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22302 Lannion, France

Abstract. Tracking and characterizing convective clouds from meteoro-
logical satellite images enable to evaluate the potential occurring of
strong precipitation. We propose an original two-step tracking method
based on the Level Set approach which can efficiently cope with fre-
quent splitting or merging phases undergone by such highly deformable
structures. The first step exploits a 2D motion field, and acts as a predic-
tion step. The second step can produce, by comparing local and global
photometric information, appropriate expansion or contraction forces on
the evolving contours to accurately locate the cloud cells of interest.
The characterization of the tracked clouds relies on both 2D local mo-
tion divergence information and temporal variations of temperature. It
is formulated as a contextual statistical labeling problem involving three
classes “growing activity”, “declining activity” and “inactivity”.

1 Introduction

The study of the life cycle of strong convective clouds (CC) is an important
issue in the meteorological field. Indeed, such cold clouds often convey hard
weather situations as pouring rains or even tornadoes. We aim at providing
forecasters with new and efficient image processing tools in that context. We
have addressed two major issues: tracking of cold cloud cells and characterization
of their convective activity. To this end, we have developed two original methods
exploiting both motion and photometric information. These methods can also
be of interest beyond the meteorological domain.

Preliminary studies in the meteorological domain have already considered
these issues [1,3]. Since these meteorological phenomena are present in cold cloud
systems, detection of strong convective cloud cells first involves a low tempera-
ture thresholding step in infrared images. In [1,3], relevant cells are then isolated
according to spatial properties (ellipticity factor, distribution of the spatial gra-
dient of temperature, minimal area,...), and tracking simply results from the
overlap between the prediction of the position of a cell detected at time τ − 1,
using the previously estimated displacement of its gravity center, and a cell
extracted at time τ .
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A commonly adopted strategy in computer vision to extract and to track
complex objects in an image sequence is to exploit deformable models such as
active contours [4,9]. Starting from an initial position, and using external for-
ces and internal constraints, the contour shape is modified toward the desired
solution. However, results are highly sensitive to the initial conditions, and the
considered scheme usually prevents from handling shape with significant protru-
sions. Moreover, topological transformations of the silhouette shape, as merging
and splitting of parts, cannot be properly coped with. Different extensions to
the active contour techniques have been developed to alleviate these drawbacks,
such as introducing particle system [17], exploiting so-called “pedal” curves [18],
taking into account region-based informations [10,20]. However, these shortco-
mings associated to active contours have been elegantly and efficiently overcome
by the Level Set approach introduced by Sethian and Osher [14,16]. In this ma-
thematical framework, the curve evolution is described through the evolution
of an implicit higher-dimensional scalar function. The curve evolution is now
described in a fixed coordinate system (Eulerian description) enabling the hand-
ling of topological changes. Such an approach or a related formalism has been
already exploited in meteorological applications [5,7,19]. The tracking of large
cloud structures is achieved in [7] following the ideas proposed in [11] to recover
the minimal paths over a 3D surface. This method however requires to previously
extract the cloud boundaries in the successive considered images. In [19], a par-
ticle system [17] is exploited and embedded in an implicit surface formulation. In
[5], regions corresponding to convective clouds are extracted by first introducing
posterior probabilities associated to the different cloud types. The curves then
grow up from user-defined “seed points” to the salient contour shapes.

To make easier the localization of the curve in the next image of the se-
quence, it seems relevant to exploit motion-based information. The integration
of dynamic information has thus been proposed in [6] and quite recently in [12,
15] by adding a motion-based term in the propagation function. Nevertheless,
these last methods consider parametric motion models (i.e. 2D affine motion mo-
dels) which are inappropriate in case of highly deformable structures present in
fluid motion such as clouds. In that context, dense motion fields are required to
describe the non-linear nature of the cloud motions. Besides, in [12,15], motion
information is in fact introduced to perform motion segmentation.

During its life cycle (growth, stability and decline), a convective cloud cell
is likely to undergo different changes of topology such as merging with other
neighbouring cells or splitting. Indeed, it seems quite appropriate to follow the
Level Set formulation to detect and track these clouds in meteorological satel-
lite images. We propose an original two-stage Level Set method to handle this
tracking issue. It introduces the use of dense motion information in a first step
acting as a prediction stage. Then, the accurate location of the cloud is achieved
in a second step by comparing the local intensity values to an appropriately
estimated global temperature parameter representative of the tracked cloud cell.
This step can generate appropriate expansion or contraction forces of the evol-
ving contours to localize the boundaries of the cold clouds of interest. This is of
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primary importance since the predicted position of the cloud cells usually over-
lap the real ones. Then, to characterize the convective activity of these clouds,
we consider the joint evaluation of the local divergence information contained in
the 2D estimated velocity field, and of the temporal variations of temperature
of the cloud cell points. This leads to qualify the convective activity level of the
cloud cell corresponding to its degree of vertical evolution. The characterization
stage is formulated as a contextual statistical labeling problem involving three
classes: “‘growing activity”, “declining activity” and “inactivity”.

The sequel of this paper is organized as follows. Section 2 outlines the main
aspects of the Level Set formulation. Section 3 briefly describes how the cold
clouds are primarily detected. In Section 4, we describe our Level Set-based me-
thod to track these cold cloud cells. Section 5 deals with the characterization
of the convective cells. The efficiency and accuracy of the proposed scheme is
demonstrated in Section 6 with results obtained on numerous difficult meteoro-
logical situations. Section 7 contains concluding remarks.

2 Level Set Formulation

We briefly recall the main aspects of the level set formalism [16]. Let ηi(s, t0) be
a set of N closed initial curves in R

2 with i ∈ [1, N ]. An implicit representation
of these curves is provided by the zero-level set of a scalar function ψ, defined by
z = ψ(X(s), t0) = ±d, where d is the minimal signed distance from the image
point, represented by vector X(s) = [x(s), y(s)]T , to the curves ηi(t0) (the con-
vention is plus sign for a location outside the set of curves ηi(t0)). In our case,
function ψ corresponds to a 3D surface Γ . {ηi(s, t), i = 1, N} is the family of cur-
ves generated by the successive zero-level sets of the surface ψ(X(s), t) moving
along its normal directions n = ∇ψ

|∇ψ| . For a given level set of ψ, ψ(X(s), t) = C,
the speed function F at position X(s) represents the component of the vector
∂X
∂t normal to ηi(s, t). Let F = ∂X

∂t . n. Deriving each member of equation
ψ(X(s), t) = C, and using the expressions of n and F , we obtain the Eulerian
formulation of the evolution equation monitoring the successive positions of the
surface Γ , evaluated over a fixed grid:

ψt + F |∇ψ| = 0 (1)

where ∇ψ = (∂ψ∂x ,
∂ψ
∂y ). After each propagation step of the surface Γ according to

the speed function F which is given by an iterative numerical resolution scheme,
the relation ψ(X(s), t) = 0 yields the new position of the family of curves ηi(s, t).

The definition of a particular application based on the Level Set approach
involves the design of the speed function F .

3 Early Detection and Initialization

Before considering the tracking of cold cloud cells, let us briefly mention the early
detection stage which provides us with the initial positions of curves of interest.
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This preliminary detection stage consists in a classical temperature thresholding
of the processed infrared satellite images to extract the colder clouds which
may contain convective activity. In the very first image of the sequence, the
initial curves are all given by the contours of each connected set of pixels with
temperature values lower than a given threshold Ith. In the current image of the
sequence, this procedure is only valid for newly appearing cold clouds. Indeed, if
the detected cloud areas are included in already tracked cells, they are removed.
For the already tracked cells, we consider as initialization the contours obtained
in the previous image and denoted ητ−1 (let us note that τ will designate the
“physical” time attached to the image sequence whereas t will be used in the
evolution process corresponding to the Level Set formulation). Let us note that
for convenience temperature and intensity will be assimilated in the sequel (in
practice, we use calibrated equivalence tables).

4 Tracking of Cold Cloud Structures

Solving the tracking issue leads to specify the speed function F introduced in
equation 1.

The top of a convective cloud is characterized by a low temperature due to
its high altitude as a result of vertical displacements, and by spatial intensity
gradients of rather small magnitude in the heart of the cloud cell but generally
more important in the vicinity of its boundaries. We exploit this a priori know-
ledge both in the preliminary detection step providing the initial zero level sets
as described above, and in the definition of the speed function F . Since we are
dealing with moving entities, it appears particularly relevant to exploit dyna-
mic information too. Indeed, predicting the new position of the curves at the
next instant brings more robustness (by preventing from false pairing) and more
efficiency (by saving iterations and then computational load). Then, a motion
estimation step is introduced. We only consider the regions delineated by the
closed contours ητ−1 as the support of the estimation of the 2D motion field to
be used. As stressed in the introduction, we need to compute a dense 2D velo-
city field. To this end, we have adopted a robust incremental estimation method
described in [13], leading to the minimization of a non convex energy function.
This energy function involves robust M-estimators applied to the data-driven
term based on the optical flow constraint equation, and to a regularization term
preserving motion discontinuities. This method combines a hierarchical multi-
grid minimization with a multiresolution analysis framework. This last point is
of key importance to provide accurate estimates in case of cloud displacements
of large magnitude which are likely to occur in this application. The estimation
of the 2D apparent motion field within selected areas must not be corrupted by
the surrounding motions of neighboring lower clouds. We have thus introduced
an adaptive subdivision scheme of the image, supplying an initial block parti-
tion close to the selected areas. In order to obtain the final velocity field at full
resolution, the final size of blocks at full resolution in the minimization process
is pixelwise.
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We have designed a function F composed of two distinct components, F1
and F2, related respectively to dynamic and photometric information. These
components will act in a sequential way in the evolution of the tracked curves.

4.1 Dynamic Component F1

The first component F1 of the speed function F takes into account motion in-
formation. It is defined by:

F1(p) = ξω(p) FA1 ω(p). n(p) − εκ (2)

where ξω represents a stopping factor related to the 2D estimated motion field ω
between time τ−1 and τ . FA1 is a positive constant greater than one which allows
us to speed up convergence. The second term depends on the surface curvature
given by κ = div n. It can be seen as a smoothness term whose influence on the
evolving curve depends on the value of parameter ε.
F1 component is considered in a first step and then the photometric compo-

nent F2 intervenes. F1 makes evolve contours according to the projection of ω
on n. This component provides a prediction to the photometric tracking step.
Compared to a classical motion-based curve registration technique, this formula-
tion allows us to handle in a well-formalized and efficient way problematic events
such as splitting, merging, crossing of cloud cells.

The component F1 is of particular importance in case of small cloud cells,
whose apparent displacement magnitude is larger than the size leading to no
overlap between two successive positions. Let us mention that their 2D apparent
motion is also due to the motion of the surrounding medium, which explains
that we can recover their motion using a multiresolution regularization method.

The 2D velocity vector ω(p) can be used only on the zero-level set, i.e. on
the image plane. Therefore, we exploit the geometric Huyghen’s principle: the
value of ω(p) at point p is given by the one at pixel p̃ in the image plane, which
is the nearest to p. We denote ω̂(p) the velocity vector exploited at point p given
by the one computed at p̃.

Following the same principle, the stopping factor ξ̂ω denotes the global “ex-
tension” of ξω defined over the whole domain of ψ. We define it as follows:

ξ̂ω(p) = δ
[
∆dT (p) ≤ |ω̂(p)|] (3)

where δ is the Kronecker symbol, ∆dT (p) =
∑T
t=1 |dt(p)| and dt(p) is the shift

vector at pixel p induced by the implicit surface evolution at the tth iteration
(for a total of T iterations). The stopping factor is equal to one when the value of
∆dT (p) is lower than |ω̂(p)| and zero otherwise. The contour is stopped as soon
as a sufficient number of pixels verify ξ̂ω(p) = 0. This stopping factor expresses
the fact that the total shift applied to the evolving contour at a given point p
must be bound by the magnitude of the corresponding estimated velocity vector.

If the hypersurface Γ at iteration t− 1 is the signed distance to the contours
η(t−1). By using the Huyghen’s principle, updating function ψ to give ψ(t) turns
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out to be similar for all pixels pn of the grid belonging to the normal to η(t− 1)
at pixel p. The intersection of the hypersurface Γ to the plane (zOn) is indeed a
straight line of slope unity. Finally, we can write dt(p) = −(

ψp(t)−ψp(t− 1)
)
n.

The contour shift at point p between iteration t−1 and t is effective if dt(p) > 1
2 ,

since the extraction process providing the current position of the contours after
each iteration only yields entire coordinates. An example of results is shown on
Figure 1.

4.2 Photometric Component F2

We aim at determining a strategy able to accurately move contours toward the
real cold cloud boundaries. To this end, we exploit thermal information (i.e., in-
tensity information in thermal infrared images) over contours. These local tem-
peratures are compared to a global temperature characteristic of the tracked
cloud cell at time τ . The sign of the difference of these local and global tempe-
ratures determines the way the contour evolves, i.e. the direction of the applied
force F2 at point p. This allows us to explicitly introduce locally contracting
or expanding evolution of the contour according to the local configuration at
hand, which is of particular importance since the current and desired positions
of the curve are supposed to overlap. A somewhat similar flexible mechanism
but issued from different considerations has also been proposed quite recently in
[2] to extract shapes from background in static images.

The global characteristic temperature of the cloud cell at time τ is estimated
as follows. It is predicted from dynamic and thermal information obtained from
the previous time instant. We denote the characteristic temperature associated
to the ith contour ηiτ at time τ by θi. θi is obtained by assuming that the intensity

(a) (b) (c)

Fig. 1. Contour evolution successively monitored by the two components of the speed
function F and their associated stopping factors. Part of infrared Meteosat image ac-
quired on August 10, 1995 at 12h30 TU. (a) Initial contours (overprinted in black). (b)
Contours after the first tracking step involving F1 component. (c) Final contours after
successively performing the two tracking steps involving respectively F1 component
and F2 component.
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function verifies the following continuity equation of fluid mechanics:

∂I

∂τ
+ div(Iω) = 0 (4)

This equation is related to the assumption that expansion or contraction of fluid
(associated to a dissipation or to a concentration of matter) corresponds to in-
tensity changes in the image sequence. Recalling that div(Iω) = ω.∇I + Idiv ω,
and using the expression of the total derivative of I with respect to time
dI
dτ = ∂I

∂τ + ω.∇I, we can rewrite equation (4) as follows:

dI

dτ
+ Idiv ω = 0 (5)

Assuming, as in [8], a constant speed over the “particles” trajectories from τ −1
to τ , we can express intensity I at time τ at the displaced point p + ω(p) by
integrating both members of equation 5, which leads to:

I(p+ ω(p), τ) = I(p, τ − 1) exp
(

−div ω(p)
)

(6)

The characteristic temperature θi of the cell corresponding to contour ηiτ can be
given by the mean of I(p + ω(p), τ) evaluated over region Ri

τ−1 delineated by
the contour ηiτ−1:

θi =
1
Ni

∑
p∈Ri

τ−1

I(p, τ − 1) exp
(

−div ω(p)
)

(7)

where Ni is the number of pixels in Ri
τ−1.

We need to compute the divergence of the 2D estimated motion field. It
is expressed by div ω(p) = ∂u(p)

∂x + ∂v(p)
∂y , where ω(p) = [u(p), v(p)]T is the

velocity vector at pixel p. It is derived from the estimated motion field by using
appropriate derivative filters.

Solving equation (1) leads to move the set of initial curves toward the new
positions of cloud cells. We have designed the following expression of the speed
function F2 composed of a curvature term and a so-called advection term:

F2(p) = ξ̂I(p)

advection term Fadv(p)︷ ︸︸ ︷
FA2 sign

(
θi − I(p)

)
−εκ (8)

where FA2, θi and I respectively denote the constant magnitude of the advection
force, the estimated characteristic temperature of the convective cloud cell i, and
the intensity function in the infrared satellite image (intensity I(p) here accounts
for temperature).

As already mentioned, the definition of the advection term of F2 allows us to
deal with a force either of contraction or of expansion depending on the intensity
value I(p). This is further explained and emphasized below.
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We need to exploit relevant image-based information to stop the evolution
of the curves at the real boundaries of the cloud cells. To this end, we have to
define a weighting factor in the speed function F2, i.e. an image-based factor
ξI , which will play the role of stopping criterion. The global “extension” of ξI ,
denoting ξ̂I , can be written as:

ξ̂I(p) = max
(
δ[F tadv(p) + F t−1adv (p)], gI(p)

)
(9)

where δ(x) = 0 if x = 0, δ(x) = 1 otherwise, function gI(p) is given by
gI(p) = 1

(1+|∇Gσ∗I(p)|)2 and F tadv(p) and F t−1adv (p) respectively denote the advec-
tion term computed at times t and t− 1. ∇Gσ ∗ I(p) represents the convolution
of the image with a Gaussian smoothing filter. When the evolving contours are
located within warm areas (i.e. I(p) > θi), they undergo a contraction force
which moves them toward a cold cloud cell boundary. After a boundary of a
cloud cell is crossed and the curve point is within the cloud cell, I(p) becomes
lower than θi. This induces a change of the sign of the advection term, and thus
defines an expansion force. Since δ[F tadv + F t−1adv ] becomes equal to 0, the value
of ξ̂I(p) is then given by gI(p) which can tend to zero if high intensity contrast
is present at point p. Hence, we have introduced intensity spatial gradient in-
formation in an appropriate way, i.e. only when the evolving curve lies inside a
cloud cell of interest. ηiτ is now moving in the opposite direction, and stops by
the first encountered contrasted intensity edges. Owing to the proposed scheme,
evolving curves thus cannot be attracted by intensity edges belonging to non
relevant clouds or to other visible structures in the image. An example of re-
sults obtained after performing successively the two tracking steps respectively
involving components F1 and F2 is shown on Fig. 1c.

The use of both an appropriate initialization and a motion-based prediction
embedded in the first tracking step allows us to provide a real tracking of convec-
tive cloud cells over time. We mean that we can effectively and reliably associate
the extracted contours from one image to the next one, even in situations with
no significant overlap between two corresponding contours.

To save computational time, we make use of the “narrow band” framework
introduced in [14]. Moreover, we proceed each narrow band in an independent
way. Then, if one of them contains a contour which has reached the desired cloud
cell boundaries, the restriction of the function ψ to the corresponding narrow
band is frozen, and the computational cost is thus further reduced.

5 Characterization of Convective Activity and Extraction
Refinement

The clouds located within the closed contours ητ issued from the tracking stage
may include either truly active convective cell (CC), or CC in declining phase,
or cold clouds which are not convective clouds. We have to identify regions un-
dergoing strong vertical motion, corresponding either to growing or to declining
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convective clouds. The vertical development of growing CC is accompanied with
a spatial expansion at its top along with a temperature cooling. The opposite
occurs for declining CC. Therefore, it seems particularly relevant, in order to
qualify and to extract these convective activity areas, to jointly evaluate the de-
gree of divergence of the 2D apparent motion and the tendency of the temporal
changes in temperature.

5.1 Discriminant Features of Convective Activity

The first discriminant feature of convective activity is related to the dynamic
properties of the cold clouds of interest. It is supplied by the local divergence of
the estimated 2D motion field, computed at each point of the tracked cloud cell
as explained in Section 4.

The temporal evolution of the cloud temperature provides the second discri-
minant feature. We evaluate the temporal change of temperature at each point of
the tracked cloud by considering the displaced frame difference supplied by the
estimated 2D velocity field: Iτ (p,w(p)) = I(p+ w(p), τ) − I(p, τ − 1). To take
into account motion compensation errors and image noise, we consider in fact a
locally average version:

Īτ (p,ω(p)) =
1
M

∑
r∈Fp

(
I(r + ω(r), τ) − I(r, τ − 1)

)
(10)

where Fp is a local window centered on pixel p and containing M pixels. An
example of joint evaluation of local motion divergence and temporal tempera-
ture variation can be found in Fig. 2. We can note the characteristic temporal
evolution of a convective cloud cell (pointed with an arrow in images (a) and
(d)).

(a) (b) (c) (d) (e) (f)

Fig. 2. In columns (a) and (d), part of infrared Meteosat images acquired on August 4,
1995 at 11h00 TU and 13h30 TU. Local motion divergence maps (columns (b) and (e)),
computed on convective cloud cells selected after the tracking stage, and the temporal
variations of temperature (columns (c) and (f)). Display in Fig. b, c, e and f varies
from light grey (highly negative values) to black (highly positive values).

The growing phase (Fig. 2a) presents strong positive values of motion diver-
gence (dark grey in Fig. 2b) and a decrease in temperature (light grey in Fig.
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2c). The subsequent declining phase (Fig. 2d) is identified by strong negative di-
vergence values (light grey in Fig. 2e) and a warming up of the cloud top (dark
grey in Fig. 2f).

5.2 Extraction of Active Convective Clouds

We have now to exploit these two discriminant features, i.e. div ω(p) and
Īτ (p,w(p)), to determine the active convective clouds among the tracked cold
cloud areas.

The CC characterization scheme is formulated as a labeling problem of these
areas. We have adopted a contextual statistical approach based on Bayesian esti-
mation (MAP criterion) associated with Markov Random Field (MRF) models.
The MRF framework provides a powerful formalism to specify physical relati-
ons between observations o (i.e. temporal changes of temperature, local motion
divergences) and the label field e, while easily allowing us to express a priori
information on the expected properties of the label field (i.e. spatial regulariza-
tion). We consider three classes, two classes of activity, growing activity (“grow
”) and declining activity (“decl ”), and one of inactivity (“nact ”). The last one
can contain non active clouds but also elements which remain undetermined due
to non significant feature values.

Due to the equivalence between MRF and Gibbs distributions, it turns out
that this leads to the definition of a global energy function U(o, e). We have
designed the following energy function composed of a data-driven term and a
regularization term:

U(o, e) =
∑
s∈S

V1(o, e) + α2
∑
c∈C
V2(e) (11)

where V1 and V2 are local potentials, s is a site (here, a pixel), and C represents
all the binary cliques c (i.e. cliques formed by two sites) associated with the
considered second-order neighborhood system on the set of sites (pixels). α2
controls the relative influence of the data-driven term and of the regularization
term.

As a matter of fact, we consider the two features introduced above in a
combined way through the following product:

µ(s) = divω(s) × Īτ
(
s, ω(s)

)
(12)

The adequacy between a given label and the computed quantity µ(s) is governed
by the sign and the magnitude of µ(s). If the two discriminant features present
opposite signs at site s (µ(s) < 0), this reveals convective activity, either growing
activity (div ω(s) > 0 and Īτ < 0) or declining one (div ω(s) < 0 and Īτ > 0). To
further distinguish labels “grow ” and “decl ”, we examine the sign of div ω(s).
If div ω(s) < 0, potential V1 will favour the label “decl ”, otherwise the label
“grow ” will be preferred. µ(s) > 0 is not related to a specific physical meaning
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and label “nact ” will be favoured. The potential V1 is defined at site s by:

V1(o(s), e(s)) =




sign[div ω(s)]f(µ) + 1
2 if e(s) = grow

−sign[div ω(s)]f(µ) + 1
2 if e(s) = decl

−f(µ) + 1
2 if e(s) = nact

(13)

where f(x) is a smooth stepwise function. We have chosen f(x) = 1
πarctan(kπx).

Potential V2 in the regularization term is defined by V2[e(r), e(s)] = −β if
e(r) = e(s) and V2[e(r), e(s)] = β otherwise, where r and s are two neigh-
bour sites. V2 favours compact areas of same label. This formulation leads to the
minimization of the global energy function U(o, e), which is solved iteratively
using the deterministic relaxation algorithm ICM.

The tracking process is concerned with all the cloud areas issued from the
detection stage and not only with those from the characterization stage for the
following reason. A large convective system can contain different zones of distinct
activity which may evolve quickly over time. This temporal evolution does not
allow us to perform a relevant and significant tracking of cloud cells displaying
a real convective activity. Tracking cold clouds and characterizing in a second
stage their convective activity appears to be more stable and physically more
meaningful.

6 Results

We have carried out numerous experiments on real complex examples involving
Meteosat infrared or water vapor images. Here, we report representative results
obtained after each stage of the proposed scheme. Figures 3 and 4 illustrate the
tracking stage, figure 5 the characterization stage.

For display convenience, pixels corresponding to low temperature will be
represented by white intensities, and conversely. Figure 3 contains three different
meteorological situations. For each, we supply the initial contours corresponding
to the cold clouds detected in the previous image (central row) and the final
locations of the cold clouds (lower row). We can observe that the tracking is quite
accurate even in case of large displacements, (first example in the left column of
Fig. 5) or in case of the formation of holes within a cloud cell (third example,
in the right column of Fig. 3). Let us point out that forecasters are particularly
interested by the accurate and reliable determination of colder areas of convective
clouds, which are generally quite uniform. Thus, the stopping criterion we have
designed stops the inner part of the evolving curve at the first encountered well-
contrasted intensity edges. The consequence is that resulting contours may be
located inside cloud cells.

Examples of tracking of cloud cells over time are shown in Fig. 4. We can
point out the accuracy and the temporal coherence of the obtained results, which
is of key importance for forecasters, depicting successive meteorological satellite
images over Italy and Sardigna. These warm European areas (dark grey level)
are the source of convective activity. At 10h30 TU, small cloud cells over Italy
reach higher altitude and are correctly detected in time. They grow, merge,
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and progressively other surrounding cells undergo the same process. At 14h00
TU (last column, last row), a convective cloud cell becomes too warm with
respect to the characteristic temperature estimated from the previous image,
and consistently disappears. The characterization of the convective activity of

Fig. 3. Evolution of the cloud contours in the tracking stage. Upper row: original
infrared images; central row: initial positions corresponding to those determined in the
previous image; lower row: final positions of cloud contours. From left to right: part of
Meteosat infrared images on August 24, 1995, at 18h30 TU, August 28, 1995, at 4h30
TU, and August 10, 1995 at 21h00 TU. Contours are overprinted in black.

the tracked clouds shown in Fig. 4 is reported on Fig. 5. Six successive results
obtained after the characterization stage are supplied. Dark grey corresponds
to active clouds in a growing phase. On the opposite, CC in a declining state
are labeled in light grey. At the beginning of the sequence, the central cloud cell
undergoes a strong vertical motion and the whole corresponding area is corrected
labeled as “growing activity”. Progressively, this cloud cell becomes less and
less active, and the dark grey area shrinks toward its core. In the same time, a
declining zone develops up to contain almost the entire area. The same parameter
values are considered for all these experiments. Concerning the tracking stage,
we set FA1 = 10, FA2 = 10, ε = 3, and the width of the narrow band is 8
pixels. Temperature threshold Ith is −35◦C. In the characterization stage, we
set k = 5, β = 0.1 and α2 = 3. The choice of parameter values associated to
the tracking stage only affects the speed of convergence and not the accuracy
of results. Parameter values related to the characterization stage only influence
the labeling of the uncertain activity areas (i.e. containing weak discriminant
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Fig. 4. Results of the tracking stage over a sequence of Meteosat infrared images (two
first rows). Illustration of the temporal coherence of the tracking stage of cold clouds.
Final contours are overprinted on the original images (two last rows). Part of Meteosat
images acquired on August 4, 1995 from 10h30 to 14h00 TU.

feature magnitudes) and it was found that their setting was not critical. The
tracking stage has been evaluated by forecasters on several real representative
situations (including those reported in this paper) and appeared quite accurate.
An extended experimental validation of the characterization stage is just about
to be completed by a French meteorological center on the basis of a daily analysis
by a forecaster in an operational context. First results are already convincing.
The computational time is in accordance with operational requirements since
Meteosat satellite images are acquired every thirty minutes. CPU time behaves
as a linear function of the number of processed pixels (involved in the narrow
band technique). It takes about six minutes for a quantity of processed pixels in
the narrow bands equal to 128 × 128 on a Sun Ultra 60 workstation.

7 Conclusion

We have proposed in this paper an original and efficient framework to detect,
track and characterize convective cold clouds from meteorological satellite ima-
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Fig. 5. Characterization stage applied to Meteosat infrared images. Labeling results are
overprinted on the original images: in dark, resp. light, grey: growing, resp. declining,
convective clouds. Part of Meteosat images acquired on August 4, 1995 from 10h30 TU
to 14h00 TU.

ges. It involves two main stages, the tracking stage relying on the Level Set
formalism, and the characterization stage stated as a statistical contextual la-
beling issue. This approach is quite relevant to properly process such highly
deformable structures which are often subject to splitting or merging phases
during their life cycle. We have designed a two-step tracking scheme exploiting
both motion and photometric information in an adequate way. The first step
exploits a 2D estimated motion field, and supplies a proper prediction to the
second one. The former moves contours along the direction of estimated motion
while immediately taking into account topological changes contrary to a usual
registration step. The second step uses photometric information at a local level
and at the cell level, and can create appropriate expansion or contraction forces
on the evolving contours to accurately localize in every image the cold clouds of
interest.

The characterization stage relies on local measurements involving divergence
computed from the estimated 2D motion field and local temporal variations of
the tracked clouds. It leads to the minimization of an energy function comprising
a spatial regularization term. It allows us to extract, within the clouds delimited
in the tracking stage, the regions of significant vertical motion, i.e. the really ac-
tive convective cloud cells and to distinguish those in a growing phase from those
in a declining phase. The computational time, which is usually a drawback of
the Level Set approach, is significantly reduced, thanks to the two-step tracking
scheme introduced in our method. Besides, the first tracking step, appropriately
exploiting motion information, leads to positions of the curve overlapping the
real boundaries of the cold clouds of interest. The second tracking step can then
start from this prediction since the designed associated speed function allows a
curve to evolve in two ways, contraction and expansion. Another advantage of
this method is that results do not strongly depend on the choice of the parame-
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ter values. Results obtained on numerous difficult real examples demonstrate the
temporal coherence and the accuracy of the extracted convective clouds tracked
over time, which provides forecasters with an easily understanding of the me-
teorological situation. Finally, the tracking method introduced in this paper is
not specific to the considered application, and could be successfully applied to
other kinds of deformable structures.
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13. Mémin, E., Pérez, P.: A multigrid approach for hierarchical motion estimation. In
Proc of 6th IEEE ICCV, Bombay, January (1998) 933–938

14. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: Al-
gorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics
79 (1988) 12–49

15. Paragios, N., Deriche, R.: Geodesic active regions for motion estimation and
tracking. In Proc of IEEE ICCV, Kerkyra, Greece, September 1 (1999) 688–694

16. Sethian, J.A.: Level Set Methods. Cambridge University Press (1996)
17. Szeliski, R., Tonnesen, D.: Surface modeling with oriented particle systems. Com-

puter Graphics, SIGGRAPH, 26(2) (1992) 185–194
18. Vemuri, B.C., Guo, Y.: Snake pedals: Geometric models with physics-based control.

In Proc of 6th IEEE ICCV, Bombay, January (1998) 427–432
19. Yahia, H.M., Berroir, J-P., Mazars, G.: Fast and robust level-set segmentation of

deformable structures. In Proc. IEEE ICASSP, Seattle, May (1998)
20. Zhu, S.C., Yuille, A.: Region competition: Unifying snakes, region growing, and

Bayes/MDL for multiband image segmentation. IEEE Trans. on PAMI 18 (1996)
884–900


	Introduction
	Level Set Formulation
	Early Detection and Initialization
	Tracking of Cold Cloud Structures
	Dynamic Component F_1
	Photometric Component F_2

	Characterization of Convective Activity and Extraction Refinement
	Discriminant Features of Convective Activity
	Extraction of Active Convective Clouds

	Results
	Conclusion

