotropic filters in the filter bank, which would certainly address the
rotational indeterminacy. Another approach [26] to enhancing selectivity is to subdivide
the interior F of the objectas 7 = FoU...UFy,., and construct individual distributions
p”i(z|p = 0) for each subregion ;. However, the choice of the number and shape of
subregions is somewhat arbitrary. It would be much more satisfying to find a way of
increasing selectivity that is tailored specifically to foreground structure, rather than
imposing an arbitrary subdivision, and that is what we seek to do in this paper.

3.2 Warp Pooling

In principle the foreground density p” depends on the full warp T'x. This means that
p” (2|p) must be learned not simply from one image, but from a training set of images
containing a succession of typical transformations of the object, and this is reasonable
enough. In principle, the learned p” should be parameterised not merely by p(X), as was
the case for the background, but by the full, multi-dimensional configuration X itself,
and that is not computationally feasible. One approach to this problem is that if these
variations cannot be modelled parametrically, they can nonetheless be pooled into the
general variability represented by p” (z|p). However, such “warp pooling” dilutes the
available information about X, especially given that it is combined with spatial pooling
as above.

3.3 Foreground Distribution

The predictable behaviour of filter responses over natural scenes, which applies well
to background modelling, could not necessarily be expected to apply for foreground
models. Filter response z over background texture assumes a characteristic kurtotic
form, well modelled as by an exponential (Laplace) distribution [6]]. The foreground,

p(zIX)

foreground

background

Fig. 4. Foreground and background distributions for support radius » = 20 pixels. The back-
ground distribution has higher kurtosis, having extended tails.
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being associated with just a single object, is less variable and does not have extended
tails (figure H). Hence the exponential distribution that applies well to the background
[6] is inapplicable and a normal distribution is more appropriate.

As for independence, filter outputs over the background are known to be uncorrelated
at a displacement of r or 3¢ but this need not necessarily hold over the foreground. No-
netheless, autocorrelation experiments done over the foreground have produced evidence
of good independence for V2( filters, as in figure [l (b).

4 Conditioned Foreground Likelihood: Warping and Illumination
Modelling

It was demonstrated in section[Ilthat greater selectivity is needed in the foreground mo-
del. Generally this can be approached by reducing the degree of pooling in the learning
of p” . A previous attempt at this inhibited spatial pooling by subdivision, but this is not
altogether satisfactory, as explained in the previous section. The alternative investiga-
ted here simultaneously diminishes both warp pooling and spatial pooling. It involves
warping a template image I, onto the test image I and taking the warped T'x (I) to be
the mean of the distribution for /. This warping scheme is described in the next section,
together with a further elaboration to take account of illumination variations.

4.1 Approximating Warps

Two-dimensional warps 7'x could be realised with some precision, as thin plate splines
[8l]. A more economical, though approximate, approach is proposed here. First the warped
outline contour is represented as a parametric spline curve [2)], over a configuration-space
X, define to be a sub-space of the spline space. Then the warp of the interior of the object
is approximated as an affine transform by projecting the configuration X onto a space
of planar-affine transformations [7| ch 6]. The fact that this affine transformation warps
the interior only approximately is absorbed by pooling approximation error, during
learning, into the foreground distribution p”. The resulting warp of the interior then
loses some specificity but is still “fair” in that the variability is fairly represented by
probabilistic pooling. (A similar approach was taken with pooled camera calibration
errors in mosaicing [24]].)

To summarise, the warp model is bipartite: an accurate mapping of outline contour
coupled with an approximate (affine) mapping of the interior. The precision of the map-
ped contour ensures that foreground/background discrimination is accurate, and this is
essential for precise contour localisation. The approximate nature of the interior map-
ping is however acceptable because it is used only for intensity compensation in which,
especially with large filter scale o, there is some tolerance.
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4.2 Single Template Case

Given a hypothesised warp T'x, the output z(x) of a filter Wy centred at x is modelled
as

2(x) = (W, Tx - I +n) = (Wy,Tx - I) + (Wx,n) ©)
=Z(x, X) + Yx

where Z(x, X) is the predicted filter output and where Yy is a random variable, whose
distribution is to be learned, assumed to be symmetric with zero mean. Itis the residue (@)
of the predicted intensity from the image data and is likely to have a narrow distribution
if prediction is reasonably effective as in figure[3l Thus the distribution py is far more
restrictive than p” . Using the Yy ’s instead of the z(x)’s in the calculation of the global
likelihood p(Z|X) results in more powerful and specific detection.

(a) Template (b) Image Data (c) Differenced Image

Fig. 5. Template subtraction.(a) The white contour marks the outline of the intensity template 1.
When subtracted from an image I (b), the residue (c) is relatively small, as indicated by the dark
area over the face.

Note that the predicted output Z(x, X ) can be approximated as
(%, X) &~ (Tx - Wy * I)(x)
which is computationally advantageous as the filtered template Wy * I can be computed
in advance. The approximation is valid provided T'x is not too far from being a Euclidean

isometry. (An affine transformation, which is of course non-Euclidean, will change a
circular filter support .S, and this generates some error.)

4.3 Light Source Modelling

A family of templates I, ..., I is generated corresponding to K lighting conditions,
and typically K = 4 to span a linear space of shadow-free, Lambertian surfaces under
variable lighting [5]]. So the image data is can be modelled as I = T'x (a - I) + n. Now
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the predicted filter outputs are defined to be

Ax, X, a) = (W, Tx (- 1)) = > ap (W, Tx - Ii)
k
= apii(x, X) 7
k

Ilumination modelling in this way makes for better prediction allowing the distribution
of the residual py to become even narrower (see figure [8)).
4.4 Joint and Marginal Distributions for Illumination-Compensated Foreground

In order to preserve the validity of (3)), the independence of the Y for sufficiently
separated x should be checked. For instance, the correlation

Clx,x'] = &[Yx, Yy ].

should — 0 sufficiently fast as |x — x’| increases. As figure [l shows, the correlation

4 correlation 4 correlation
1 1

>

0 3*si§ma 6*si§ma ) 3*si§ma 6"si§ma

>

Fig. 6. Foreground correlation. The correlation between filter outputs at various displacements
is shown (black) for Yx, the resuidual between the image data and the template and this is very
similar to the correlation of the z(x) (grey), and the Y obtained by taking illumination factors into
account (light grey). Right: the foreground correlation (grey) is similar to background correlation
(black).

has fallen close to zero at a displacement of r, giving independence of adjacent outputs
for the support-tessellation of figure 21 Correlation functions for foreground and back-
ground are broadly similar and so fit the same grid of filters. Finally, de-correlation is
a necessary condition for statistical independence but is not sufficient. Independence
properties can be effectively visualised via the conditional histogram [25]]. Figure[7 dis-
plays histograms which estimate p(Yx, Y| |x — x'| = §) where § = 0, 20,30 and x
and x’ are diagonally displaced (r = 30). The greylevel in each histogram represents
the frequency in each bin. White indicates high frequency and black none. From these
it is clear that at the grid separation » = 30, Yy, Yy are largely independent. It might
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5:20 5:3

Template subtraction + illumination compensation

Fig.7. Joint conditional histograms of pairs of filter responses. As J increases the structure of the
histograms decreases. When § = o the white diagonal ridge indicates the correlation between the
filter responses. While at § = 3o this ridge has straightened and diffused. The two rows of figures
are extremely similar and show that the template subtraction and illumination compensation have
at most a marginal effect as regards whitening the data.

have been expected that template subtraction, especially with illumination compensa-
tion, would have significantly decreased correlation of the foreground but that was not
the case. Where there is a significant effect is in the marginal distribution for p” which
becomes significantly narrower, as figure Blshows.

+ )
illum
0.3
— sub
— raw
0.2
0.1}
V4
0 -20 0 20 "

Fig. 8. Illumination compensation narrows py (Yx). Each of the graph displays py or
p” (2) learnt from data at different stages of preprocessing, Grey:raw filter responses (p” (z)),
Black:template subtracted residual responses and Light Grey:template subtracted plus illumination
compensated residual responses.

This is a measure of the increased selectivity of modelling the foreground with
template subtraction, especially when this is combined with illumination compensation.
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5 Learning and Inference

The goal is to infer the value of X from p(X|Z) via Bayes’ Rule and the constructed
likelihood function p(Z|X). If the test data was labelled with the value of the o of
the illumination/object inference would be straight forward. Modelling the illumination
results in the fact that we have instead p(Z| X, a). In principle the correct way to proceed
would be to integrate c out of p(Z| X, ) to construct

L(X) = p(Z|X) = /a (21X, c)po(e X)dox ®)

However, due to the probable dimensionality of o and the computational expense of
exhaustively calculating p(Z| X, «) it is not feasible to compute this integration numeri-
cally. In fact maximisation of p(Z|X, a) over «x in place of integration is an well known
alternative that is simply an instance of the model selection problem. A factor G(Z, X)
known as the “generacity” factor (and has elsewhere been known as the “Occam” factor
[20]) is a measure of robustness [12] of the inferred & — the stability of Z with respect
to fluctuations in o

JaP(Z|X, a)po(a|X)d o
p(Z|X, &(X, Z))

G(Z,X) = ©)

The generacity G is then the additional weight that would need to be applied to the
maximised likelihood .
L(X)=L(X, &)

to infer the posterior distribution for X:
p(X|Z) o L(X)G(Z, X)po(X). (10)

If G(Z, X) does not vary greatly then it is reasonable to use L(X) instead of p(Z|X).

5.1 MLE for Illumination Parameters

As stated it has been assumed that the residual variable Y, in [@l is drawn from the
stationary distribution py . The likelihood function for particular values of X and « is
the product of three separate components, the likelihood of the hypothesised background,
foreground and mixed measurements as:

L(X,e) = p(Z|X, ) = [] pv(Yxia) [] p°0) ] plzilo(X)) an

i€Lp i€lp i€l
= LF(X, OL)LB(X>LA[(X)

where Z;r p 1y are the sets containing the foreground,background and mixed measu-
rements. In the implementation of template subtraction and illumination compensation
only the foreground measurements are affected. Therefore only L is dependent upon
o.
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Intuitively it would seem reasonable to solve for av by maximising Lz in [[1] with
respect to o:

a(Z,X) zargm(%xLF(X,a) (12)

and then proceed with « fixed as & and p(Z| X, «) is used. A functional form of py
is needed though in order to be able to differentiate equation 21 From figure[§] it is
plausible to assume that py is a zero mean Gaussian with variance 2. It then follows
that

Lp(X,a) ~MVN(0,v*Ig k) (13)

where I«  1s the identity matrix and MVN stands for the multi-variate normal distri-
bution. Obviously maximisation of equation[I3]is equivalent to the least squares mini-
misation

a(Z,X) = argmoién Z(Z(X’) — (x4, X, a))? (14)

Thus in the factored sampling algorithm for inferring X the following is implemented.
For each hypothesis X}, a corresponding MLE &y, is calculated and the likelihood
L(Z|X) is approximated by L(Z|X, &p,).

No illumination Modelling

[llumination Modelling

Fig. 9. Illumination modelling improves detection results. Layered sampling at two levels (r=40
and 20 pixels) with the conditioned foreground likelihood model in which illumination is not
modelled and it is. In the latter case « is inferred by its MLE value. The gross change in the
illumination conditions foils the naive conditioned foreground likelihood.
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For the experiments performed in figure O] the MLE method is used to infer a.
However, it remains to be confirmed experimentally that G(Z|X') remains more or less
constant. In this experiment a shadow basis was formed by taking three images with
the point light source to the left, right and behind of the subject. Then a sequence of
267 frames in which the light source moved around the subject was used as test data. In
every fifth frame the face person was searched for using layered sampling with the con-
ditioned foreground likelihood, independent of the results from the previous search. Two
levels of layered sampling were applied (r = 40, 20) and 900 samples at each level. The
prior for the object’s affine configuration space was uniform over x, y—translation and
Gaussian over the other parameters allowing the contour to scale to -20% horizontally,
vertically or diagonally and rotate 20 degrees from its original position. (Each of the 6
parameters were treated independently). Using the proposed method the face was suc-
cessfully located at each frame. However, when illumination was not modelled detection
was not always successful. Two frames in which this happened are shown in figure Ol
To see the results of the whole sequence please see http://www.robots.ox.ac.uk/ sulli-
van/Movies/Facellluminated.mpg.

5.2 Sampling Illumination Parameters

In the previous subsection a method for inferring v was described. This method though
is not Bayesian. The alternative is to extend the state vector to X’ = (X, ) and to
sample this in order to obtain a particle estimate of p(X’|Z). This however, is likely to
be computationally burdensome because of the increased dimensionality and also due
to the broad prior from which @ must be drawn. Usually no particular prior for o will
be known and in accordance a uniform one will be generally used.

The alternative is to use an importance sampling function [I8] gx () that restricts a
to its likely range. It is possible to incorporate this importance function into the factored
sampling process as follows. Draw a sample X}, from po(X). Given this fixed value
of X draw a sample «, from gy, (). The corresponding weight associated with the
particle X; = (X, ap) is L(X},)/9x, (ap,) (the denominator is the correction factor
applied to compensate for the bias shown towards certain o values).

The most important question has yet to be answered. From where can an appropriate
importance function g(c) be found ? In fact we don’t have to look any further than the
partial likelihood function L . From equation[I3] this can be approximated by a multi-
variate normal distribution with diagonal covariance matrix. This then implies that o
given a fixed value of X is also a multi-variate normal distribution whose covariance
matrix and mean can be easily calculated. Allowing this distribution to be g( ) results in
an importance function that can be sampled from exactly and greatly narrows the range
of possible ax values.

6 Results and Conclusions

Results of localisation by factored sampling, using the new conditioned foreground
likelihood are shown next, and compared with the “partitioned foreground” approach
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of [26]. Each figure displays an image plus the particle representation of the posterior
distribution for the configuration of the target object. For clarity, just the 15 most highly
weighted particles are displayed. The weight of each particle being represented, on a log
scale, by the width of the contour. The black contour represents the mean configuration
of the particle set. Three different sets of experiments were carried out. Firstly it was
checked if the new likelihood was prone to highlighting the same false positives as the
partitioned likelihood and this is investigated with the decoy test. Then does the new
method work for face detection and finally can it detect other textured objects.

The decoy test In figure[l] it was shown using a face decoy that the partitioned fore-
ground model was prone to ghost object hypotheses. Results of this experiment with the
new, conditioned foreground likelihood are shown in figure [0l Note the effect on the
mean configuration (the black contour): for the partitioned foreground, the mean lies
between the two peaks in the posterior. With the conditioned likelihood the posterior
is unimodal however, as evidenced by the coincidence of the mean configuration with
the main particle cluster. Experiments were carried out at one scale level » = 40 and
using 1200 particles, uniformly distributed, the translational component of the prior
being drawn deterministically (ie on a regular grid), for efficiency. For computational

Partitioned foreground Conditioned likelihood

Fig. 10. Conditioned foreground likelihood eliminates ghosting. Foreground partitioning pro-
duces a bimodal posterior distribution (plainly visible from the position of the mean contour)
while conditioned foreground gives a unimodal distribution.

efficiency, multi-scale processing can be applied via “layered sampling” [26] and this
is demonstrated with person-specific models, for two different people, in figure [[Tl. The
prior for the affine configuration space is uniform over z, y—translation and Gaussian
over the other parameters allowing the contour to scale to £20% horizontally, vertically
or diagonally and rotate 20 degrees from its original position. (Each of the 6 configu-
ration space parameters are treated independently) This prior is used for the rest of the
experiments unless otherwise stated.
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——
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Fig. 11. Layered sampling demonstrated for individuals, using individual-specific models this
figure. The prior for the position in the face is uniform in the z, y—translation over the image. The
search takes place over two scales (r = 20, 10) implemented via layered sampling, using 1500
samples in each layer.

Generalisation Experimentally, a model trained on one individual turns out to be capa-
ble of distinguishing the faces of a range of individuals from general scene background.
The experiment used the learnt model from figure[TIl(a) and applied it to the images dis-
played in figure[T2l Once again two levels of layered sampling were applied (r = 20, 10),
now increasing the number of samples increased to 3000. This performance is achieved

Fig. 12. Generalisation of face detection. Training on a single face generates a model that is still
specific enough to discriminate each of a variety of faces against general scene background.

without resorting to the more complex, multi-object training procedure of [Z.1], though it
remains to test what improvements in multi-object training would bring.

Detecting various textured objects Finally, the conditioned foreground likelihood
model has been tested on a variety of other objects, as in figure [[3l Note that even
in the case of a the textured vase resting against a textured sofa, the vase object is
successfully localised. Given that the boundary edge of the vase is not distinct, edge
based methods would not be expected to work well here. (Layered sampled was applied
at scales » = 20, 10 pixels with 1200 particles in each layer.) The prior in the clown
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example allows for a greater rotation, while in the shoe example the prior has been
narrowed.

Fig. 13. Textured inanimate objects can also be localised by the algorithm. Special note should
be taken of the detection of the vase against the textured sofa.

7 Discussion and Future Work

7.1 Modelling Object Variability

In addition to lighting variations, a further generalisation is to allow object variations.
For example, in the case of faces, varying physiognomy and/or expression. This could be
dealt with in conventional fashion [19] by training from a set I3, I3, . .. covering both
object and illumination variations, and using Principal Components Analysis (PCA)
to generate templates I1,. .., I that approximately spans the training set. Then the
methodology of the previous section can be followed as before.

Alternatively, it may be the case that the training set is explicitly labelled with il-
lumination conditions £ = 1,..., K and basis-object index j = 1,..., M, in which
case the training set is organised as {; } and these could be used directly as templates
{I;x}. Then a general image is

I=> by =Y Biwmlk
ik ik

where v, weights light-sources and 3; weights basis objects. Thus the KM weights
o, applied to the templates decompose as 3;7x, and so have just K + M degrees
of freedom. This is a familiar type of bilinear organisation, the “style and content”
decomposition [13]], that occurs also with the decomposition of facial expression and
pose [3]. Imposing the bilinear constraint that o« = B~ ", which stabilises the estimation
of «, can be performed as usual by SVD.

In this bilinear situation, the earlier model (7)) is extended to take account of light
source variations as follows.

é(X,X,A) = Zajkzj,k(va) (15)
J.k
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where -
§j7k(X, X) = <Wx,TX . Ij7k>.

and A is a matrix whose entries are ojy.
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