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Abstract. We present a new symmetry-based method allowing to auto-
matically compute, reorient and recenter the mid-sagittal plane in ana-
tomical and functional 3D images of the brain. Our approach is compo-
sed of two steps. At first, the computation of local similarity measures
between the two hemispheres of the brain allows to match homologous
anatomical structures or functional areas, by way of a block matching
procedure. The output is a set of point-to-point correspondences: the
centers of homologous blocks. Subsequently, we define the mid-sagittal
plane as the one best superposing the points in one side of the brain and
their counterparts in the other side by reflective symmetry. The estima-
tion of the parameters characterizing the plane is performed by a least
trimmed squares optimization scheme. This robust technique allows nor-
mal or abnormal asymmetrical areas to be treated as outliers, and the
plane to be mainly computed from the underlying gross symmetry of the
brain. We show on a large database of synthetic images that we can ob-
tain a subvoxel accuracy in a CPU time of about 3 minutes, for strongly
tilted heads, noisy and biased images. We present results on anatomical
(MR, CT), and functional (SPECT and PET) images.

1 Introduction

1.1 Presentation of the Problem

A normal human head exhibits a rough bilateral symmetry. What is easily obser-
vable for external structures (ears, eyes, nose...) remains valuable for the brain
and its components. It is split into two hemispheres, in which each substructure
has a counterpart of approximately the same shape and location in the opposite
side (frontal, occipital lobes, ventricles...). They are connected to each other by
the corpus callosum, and separated by a grossly planar, mid-sagittal, fissure.
However, it has been reported since the late 19th century that conspicuous
morphological differences between the hemispheres make the brain systemati-
cally asymmetrical. For example, the wider right frontal and left occipital lobes
give rise to a torque effect of the overall brain shape (see Fig. [l). More subtly,
the natural variability of the cortex translates into slight differences between
hemispheres. In the same way, cerebral dominance has been demonstrated since
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the work of Paul Broca on the language lateralization (1861), and many brain
functions are now thought or known to be located in mainly one of the hemisphe-
res (handedness, visual abilities, etc.). The question of whether the anatomical
and the functional brain asymmetries relate to each other remains debatable to
the point, even if evidences of close connections have been demonstrated quite
lately [5]. These studies suggest that symmetry considerations are key to the
understanding of cerebral functioning.

Fig. 1. Torque effect of the brain. The
right frontal lobe (1) is larger than the left
one, and this is the opposite for the occi-
pital lobe (11). Description of the hemis-
pheres: 1. Frontal pole 2. Superior frontal
sulcus 3. Middle frontal gyrus 4. Superior
frontal gyrus 5. Precentral sulcus 6. Longi-
tudinal cerebral fissure 7. Precentral gyrus
8. Postcentral gyrus 9. Central sulcus 10.
Postcentral sulcus 11. Occipital pole. This
illustration comes from the Virtual Hospi-
tal [22].

Volumetric medical images convey information about anatomical (MR, CT)
or functional (PET, SPECT) symmetries and asymmetries, but they are hidden
by the usual tilt of the patient’s head in the device during the scanning process.
More precisely, the “ideal” coordinate system attached to the head, in which the
inter-hemispheric fissure is conveniently displayed, differs from the coordinate
system of the image by three angles around the bottom-top (yaw angle, axial
rotation), the back-front (roll angle, coronal rotation) and the left-right (pitch
angle, sagittal rotation) axes, and three translations along these directions (see
Fig.2)). It means that the fissure is generally not displayed in the center of the
image lattice. This prevents from further visual inspection or analysis, because
the homologous anatomical structures or functional areas in both hemispheres
are not displayed in the same axial or coronal slice in the 3D image.

It is of great interest to correctly reorient and recenter brain images, because
normal (torque effect, intrinsic variability) and abnormal (unilateral pathologies)
departures from symmetry appear more clearly and make the diagnosis easier in
many cases: fractures of the skull in CT images, lesions, or bleed in MR images,
asymmetries of perfusion in SPECT images, etc. Some diseases are assumed to
be strongly linked with abnormalities of brain asymmetry, like schizophrenia:
in this case, the brain is suspected to be more symmetrical than normal [4].
After the initial tilt has been corrected, it is easier to perform further manual or
automatic measurements to compare the two sides of the brain, because relative
locations of homologous structures become immediate to assess [6/12/[19].



Computation of the Mid-Sagittal Plane in 3D Images of the Brain 687

YAW angle @

coordinate space of the head

coordinate space of the image

Fig. 2. The “ideal” coordinate
system attached to the head (in
which the fissure is close to the

O ROLL angle plane Z = 0) and the coordinate
system of the image are deduced

to each other by way of three

angles (yaw, roll and pitch) and

—
a 3D translation (OO’).

PITCH angle

Several papers have previously considered the problem of correcting the axial
and coronal rotations, and the translation along the left-right axis; we give a brief
overview of the state-of-the-art in the next section. We do not tackle the problem
of correcting the sagittal rotation (e.g., alignment along the AC-PC line) and
the translations along the bottom-top and the back-front axes.

1.2 Existing Methods

Most of the existing algorithms share a common methodology. First, a suitable
mid-sagittal plane is defined in the brain. Then, this latter is rotated and cente-
red, so that the estimated plane matches the center of the image lattice. There
are mainly two classes of methods, differing in their definition of the searched
plane. We briefly describe their advantages and drawbacks in the following.

Methods based on the inter-hemispheric fissure The basic hypotheses
underlying these methods are that the inter-hemispheric fissure is roughly planar,
and that it provides a good landmark for further volumetric symmetry analysis.
Generally, the fissure is segmented in MR images, using snakes [6], or a Hough
transform [3], and the plane best fitting the segmentation is estimated. As this
approach focuses on the inter-hemispheric fissure, the resulting reorientation and
recentering of the brain is insensitive to strong asymmetries. Conversely, as the
global symmetry of the whole brain is not considered, the resulting algorithms
are very sensitive to the often observed curvature of the fissure, which can lead
to a meaningless plane (see Fig. [I]). At last, these methods are not adaptable to
other modalities, where the fissure is not clearly visible.

Methods based on a symmetry criterion There are relatively simple me-
thods of finding a plane of reflective symmetry in case of perfectly symmetrical
geometrical objects, in 2D or 3D. In this case, it can be demonstrated that any
symmetry plane of a body is perpendicular to a principal axis. In case of medical
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images, the problem is different, because normal and abnormal asymmetries de-
viate the underlying symmetry of the brain: a perfect symmetry plane does not
exist. To tackle this problem, an intuitive idea is to define the mid-sagittal plane
as the one that maximizes the similarity between the image and its symmetric,
i.e., the plane with respect to which the brain exhibits maximum symmetry.
Practically, this approximate symmetry plane is to be close to the fissure, but is
computed using the whole 3D image and no anatomical landmarks.

Most often, the chosen similarity criterion is the cross correlation, computed
between either the intensities [II7J8] or other features of the two symmetrical
images with respect to a plane with given parameters. For example, the criterion
can be computed between the derived Extended Gaussian Image (EGI) and
its flipped version [17]: theoretically, if the brain is symmetrical, so is its EGL
Contrary to the first class of methods, the whole 3D volume is taken into account,
which means that the overall gross symmetry of the brain is used. Consequently,
these methods are less sensitive to the variability of the inter-hemispheric fissure
and its curved shape. The trade-off is the need for the criterion to be robust
with respect to departures from the gross underlying cerebral symmetry, i.e., the
normal and pathological asymmetries of the brain. This robustness is difficult to
achieve with global criteria such as the cross correlation, that is affected in the
same way by areas in strong (i.e., symmetrical) and weak (i.e., asymmetrical)
correlation. These latter can severely bias the estimation of the plane [1]. To
overcome this issue, another similarity criterion is proposed in [10]: the stochastic
sign change, previously shown to be efficient in case of rigid registration, even
for quite dissimilar images [20]. In the same way, a specific symmetry measure
introduced in [16] considers mainly strongly symmetrical parts of the brain.

One common drawback of these methods is the computational cost of the
algorithms, due to the optimization scheme within the set of possible planes.
However, this cost can be often reduced: the discretization of the parameters
space (that limits the accuracy of the results) or a prior knowledge about the
position of the optimal plane allow to investigate only a limited number of planes.
Thus, the reorientation of the principal axes of the brain and the centering of
its center of mass is often a useful preprocessing step. A multi-resolution scheme
can also accelerate the process [I]. One important feature of these approaches is
their ability to tackle other modalities than MR, in particular functional images.

1.3 Overview of the Paper

In this article, we present a new symmetry-based method allowing to compute,
reorient and recenter the mid-sagittal plane in anatomical and functional images
of the brain. This method, generalizing an approach we previously described
in [I2/19], is composed of two steps. At first, the computation of local rather
than global similarity measures between the two sides of the brain allows to
match homologous anatomical structures or functional areas, by way of a block
matching procedure. The output is a set of point-to-point correspondences: the
centers of homologous blocks. Subsequently, we define the mid-sagittal plane as
the one best superposing the points in one hemisphere and their counterparts in
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the other hemisphere by reflective symmetry. The estimation of the parameters
characterizing the plane is performed by a least trimmed squares optimization
scheme. Then, the estimated plane is aligned with the center of the image lattice.
This method is fully automated, objective and reproducible.

This approach deals with two severe drawbacks of classical symmetry-based
methods. First, the computation of local measures of symmetry and the use of a
robust estimation technique [15] allow to discriminate between symmetrical and
asymmetrical parts of the brain, these latter being naturally treated as outliers.
Consequently, the computation of the mid-sagittal plane mainly relies on the
underlying gross symmetry of the brain. Second, the regression step yields an
analytical solution, computationally less expensive than the maximization of the
global similarity measures described in Section

We describe this approach in Section Pl In Section Bl we show that we can
cope with strongly asymmetrical and tilted brains, even in presence of noise
and bias, with very good accuracy and low computation time. In Section [ we
present results on anatomical (MR, CT) and functional (PET, SPECT) images.

2 Description of the Method

2.1 Presentation of the Main Principles

We recall the principles of the method presented in [T2T9]. Given I, an MR image
of the head, the mid-sagittal plane P is defined as the one best superposing the
pairs {a;, Sp(b;)}, where a; is a brain voxel, b; its anatomical counterpart in
the other hemisphere, and Sp the symmetry with respect to P. Practically, P is
obtained by minimization of the least squares (LS) criterion Y, [la; — Sp(b;)||%
[|.]| is the Euclidian norm. An analytical solution of this problem is described in
the appendix. The pairs {a;,b;} are obtained as follows (see also Fig. Bl):

— The mid-sagittal plane K of the image grid (K is fixed to the grid) differs
from the searched mid-sagittal plane P of the brain in the tilt of the head
during the scanning process, but is usually a good first estimate. The original
image I is flipped with respect to K, yielding Sk (I).

— The “demons” algorithm [I8] finds the anatomical counterpart b in Sk (I)
of each point a; in I, by way of non-rigid registration between the 2 images.

— b; = Sk(b}) is the anatomical counterpart of a; in the other hemisphere.
For example, in I, the point a;, located at the top of the right ventricle is
matched with the point b;, located at the top of the left ventricle.

Once P is computed, the transformation R = Sk o Sp is a rotation if P and
K are not parallel and a translation if P and K are parallel. The transformation
RY2, when applied to the image I, automatically aligns the plane P with K
[19]. Several difficulties and limitations arise when using this method:

— As many of the classical symmetry-based methods, normal and pathologi-
cal asymmetries can severely disrupt the computation of the plane. Even
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Fig.3. The non-rigid regi-
stration strategy. The point
b; in Sk (I) is matched with the
point a; in I; b; = Sk (b}) is the
counterpart of a; in the other
hemisphere.

image I/ image S (I)

though it is based on local instead of global measures of symmetry, the LS
minimization is not robust with respect to outliers [I5], and will be strongly
affected by the departures from the underlying symmetry.

— The non-rigid registration algorithm will provide aberrant matchings when
a structure is absent in one hemisphere (a lesion, one track of white matter,
etc.), or when two structures are present but too different from each other;
these failures are difficult if not impossible to detect. These meaningless cor-
respondences can significantly affect the LS criterion and its minimization.

— At last, the “demons” algorithm mainly relies on the gradient of the image,
and proved to be efficient for low-textured images like MR or CT. Conse-
quently, this approach is not applicable to SPECT or PET images.

2.2 Modification Based on a Block Matching Strategy and a Robust
Estimation Technique

We propose a modification of this approach, allowing to compute the mid-sagittal
plane mainly from correspondences between very symmetrical areas, and to
tackle both functional and anatomical images. The methodology is twofold: we
still find point-to-point correspondences between the two sides of the brain, and
then derive the plane best superposing the pairs of matched points, but the
matching and the optimization procedures significantly differ from Section 1.

Computation of inter-hemispheric correspondences by a block mat-
ching strategy. The pairs of correspondences {a;, b} are obtained by way of
a block matching strategy between the image I and its symmetric Sk (I). This
procedure is extensively described in [IT], in case of rigid registration of anato-
mical sections. The common lattice of the 2 images (of size X XY x Z) defines a
set of rectangular parallelepipedic blocks of voxels {B} in I and {B'} in Sk (),
given their size N, x N, X N,: both images contain (X — N, +1) x (Y — N, +1) x
(Z—N,+1) such blocks. We aim at matching each block in {B} with the block in
{B’} maximizing a given similarity measure, which yields a “displacement field”
between I and Sk (I). Practically, it is not computationally feasible to make an
exhaustive search of matchings within {B’} for each block of {B}. In addition,
we have an a priori knowledge about the position of the correspondent B’ of B:
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if the head is not too tilted, B’ is to be located in a neighborhood of B. Thus we
constrain the search procedure to subsets defined as follows:

— We limit the search for correspondences to one block B every A, (resp.
Ay, A,) voxels in the x (resp. y, z) direction, defining a subset of {B};
A = (A, Ay, A,) determines the density of the computed “displacement
field” between I and Sk (I).

— For each block B in this subset, we define a sub-image in Sk (I), centered on
B, which delimits a neighborhood of research. This sub-image is composed of
the voxels in S (I) located within a distance of {2, (resp. 2, £2,) voxels in
the x (resp. y, z) direction from B. This yields a rectangular parallelepipedic
sub-image of size (N, + 262;) x (N, + 2£2,) x (N, +2£2,) in Sk (I), which
contains (262, +1) x (262, +1) x (22, +1) blocks B’ (provided this sub-image
is entirely located in Sk (I)).

— In this sub-image, we examine one block B’ every X, (resp. Xy, X,) voxels
in the x (resp. y, z) direction; ¥ = (X, X,, X.) determines the resolution
of the displacement field.

Note that the subset of {B} in I and the subset of {B’} in the sub-image of
Sk (I) contain the following number of blocks, respectively:

max{n.|(n, — 1)A, + N, < X} max{n.|(n, — )X, <202,}
x max{ny|(ny, —1)A4, + N, <Y} and x max{ny|(ny,—1)2, < 202,}
x max{n,|(n, — 1)A, + N, < Z} x max{n.|(n,—1)X, <20,}

We note By, (resp. B'jnm) the block in I (resp. Sk (I)) containing the voxel
(i,7,k) (resp. (I,n,m)) at its top left back corner. We summarize the features of
the algorithm as follows:

— For (i=0;i <
—For (j=0; <Y —Ny;j=35+4,)
—For (k=0;k<Z-N,k=k+A,)
We consider the block Byjy, in I
—For (Il=i— 02,1 <i+Q2;l=14+X%,)
—For (m=j—02,m<j+2;m=m+ %))
—For(n=k—-2,;;n<k+02,;n=n+2X%,)
If the block B';,m in Sk (I) is entirely located in the image lattice, we
compute a similarity measure with By
— We retain the block B’;,,, with maximal similarity measure, which defines
the displacement vector between the center (¢ + N;/2,j+ N,/2,k + N,/2)
of Bjjx and the center (I 4+ N,/2,n+ Ny/2,m + N./2) of B'jpp,.

A given choice of parameters N = (N, Ny, N;), 2 = (£2,,02,,92,), A =
(Az, Ay, Ay), ¥ = (2, %y, X.), whose interpretation will be given later, yields
pairs of correspondences (a;, b}) between I and Si (I), a; and b; being the centers
of matched blocks. The output of this scheme is a displacement field, which
conveys local information about brain symmetry or asymmetry. The points {}}
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image 1 image Sy (I)

Fig. 4. The block matching. The point b; in Sk (I) is homologous to the point a; in I;
b; = Sk (b}) is the counterpart of a; in the other hemisphere. I contains 128 voxels. The
chosen parameters are: N = (32,32,32), A = (8,8,8), 2 = (8,8,8), X = (16, 16, 16).
In I, the subset of {B} is defined by the dashed grid (parameters A). Around the
block of center a;, superposed on S (I) with dotted lines, a neighborhood of research
is delimited (parameters (2). In this sub-image of Sk (I), the search is completed on
the subset of {B’} defined by the small dashed grid (parameters X). For each of the
13% = 2197 such defined blocks in I, the search is done on 2% = 8 blocks in Sk (I).

are then flipped back with respect to K, giving the points {b; = Sk (b;)}; b; is
the counterpart of a; in the opposite side of the brain (see Fig. ).

Different intensity-based criteria can be chosen as a similarity measure, such
as the Correlation Coefficient (CC) [2], the Correlation Ratio (CR) [14] or the
Mutual Information (MI) [2TJ9]. Each of these measures assumes an underlying
relationship between the voxel intensities of the 2 images, respectively affine
(CQC), functional (CR), or statistical (MI) [I3]. Practically, the CR and the MI are
well suited to multimodal registration, whereas the CC is suited to monomodal
registration. In our case, I and Sk (I) have the same “modality”: an affine, or
locally affine relationship can be assumed, and we use the CC.

This block matching approach, based on local similarity measures, allows
to exclude very asymmetrical and meaningless areas from the computation of
the plane. First, if no block B’ in the subset defined in Sk (I) exhibits a high
—CC— with a given block B in the subset defined in I, its center is eliminated
straightforwardly, by setting a convenient threshold. In practice, this happens
when the structures existing in one given block in I are absent from any block
in Sk (I), which is the case for strongly asymmetrical areas. This elimination is
not easily feasible in [12[19], where it is difficult to detect where the non-rigid al-
gorithm fails. Thus, the estimation step, performed with these preselected inter-
hemispheric correspondences, is mainly based on symmetrical areas. The robust
estimation technique we use (a least trimmed squares minimization) allows to
exclude the remaining asymmetrical areas from the computation of the plane.

Robust estimation of the mid-sagittal plane. A least trimmed squares
(LTS) strategy is used to find the plane P best superposing the points {a;} and
their counterparts {b; }. This minimization scheme has been proven to be far more
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robust to outliers than the classical LS method [15]. In our problem, we have
to deal with two kinds of outlying measures. First, aberrant matchings can be
obtained if the head is strongly tilted. Second, even after the initial short-listing
that eliminates blocks with low —CC—, blocks conveying strong asymmetries
can remain. This happens when a structure is present in both hemispheres, but
in different locations: the two matched blocks containing this structure are likely
to exhibit a high —CC—. The use of a robust estimation technique enables the
computed plane to be only based on the underlying gross symmetry of the brain,
the asymmetries being treated as outliers. The LTS scheme we use is:
— The plane P minimizing Y, [la; — Sp(b;)||?
— The residuals 7; = |la; — Sp(b;)|| are trimmed, and P is recomputed as
previously, using only the voxels ¢ with the 50% smaller residuals.
— After several iterations, the scheme stops when the angle between the normal
vectors of two successively estimated planes is lower than a fixed threshold;
we consider that they are “sufficiently close” to each other.

is computed (see Appendix).

This strategy is able to cope with up to 50% of outliers [I5]. To improve
the accuracy of the estimation, we iterate the process (Fig. B)). As previously
noted, after a first estimation P; of the mid-sagittal plane, the transformation
Ry = (Sk o Sp,)"/? is such that P, = K in R(I) (we recall that K is fixed to
the image grid). We make a new block matching between Ry (I) and Sk (R1([)),
K being the firstly estimated plane P;, and a new estimation P, by the LTS
procedure. The transformation Ry = (Sk o Sp,)!/? is such that P, = K in
Roo Ry (I)). After several iterations, the mid-sagittal plane P, is computed from
the image (R,,—10...0R1)(I). The final estimate is the plane K in (R,o0...0R1)(I).
The composition of the successively estimated rigid transformations R; avoids
multiple resampling. Usually, we choose a fixed number of iterations.

beginning

symmetry w.r.t. K
n <— n+l
——{1. =R, 0..0R, 0 Ry (D} S (1,,) )

\

Fig.5. General scheme.

block of center a; block of center b; We describe th.e lteratlvle pro-
block matching cess for one given choice of
block of center b; parameters (i.e., at one gi-
symmetry w.r.t. K ven scale). Usually, we fix

end

the number of iterations: ty-
— estimation of P, ]—»[ solution = P, ] . o .
LTS optimization if n=n plcally, Nmaz = D ylelds gOOd
i results (see Section[3)).
R,= (S 08,)" (notation:
R, =identity
P,=P,R,=R)
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Multiscale scheme. Given a set of parameters N, 2, A, 3| the complexity of

NoNyN.) (2,92, 9. o
((AzA;Az§((E$E;Ez)) [11]). Intuitively,

when [ is strongly tilted, I and Sk (I) are far from each other, and the neighbor-
hood of research must be large (parameters X'), to deal with strong differences
in translation and rotation. We also expect large blocks (parameters V) to give
more sensible CC than small ones. On the contrary, when [ is already well alig-
ned, we can restrict the neighborhood of research, and have more confidence in
the CC computed on small blocks.

We implemented a multiscale scheme to achieve a good trade-off between
accuracy and complexity. Initially, when the head is suspected to be strongly
tilted, we make a first estimation of the mid-sagittal plane with large values of
N, 2, A, ¥. This raw estimate P}, based on a displacement field with low density
and low resolution, is the center of (RLo...o R)(I) (n is the number of iterations
at a given scale). Then, we decrease the parameters so that the complexity
remains constant: the new estimate P2 is the center of (R2o...oR*>oRlo...oR')(I),
and so on. At the last scale, the estimation is based on a displacement field of
high density and high resolution, and is likely to be accurate. Usually, we make
the following choices, for isotropic as well as anisotropic images:

the block matching process is proportional to

— The initial values of the parameters are:
— N = ([X/4],[Y/4],[Z/4]) or N = ([X/8],[Y/8],[Z/8]) (see Section[3)
- N=N,A=XY=N/4
— At each iteration, they are automatically updated as follows:
N+ N/2, 2+ Q2/2, A+ A)2, ¥+ X/2.

— The updating in the direction x (resp. y, z) stops when N, (resp. N, N.)
is smaller than 4 at the next scale. At this level, the small block size makes
the computed CC become meaningless. The whole process stops when there
is no updating in any direction. For an image of size 128 and for each of
the 2 choices we usually make for initial parameters, we get 4 and 3 scales
respectively, and A = X = (1,1,1) at the last scale: this means that we
obtain a displacement field of very high density and resolution.

3 Validation: Robustness and Accuracy Analysis

3.1 Materials

In this section, we present a series of experiments on simulated data, to show
the robustness and the accuracy of the algorithm. Moreover, we aim at finding a
set of optimal parameters for the computation of the plane and showing that the
algorithm is robust with respect to a relatively high level of noise and bias. This
simulated dataset contains 1152 synthetic MR images, generated as follows.
First, a perfectly symmetrical image I; is created. We consider an original
MR image I of size 2563, with voxel size 0.78mm?, provided by Dr. Neil Roberts,
Magnetic Resonance and Image Analysis Research Centre (University of Liver-
pool, UK). Running our algorithm on very high resolution images implies a
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prohibitive computation time; we resample I to get a new image of size 1283. In
this latter, a mid-sagittal plane is determined by visual inspection, and matched
with the center of the image grid. One half of the brain is removed; the other
one is flipped with respect to the center, perfect symmetry plane of this new
image I, which constitutes the ground truth for our validation experiments.
Second, artificial lesions with different grey levels and local expansions and
shrinkings are added inside the brain to create strong focal asymmetries. Third,
an additive, stationary, Gaussian white noise (¢ = 3) is added, on top of the int-
rinsic noise in I;. Fourth, a roll, a yaw angle and a translation along the left-right
axis are applied. We choose the angles in the set {0, 3, 6,..., 21} (in degrees),
and the translations in the set {0, 4, 8,..., 20} (in voxels): the 384 possible com-
binations constitute the dataset A; the applied noise is different for each image.
Resampling I; to the size 643 gives the image I. Adding the same lesions and
deformations, random noise with the same characteristics, and applying the same
rotations, and translations of 0, 2,..., 10 voxels, we get a second dataset (B) of
384 images (the transformation with parameters (yaw,roll translation)=(c«, 3, 2t)
applied to I1 and («, 3,t) applied to Iy are the same). At last, a strong mul-
tiplicative bias field (linear in x, y and z) is added to Iy before applying the
transformation, which creates a third dataset (C) of 384 images. In brief:

— dataset A: I; + lesions + deformations + noise + 2 rotations + 1 translation

— dataset B: I + lesions + deformations + noise + 2 rotations + 1 translation

— dataset C: Iy + lesions + deformations + noise + bias + 2 rotations + 1
translation

3.2 Methods

The following experiments are devised (with n,,,, = b iterations at each scale):

Experiment 1: dataset A with (N, 2, A, X)) =
Experiment 2: dataset A with (N, 2, A, X))
— Experiment 3: dataset B with (N, 2, A, X)) =
— Experiment 4: dataset C with (N, 2, A, X)) =

(32,32,8,8)
(16,16,4,4)
(16,16,4,4)
(16,16,4,4)

For each experiment, the computed roll, yaw angles and translation along the
left-right axis aligning the estimated mid-sagittal plane are compared with the
applied ones, giving a measure of accuracy of the algorithm. For this purpose,
the computed rigid transformation is composed with the applied one. The norm
of the yaw and roll angles of the rotation component of this composition and the
norm of its translation component along the left-right axis are computed; the
closer to zero these 3 parameters are, the more accurate the result is. Another
measure of accuracy e is described in Fig. [l We consider that an experiment
is successful when e is lower than a given threshold, typically, 1 voxel. The
maximal value §,,4, of & (which measures the initial tilt of the head) for which
the algorithm succeeds gives an idea of the robustness of the algorithm.
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Fig. 6. Realignment of a synthetic MR image. Artificial lesions, local deforma-
tions, noise and bias are added to a perfectly symmetrical MR image of size 128,
Roll and yaw angles of 6 degrees, and translation along the left-right axis of 6 voxels
are applied to this image. The initial parameters of the block matching algorithm are
(N, 02,A, %) = (16,16,4,4). The errors of the computed transform, compared to the
applied one are: 4.1072 degrees (roll angle), 3.1072 degrees (yaw angle), 107" voxels
(translation), and 2.107! voxels (error ¢, see Fig. [). We display 2 panels with axial
(left) and coronal (right) views. In each panel, from left to right, we have the original
image with added lesions and deformations, the tilted image with added noise and bias,
and the realigned and recentered image.

I R () % RyoR (D 2,
1 9 =y
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Fig.7. A measure of accuracy. A synthetic image I is generated, in which the
central plane P is the sought symmetry plane of the brain, as described in the text
(left sketch). We apply yaw, roll angles, and a translation along the left-right axis,
which yields a rigid transformation Ri. In Ri([), the real symmetry plane R1(P) is
no longer aligned with the center of the image grid (central sketch). The maximum
0 of the four distances 01, d2, 03,04 measures the tilt of the head in Ry (I) before we
run the algorithm. We estimate a symmetry plane P and a rigid transformation Rz so
that P is displayed in the center of Ry o Ry (I) (right sketch). The estimated plane P is
generally different from the real one Rz o R1(P). The maximum ¢ of the four distances
€1, €2, €3, €4 gives a good idea of the maximal error in the whole volume of the image.
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Comparing the experiments 1 and 2 (resp. 1 and 3) shows the influence of
the initial size of the blocks (resp. subsampling) on the accuracy, the robustness
and the computation time of the algorithm. This aims at indicating which set of
parameters is best adapted to real medical images. Comparing the experiments
3 and 4 shows the sensitivity of the algorithm to bias effects. The experiments
were led on a standard PC (OS Linux), 450 MHz, 256 MBytes of RAM.

3.3 Results and Interpretation

Experiment 1 vs 2. The algorithm proved to be highly robust for the ex-
periment 1. It never failed when § was lower than 51 voxels, which corre-
sponds (for example) to parameters (yaw,roll,translation)=(15, 15, 16), (18, 18, 8)
or (21,21,0). In real images, the tilt of the head is usually smaller. We noticed
that the convergence of the algorithm is the same for parameters (o, 3,t) and
(8, a, t): the yaw and roll angles play symmetric roles. Note that this convergence
is not deterministic in our experiments, because the random noise is added sepa-
rately on each image of the datasets. Thus, the algorithm did not fail systemati-
cally for more extreme parameters; for example, it succeeded for the parameters
(21,21, 20). For the experiment 2, the rate of success is significantly reduced: it
systematically succeeded when § was lower than 42, which approximately cor-
responds to parameters (12,12,16), (15,15,18) or (18,18,0). The small initial
block size and the restricted neighborhood of research explain that the algorithm
is unable to deal with too tilted heads. Compared to experiment 1, there is one
less scale to explore, and the average computation time is reduced, but still pro-
hibitive (about 34 min). The obtained accuracy is about the same compared to
experiment 1. Thus, the set of initial parameters N = ([X /4], [Y/4],[Z/4]) seems
to be best adapted at a given resolution of the image.

Experiment 1 vs 3. For these two datasets, studied with optimal initial block
size, the robustness is about the same, surprisingly. The subsampling does not
reduce significantly the efficiency of the algorithm, which can fail when § is
superior to 25 voxels, which corresponds to parameters (15,15,8), (18,18,4) or
(21,21,0), comparable with the parameters of experiment 1. The accuracy is
divided by two in experiment 3 compared to experiments 1 and 2, but remains
very high (see Table[). At last, the computation time is strongly reduced (by a
factor of 10). This suggests that highly subsampled images (from 2562 to 643)
are enough for a satisfying reorientation and recentering.

Experiment 3 vs 4. The algorithm is very robust with respect to a relatively
high bias. This is an important feature of this local approach. Locally, the inten-
sity variations are smaller than on the whole image, and the CC is still a sensible
measure. The accuracy and the computation time are similar.

Conclusion. We draw several conclusions from these experiments: the accuracy
is always very high when the algorithm succeeds. For a usual MR image of size
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2562, with voxel size 0.78mm?® and with an initial tilt of § lower than about
100 voxels, which corresponds to realistic conditions of § = 50 (resp. 25) voxels
in the subsampled image of size 1283 (resp. 64%), our algorithm is likely to
succeed. Using the subsampled image of size 643, with (16,16,4,4) as initial
parameters and 5 iterations at each scale, we reach a precision of about ¢ =
10.1072 x 4 x 0.78 ~ 0.3 mm (see Table [l and Fig. [7)) for successful experiments,
within a CPU time of about 3 minutes. For strongly tilted images, an initial
alignment along the principal axes of the brain can be a useful preprocessing.

Table 1. Validation on simulated data. The RMS errors (indicated for successful
experiments only) are measured in degrees for the angles and voxels for the left-right
translation and the value € (see Fig.[d). The errors are doubled between experiments
on 128% and 64% images, including for the translation and e (the errors in voxels are
about the same, and the errors in mm are doubled for half resolution images).

Exp.|Robustness Accuracy (RMS errors) CPU
(0maz) |Roll Angle|Yaw Angle|Translation € Time
51 voxels | 4.1072 41072 5.1072 [11.1072] 45
42 voxels | 3.1077 41072 5.102 [10.107 2| 34’
25 voxels | 11.1072 9.1072 6.1072 [13.1072%] 3
25 voxels | 11.1072 8.10~2 7.1077 [11.1072%] 3

[ENNCCIN N

4 Results and Acknowledgements

In this section, we present results for real anatomical (MR, CT) and functional
(SPECT, PET) images. For each illustration, we present axial (top) and coronal
(bottom) views, for the initial 3D image (left) and the reoriented and recente-
red version (right) (see Fig. B). The MR image has been provided by Dr. Neil
Roberts, Magnetic Resonance and Image Analysis Research Centre (University
of Liverpool, UK), and is of size 256%, with voxel size 0.78mm?. The CT image
comes from the Radiology Research Imaging Lab (Mallinckrodt Institute of Ra~
diology, Saint Louis, Missouri, USA), and is of size 256 x 256 x 203, with voxel
size 0,6mm?>. The SPECT image has been provided by Pr. Michael L. Goris,
Department of Nuclear Medicine (Stanford University Hospital, USA), and is
of size 643. At last, the PET image has been provided by the Hammersmith
Hospital in London, UK, and the Unité 230 of INSERM, Toulouse, France. It is
of size 128 x 128 x 15, with voxel size 2.05mm x 2.05mm X 6.75mm.

5 Conclusion

We have presented a new symmetry-based method allowing to compute, reorient
and recenter the mid-sagittal plane in volumetric anatomical and functional ima-
ges of the brain. Our approach relies on the matching of homologous anatomical
structures or functional areas in both sides of the brain (or the skull), and a



Computation of the Mid-Sagittal Plane in 3D Images of the Brain 699

Fig. 8. Results on real images. From left to right, top to bottom: isotropic MR,
CT, SPECT images, and anisotropic PET image. See Section M for details.

robust estimation of the plane best superposing these pairs of counterparts. The
algorithm is iterative, multiscale, fully automated, and provides a useful tool for
further symmetry-based analysis of the brain. We showed on a large database
of synthetic images that we could obtain a subvoxel accuracy in a CPU time
of about 3 minutes for strongly tilted heads, noisy and biased images. We have
presented results on isotropic or anisotropic MR, CT, SPECT and PET images;
the method will be tested on functional MR and ultrasound images in the future.

Appendix: LS Estimation of the Mid-Sagittal Plane

We want to minimize C = 3 ,(S(b;) — a;)?, with S(b;) = b; —2((b; —p) "n)n and
where p is a point in the plane and n the unit normal vector to the plane. By
differentiating C' with respect to p, we get:
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dC T T
——_42 2p — b; — a;
i(p b —a;) ' nn

which demonstrates that the barycenter G = % > w belongs to the plane.
Substituting G in the first equation, we get:

C= Z(bi —a;)? +4[(b; — G)"nl[(a; — G) "n)

which is minimized when the following expression is minimized:

S nTl(ai = G)(bi = 6)In

which means than n is the eigenvector associated to the smallest eigenvalue of

1, where:
I = Z(ai - G)(bl - G)T
%
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