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Abstract. We present a scheme for simultaneous calibration of a con-
tinuously moving and continuously zooming camera: placing an easily
distinguishable pattern in the scene, we calibrate the camera from an
unoccluded portion of the pattern image in each frame. We describe an
optimal method which provides an evaluation of the reliability of the
solution. We then propose a technique for avoiding the inherent degene-
racy and statistical fluctuations by model selection using the geometric
AIC and the geometric MDL.

1 Introduction

Visually presenting 3-D shapes of real objects is one of the main goals of many
Internet applications such as network cataloging and virtual museums. Today,
generating virtual images by embedding graphics objects in real scenes or real
objects in graphics scenes, known as mized reality, is one of the central themes
of image and media applications. In order to reconstruct the 3-D shapes of real
objects or scenes for such applications, we need to know the 3-D position of the
camera that we use and its internal parameters. Thus, camera calibration is a
first step in all vision and media applications.

The standard method for it is pre-calibration: the camera internal parameters
are determined from images of objects or patterns of known 3-D geometry in
a controlled environment [TJT8]29/34136]37]. Recently, techniques for computing
both the camera parameters and the 3-D positions of the camera from an image
sequence of the scene about which we have no prior knowledge have intensively
been studied [3124]. Such a technique, known as self-calibration, may be useful
in unknown environments such as outdoors. For stable reconstruction, however,
it requires a long sequence of images taken from unconstrained camera positions
and feature matching among frames. As a result, the amount of computation
is too large for real-time applications, and it cannot be applied if the camera
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Fig. 1. Simultaneous calibration of a moving camera: we observe an unoccluded part
of the image of a planar pattern placed in the scene.

motion is constrained or the scene changes as the camera moves unless we are
given a priori information about the constraint or the scene change (see, e.g., [6]
9128] for self-calibration based on a priori information about the camera motion).

In this paper, we focus on virtual studio applications [7J380]: we take images of
moving objects such as persons and superimpose them in a graphics-generated
background in real time by computing the 3-D positions and zooming of a mo-
ving camera. Since the scene as well as the position and zooming of the camera
changes from frame to frame, we cannot pre-calibrate or self-calibrate the ca-
mera.

This difficulty can be overcome by placing an easily distinguishable planar
pattern with a known geometry in the scene (Fig. [I)): we detect an unoccluded
portion of the pattern image in each frame, compute the 3-D position and zoo-
ming of the camera from it, and remove the pattern image by segmentation. We
call this strategy simultaneous calibration. It has many elements that do not
appear in pre-calibration:

1. While manual interventions can be employed in pre-calibration, simultaneous
calibration must be completely automated. In particular, we must automa-
tically identify the 3-D positions of the marker points that are unoccluded
in each frame.

2. Since the number of unoccluded marker points is different in each frame, the
accuracy of calibration is different from frame to frame. Hence, not only do
we need an accurate computational procedure but also a scheme for evalua-
ting the reliability of the computed solution.

3. Since we have no control over the camera position relative to the pattern,
degenerate configurations can occur: when the camera optical axis is perpen-
dicular to the pattern, the 3-D position and focal length of the camera are
indeterminate because zooming out and moving the camera forward cause
the same visual effect.

4. As the object moves in the scene, some unoccluded marker points become
occluded while others become occluded. As a result, the computed camera
position may not be the same even if the camera is stationary in the scene.
This type of statistical fluctuations becomes conspicuous when the camera
motion is small.
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In this paper, we introduce a statistical model of image noise and describe a
procedure for computing an optimal solution that attains the Cramer-Rao lower
bound (CRLB) in the presence of noise. As a result, we can evaluate the reliability
of the solution by computing an estimate of the CRLB.

We then show that degeneracy and statistical fluctuations can be avoided by
model selection. At each frame, we predict the 3-D position and zooming of the
camera in multiple ways from the past history. We then evaluate the goodness
of each prediction, or model, and adopt the best one. In this paper, we use the
geometric AIC introduced by Kanatani [12]14] and the geometric MDL to be
defined shortly as the model selection criterion.

The geometric MDL we use is different from the traditional MDL used in sta-
tistics and some vision applications [S11J21)22/31]. We compare the performan-
ces of the geometric AIC and the geometric MDL by doing numerical simulations
and real image experiments.

2 Basic Principle

We fix an XY Z world coordinate system in the scene and place a planar pattern
in parallel to the XY plane at a known distance d. We imagine a hypothetical
camera with a known focal length fy placed at the world origin O in such a
way that the optical axis coincides with the Z-axis and the image z- and y-
axes are parallel to the X- and Y-axes. The 3-D position of the actual camera
is regarded as obtained by rotating the hypothetical camera by R (rotation
matrix), translating it by ¢, and changing the focal length into f; we call {¢,
R} the motion parameters. We regard the focal length f as a single unknown
internal parameter, assuming that other parameters, such as the image skew and
the aspect ratio, have already been pre-calibrated so that the imaging geometry
can be modeled as a perspective projection.

Suppose N points on the planar pattern with known coordinates (X, Yy, d)
are observed at (zq,Yyq) in the image. If we define the 3-D vectors

Xa/d xa/fO
Ty = Ya/d 3 Lo = ya/fO ) (1>
1 1

we have the following relationship:
x, = Z[Hz,)]. (2)

Here, Z]-] denotes normalization to make the third component 1, and H is the
matrix in the following form [12]:

H:diag(l,l,&)RT y g (3)

f d
Throughout this paper, 4, 5 and k denote (1,0,0)7, (0,1,0)7, and (0,0,1)T,
respectively, and diag(---) denotes the diagonal matrix with diagonal elements
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3 Optimal Computation

Eq. ) defines an image transformation called homography. Since the unknown
parameters are {¢, R} and f, the homography has seven degrees of freedom. If
the homography is unconstrained with eight degrees of freedom, we can apply
our statistically optimal renormalization-based algorithm [I5]; its C++ code is
available via the We. Here, however, the homography is constrained. So, we
take the bundle-adjustment approach based on Newton iterations.

Let Vx| be the covariance matrix of the data vector x,. We assume that
it is known only up to scale and write

Vza] = Volzal. (4)

We call the unknown magnitude e the noise level and the matrix Vp[z,] the
normalized covariance matriz. Since the third component of x is 1, Vy[z,] is a
singular matrix of rank 2 with zeros in the third row and the third column. If
the noise has no particular dependence on position and orientation, it has the
form diag(1,1,0), which we use as the default value.

If the noise is Gaussian, an optimal estimate of H is obtained by mazimum
likelihood estimation [12]: we minimize the average squared Mahalanobis distance

N
J:3%§:@afZUﬁ%LWMQ*@szgﬁwnv (5)

where and throughout this paper the operation (-)~ denotes the (Moore-
Penrose) generalized inverse and (a,b) denotes the inner product of vectors a
and b. We define the following non-dimensional variables:

L (6)

fo’ d
The first order perturbation of R is written as R — R + Af2 x R, where A{2
is a 3-D vector and A2 x R is a matrix whose columns are the vector products
of Af2 and each columns of R [12]. We define the gradient V.J and the Hessian
V2J with respect to {¢, 7, R} in such a way that the Taylor expansion of J has
the form

¢

J(d+ A, 7+ AT, R+ A2 x R)

A¢ | [ Ad Ag
=J(¢, 7, R)+ (VJ, | AT N+=(| AT |, V2I| AT |)+---. (1)
ae) 2 \ae AR

The solution that minimizes J is obtained by the following Newton iterations:

1. Give an initial guess of ¢, T, and R.
2. Compute the gradient V.J and the Hessian V2.J (their actual expressions are
omitted).

! http://www.ail.cs.gunma-u.ac.jp/ kanatani/e
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3. Compute A¢p, A1, and A2 by solving the linear equation

(V2J) ﬁf - V. (8)
AR

4. If |A¢| < ey, |AT|| < €7, and ||AS£2|| < er, return ¢, 7, and R and stop.
Otherwise, update ¢, 7, and R in the form

P+ Ap, T+ T+ AT, R+ R(ANZ)R, (9)

and go back to Step 2.

The symbol R(Af2) denotes the rotation of angle ||Af2|| around AS2; €y, €.,
and er are thresholds for convergence.

The initial guess of ¢, 7, and R can be obtained by computing the homogra-
phy H between {Z,} and {x,}, say, by least squares or by the renormalization-
based method [I5] without considering the constraint and approximately decom-
posing it into ¢, 7, and R in the form of eq. (@) (an analytical procedure for this
is given in [20]). However, this procedure is necessary only for the initial frame.
For the subsequent frames, we can start from the solution in the preceding frame
or an appropriate prediction from it, as we will describe shortly.

4  Reliability Evaluation

The squared noise level €2 can be estimated from the residual .J (the minimum
value of J) in the following form [12]:

- J

s (10)

Let V2J be the resulting Hessian. The covariance matrix of {¢, 7, R} is esti-
mated in the following form:

Vg B = 20 (v2) ()

This gives an estimate of the Cramer-Rao lower bound (CRLB) on V), 7, R]
[197].

The (1,1) element of V[, #, R] gives the variance V[¢] of ¢. It follows that
if the error distribution is approximated to be Gaussian, the 99.7% confidence
interval of f has the form

b—3Vig < fi <d+3VIdL. (12)

The submatrix of V[QAS, T, f?] defined by its second to fourth rows and columns
gives the covariance matrix V[7] of 7. Let Af2 and I be, respectively, the angle

and axis of the rotation I:BBT relative to the true rotation R. Let A2 = AQL.
The submatrix of V[¢, 7, R] defined by its fifth to seventh rows and columns

gives the covariance matrix V[R] of Af2.
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empirical| CRLB
focal length (pixles)| 33.4 34.0
translation (cm) 32.9 32.6
rotation (deg) 0.413 |0.414

Fig. 2. Simulated image of a grid pattern (left); the standard deviations of the opti-
mally computed solutions and estimates of their Cramer-Rao lower bounds (right).

(a) (b) ()
Fig. 3. (a) Histogram of the computed focal length. (b) Error distribution of the com-
puted translation. (c¢) Error distribution of the computed rotation.

5 Examples of Reliability Evaluation

5.1 Numerical Simulation

Fig.|2 shows a simulated image of a grid pattern viewed from an angle. We added
Gaussian random noise of mean 0 and standard deviation 1 (pixel) to the z and
y coordinates of the vertices independently and computed the focal length and
the motion parameters 1,000 times, using different noise each time. The standard
deviations of the computed solutions and estimates of their CRLBs are listed in
Fig. 2l

Fig. Ba) is the histogram of the computed focal length f . The vertical lines
indicate the estimated CRLB. Fig. Blb) is a 3-D plot of the distribution of the
error vector At = t —t of translation. The ellipse indicates the estimated CRLB
in each orientation. Fig. Bl(c) is a 3-D plot of the error vector A2 of rotation
depicted similarly.

From these results, we can confirm that the estimated CRLB can be used as
a reliability measure of the solution.

5.2 Tennis Court Scene

Fig.@l(a) is a real image of a tennis court. Since the size of the court is stipula-
ted by an international rule, we can compute the 3-D camera position and the
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Fig.4. (a) A real image of a tennis court. (b) The computed camera position viewed
from above. (c) A virtual scene generated from (a).

focal length by using this knowledge. The focal length is estimated to be 955
pixels. The camera is estimated to be at 627cm above the ground. The standard
deviations of the focal length, the translation, and the rotation are evaluated to
be 6.99 pixels, 16.14cm, and 0.151 deg, respectively.

Fig. H{b) shows the top view of the tennis court generated from Fig. [@(a).
The estimated camera position is plotted there and encircled by an ellipse, which
indicates three times the standard deviation of the estimated position in each
orientation (actually it is an ellipsoid viewed from above).

The images of the poles and the persons in Fig. @(b) can be regarded as their
“shadows” on the ground cast by hypothetical light emitted from the camera, so
we can compute their heights [5[10]. The right pole is estimated to be 113cm in
height. The person near the camera is estimated to be 171cm tall. This technique
can be applied to 3-D analysis of sports broadcasting [2528]. Since we know the
3-D structure of the scene, we can generate a virtual view of a new object placed
in the scene. Fig. Hfc) is a virtual view of a logo placed on the tennis court.

5.3  Virtual Studio

Fig.Bl(a) is a real image of a toy, behind which is placed a grid pattern colored
light and dark blue. The grid pattern is placed on the floor perpendicularly. The
camera optical axis is almost parallel to the floor. Unoccluded grid points in
the image were matched to their true positions in the pattern by observing the
cross ratio of adjacent points. This pattern is so designed that the cross ratio is
different everywhere in such a way that matching can be done in a statistically
optimal way in the presence of image noise [I7J19].

After separating the toy image from the background by using a chromakey
technique, we computed the 3-D position and focal length of the camera by
observing an unoccluded portion of the grid pattern (see [19] for the image
processing details). The focal length is estimated to be 576 pixels. The standard
deviations of the focal length, the translation, and the rotation are evaluated to
be 38.3 pixels, 5.73cm, and 0.812 deg, respectively.

Fig.[H(b) is the top view of the estimated camera position and its uncertainty
ellipsoid (three times the standard deviation in each orientation). Fig. Blc) is a
composition of the toy image and a graphics scene generated by VRML.
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Fig.5. (a) Original image. (b) Estimated camera position and its reliability. (c) A
virtual scene generated from (a).

6 Trajectory Stabilization

If the camera optical axis is perpendicular to the planar pattern, the Hessian
V2J in eq. () is a singular matrix, so the solution is indeterminate. This does
not occur in practice due to image noise, but the resulting solution is numerically
unstable. Also, as pointed out in Introduction, the computed camera position
fluctuates when the camera motion is small. We now present a technique for
avoiding degeneracy and statistical fluctuations by model selection.

6.1 Model Selection Criteria

The homography H given by eq. (3)) is parameterized by {¢, R} and f, having
seven degrees of freedom. If the motion and zooming of the camera are constrai-
ned in some way (e.g., the camera is translated without rotation or zooming),
the homography H has a smaller degree of freedom, and a smaller number of pa-
rameters need to be estimated. In general, parameter estimation becomes stabler
as the number of parameters decreases.

It follows that we can stably estimate the parameters or avoid degeneracy if
we know the constraint on the camera motion or zooming [6l9l28]. In practice,
however, we do not know how the camera is moving or zooming. Our strategy
here is to assume probable constraints (translation only, etc.), which we call
models, compare each other, and adopt the best one. A naive idea for this is to
compute the residual J for each model and choose the one for which it is mini-
mum. However, this does not work: the general model always has the smallest
residual, since the residual decreases as the degree of freedom increases.

The best known criterion for balancing the residual and the degree of the
freedom of the model is Akaike’s AIC designed for statistical estimation
and used in some vision applications [4]. Kanatani’s geometric AIC is a
variant of Akaike’s AIC specifically designed for geometric estimation and has

been applied to a variety of vision applications [13[16/23I3132/33185]. In the
present case, the geometric AIC for minimizing eq. (B) is written as

G-AIC = J + 2ké?, (13)
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where k is the degree of freedom of the homography H. The square noise
level €2 is estimated from the general model in the form of eq. (I0).

Another well known criterion is Rissanen’s MDL (minimum description
length) based on the information theoretic code length of the model [26)27]. Tt
is derived by analyzing the function space of “stochastic models” identified with
parameterized probability densities in the asymptotic limit of a large number of
observations. Here, the models we want to compare are geometric constraints,
not parameterized probability densities. Also, we are given only one set of data
(i.e., one observation) for each frame. Hence, Rissanen’s MDL cannot be used in
its original form.

The starting point of Rissanen’s MDL is the observation that encoding a
real number requires an infinite code length. Rissanen’s idea is to quantize the
parameters to obtain a finite code length, taking into account the fact that real
numbers cannot be estimated completely [27]. The quantization width is deter-
mined by attainable estimation accuracy, which in turn is determined by the
data length n. Since the code length diverges as n — oo, asymptotic approxima-
tion comes into play. In this sense, the “minimum description length” actually
means the “minimum growth rate” of the description length.

Suppose we hypothetically repeat independent observations, although the
actual observation is done only once. The accuracy of estimation increases as the
number of hypothetical observations, so we can define the MDL by asymptotic
analysis. But increasing the number n of observations effectively reduces the
noise level € to O(1/4/n). It follows that we can define the MDL as the “growth
rate” of the description length as ¢ — 0. The final form is as follows (we omit
the details of the code length analysis):

G-MDL = J — ke?log €2. (14)

We call this criterion the geometric MDIHA. This form can also be obtained from
Rissanen’s MDL by replacing n by 1/€% and is different from any MDLs used
in statistics and vision applications [RITTJ2T22I3T] in that ours does not contain
the logarithm of the number of the data.

6.2 Degeneracy Detection

If degeneracy occurs, the confidence interval expands infinitely wide if no
noise exist. In the presence of noise, it has a finite width. We decide that dege-
neracy has occurred if the confidence interval ({I2)) contains negative values of f.
This means that we adopt the following criterion:
R

Vig] > R (15)
The variance V@] equals the (1,1) element of the covariance matrix V[, 7, R]
given by eq. (1)), so it is equal to 262(V2J)J{1/N det(V2J), where (V2J)J{1 is the
2 Since the additive terms can be ignored when e < 1, changing the unit of length

does not affect the relative comparison of models asympotitically.
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(1,1)-cofactor of the Hessian V2.J (the determinant of the submatrix obtained
by removing the first row and the first column of V2.J). Hence, eq. ([5) can be
rewritten in the form

18¢? NT .

- (v27), = det(v2]) > 0. 16

N ( 11 ¢"de (16)

Since matrix inversion is no longer involved, this expression can always be stably
evaluated.

6.3 Models of Zooming and Motion of the Camera

We predict the focal length f and the motion parameters {¢, R} in the next
frame from the values f; and {t;, R;} of the current frame and the values f;_1
and {t;_1, R;_1} of the preceding frame. Here, we consider the following six
models:

Stationary model: We assume that the camera is stationary: f = f;, t = t;,
and R = R;. Let J, be the corresponding residual. This model has zero
degrees of freedom.

t-fixed model: We assume that the camera only rotates. We let f = f; and t =
t; and optimally compute the rotation R by Newton iterations starting from
R;. Let J, be the corresponding residual. This model has three degrees of
freedom.

t-predicted model: Assuming that the zooming does not change, we linearly
extrapolate the camera position and let ¢ = 2¢; — t;_1. Then, we optimally
compute the rotation R by Newton iterations starting from RiRllRi. Let

jp/ be the corresponding residual. This model has three degrees of freedom.

f-fixed model: Assuming that the zooming does not change, we optimally
compute the motion parameters {¢, R} by Newton iterations starting from
{t;, R;}. Let J, be the corresponding residual. This model has six degrees
of freedom. The square noise level €2 is estimated by

o J

=N (17)

f-predicted model: We linearly extrapolate the focal length and let f = 2f; —
fi—1- Then, we optimally compute the motion parameters {¢, R} by Newton
iterations starting from {2¢; —¢;_1, RiRl—-r_lRi}. Let jp be the corresponding
residual. This model has six degrees of freedom. The square noise level €2 is
estimated by R
22 Ip
EP_Q—G/N' (18)
General model: We optimally compute the focal length f and the motion pa-
rameters {¢, R} by Newton iterations starting from the solution obtained
from the f-predicted model. Let jg be the corresponding residual. This mo-
del has seven degrees of freedom.
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Degeneracy is detected from the f-predicted model. Namely, we estimate the
square noise level €2 by eq. (I8) and evaluate the criterion (I6). If degeneracy
is not detected, we compare the stationary model, the f-fixed model, the f-
predicted model, and the general model. Estimating the square noise level €2
by eq. ([I), we evaluate the geometric AICs and the geometric MDLs of these
models in the following form:

R A 12 A 12
G-AIC, = J,, G-AIC, =J, + NéQ, G-AIC, = J, + NeQ
- 14 , - 5 6 o .2
G-AIC, = J,+ & G-MDL.=J, G-MDL, =J, - -&logé,
i 650 o 3 T o0 o
G-MDL, = J, — N logé?, G-MDL, =J, — v log é°. (19)

The model that gives the smallest AIC or the smallest MDL is chosen.

If degeneracy is detected, we compare the stationary model, the t-fixed mo-
del, the t-predicted model, and the f-fixed model. Estimating the square noise
level €2 by eq. ([[7), we evaluate the geometric AICs and the geometric MDLs of
these models in the following form:

6

) 6
G-AIC, = J.,  G-AIC, = Ju + <&, G-AIC, = J, + &,

ERl

12 . 3
G-AIC, = J, o+ 36 G-MDL.=J. GMDL/—J/—Ne log €2,

G-MDL,, = J,» — %e logé2,  G-MDL, = J, — %é? log é2. (20)

The model that gives the smallest AIC or the smallest MDL is chosen.

7 Model Selection Examples

7.1 Numerical Simulation

We simulate a camera motion in a plane perpendicular to a 3 x 3 grid pattern. In
the course of its motion, the camera is rotated so that the center of the pattern
is always fixed at the center of the image frame. First, the camera moves along a
circular trajectory as shown in Fig.[8(a). It perpendicularly faces the pattern at
frame 13 and stops at frame 20. The camera stays there for five frames (frames
20 ~ 24) and then recedes backward for another five frames (frames 25 ~ 30).

Adding random Gaussian noise of mean 0 and standard deviation 1 (pixel) to
each coordinate of the grid points independently at each frame, we compute the
focal length and the trajectory of the camera (Figs. B(b) and Blc)). Degeneracy
is detected at frames 12 and 13. In order to emphasize the fact that the frame-
wise estimation fails, we let f be co and the camera position be at the center of
the grid pattern in Figs. B(b) and Blc) when degeneracy is detected.
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(c) (d)
Fig. 6. (a) Simulated camera motion. (b) Estimated focal lengths. (c¢) Estimated ca-
mera trajectory. (d) Magnification of the portion of (c) for frames 20 ~ 24. In (b)~(d),
the solid lines indicate model selection by the geometric AIC; the thick dashed lines in-
dicate model selection by the geometric MDL; the thin dotted lines indicate frame-wise
estimation.

As we can see, both the geometric AIC and the geometric MDL produce a
smoother trajectory than frame-wise estimation and that the computed trajec-
tory smoothly passes through the degenerate configuration. Fig. [B(d) is a ma-
gnification of the portion for frames 20 ~ 24 in Fig. Bic). We can observe that
statistical fluctuations exist if the camera position is estimated at each frame
independently and that the fluctuations are removed by model selection.

From these results, it is clearly seen that the geometric MDL has a stronger
smoothing effect than the geometric AIC. This is because the penalty —¢? log €2
for each degree of freedom in the geometric MDL is generally larger than the
penalty 2¢2 in the geometric AIC (see eq. ([I3) and eq. ([Id))) so the geometric
MDL tends to select a simpler model than the geometric AIC.

7.2  Virtual Studio

Fig. [ shows five sampled frames from a real image sequence obtained in the
setting described in Section 5.3. The camera moves from right to left with a
fixed focal length. The camera optical axis becomes almost perpendicular to the
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4

Fig. 7. Sampled frames from a real image sequence.
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Fig. 8. (a) Estimated focal lengths. (b) Estimated camera trajectory. In (a) and (b),
the solid lines indicate model selection by the geometric AIC; the thick dashed lines
indicate model selection by the geometric MDL; the thin dotted lines indicate frame-
wise estimation.

grid pattern in the 15th frame. Degeneracy is detected there and thereafter.

Fig. B(a) shows the estimated focal lengths; Fig. B(b) shows the estimated
camera trajectory viewed from above. The frame-wise estimation fails when de-
generacy occurs. In this case, the estimation by the geometric MDL is more
consistent with the actual camera motion than the geometric AIC. But this is
because we fixed the zooming and moved the camera smoothly. If we added va-
riations to the zooming and the camera motion, the geometric MDL would still
prefer a smooth motion. So, we cannot say which solution should be closer to
the true solution; it depends on what kind of solution we expect is desirable for
the application in question.

8 Concluding Remarks

Motivated by virtual studio applications, we have studied the technique for “si-
multaneous calibration” for computing the 3-D position and focal length of a
continuously moving and continuously zooming camera from an image of a pla-
nar pattern placed behind the object. We have described a procedure for com-
puting an optimal solution that provides an evaluation of the reliability of the
solution.

Then, we showed that degeneracy of the solution and statistical fluctuations
of computation can be avoided by model selection: we predict the 3-D position
and focal length of the camera in multiple ways and select the best model using
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the geometric AIC and the geometric MDL. Doing numerical and real-image
experiments, we have observed that the geometric MDL tends to select a simpler
model than the geometric AIC, thereby producing a smoother and more cohesive
estimation.
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