3-D Motion and Structure from 2-D Motion
Causally Integrated over Time: Implementation™

Alessandro Chiuso2, Paolo Favaro!, Hailin Jin, and Stefano Soatto!

! Washington University, One Brookings Dr. 1127, Saint Louis — MO 63130
2 Universita di Padova, Via Gradenigo 6/a 35131 Padova — Italy
email {chiuso,fava,hljin,soatto}@essrl.wustl.edu

Abstract. The causal estimation of three-dimensional motion from a
sequence of two-dimensional images can be posed as a nonlinear filtering
problem. We describe the implementation of an algorithm whose uni-
form observability, minimal realization and stability have been proven
analytically in [5]. We discuss a scheme for handling occlusions, drift in
the scale factor and tuning of the filter. We also present an extension
to partially calibrated camera models and prove its observability. We
report the performance of our implementation on a few long sequences
of real images. More importantly, however, we have made our real-time
implementation — which runs on a personal computer — available to the
public for first-hand testing.

1 Introduction

Inferring the three-dimensional (3-D) shape of a moving scene from its two-
dimensional images is one of the classical problems of computer vision, known
by the name of “shape from motion” (SFM). Among all possible ways in which
this can be done, we distinguish between causal schemes and non-causal ones.
More than the fact that causal schemes use — at any given point in time — only
information from the past, the main difference between these two approaches lies
in their goals and in the way in which data are collected. When the estimates
of motion are to be used in real time, for instance to accomplish a control task,
a causal scheme must be employed since “future” data are not available for
processing and the control action must be taken “now”. In that case, the sequence
of images is often collected sequentially in time, while motion changes smoothly
under the auspices of inertia, gravity and other physical constraints. When, on
the other hand, we collect a number of “snapshots” of a scene from disparate
viewpoints and we are interested in reconstructing it, there is no natural ordering
or smoothness involved; using a causal scheme in this case would be, in the end,
highly unwise.

No matter how the data are collected, however, SFM is subject to fundamen-
tal tradeoffs, which we articulate in section 2l This paper aims at addressing
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such tradeoffs: it is possible to integrate visual information over time, hence
achieving a global estimate of 3-D motion, while maintaining the correspon-
dence problem local. Among the obstacles we encounter is the fact that indivi-
dual points tend to become occluded during motion, while novel points become
visible. In [5] we have introduced a wide-sense approximation to the optimal
filter and proved that it is observable, minimal and stable. In this paper we de-
scribe a complete, real-time implementation of the algorithm, which includes an
approach to handle occlusions causally.

1.1 A first Formalization of the Problem

Consider an N-tuple of points in the three-dimensional Euclidean space, repre-
sented as a matrix
X = [XIX2...XN] e RV (1)

and let them move under the action of a rigid motion represented by a translation
vector 1T and a rotation matrix R. Rotation matrices are orthogonal with unit
determinant {R | RTR = RRT = I}. Rigid motions transform the coordinates
of each point via R(#)X? + T(t). Associated to each motion {T, R} there is
a velocity, represented by a vector of linear velocity V' and a skew-symmetric
matrix & of rotational velocity. Skew-symmetric 3 x 3 matrices are represented

using the “hat” notation
0 —as a2
3: as O —al . (2)

—a2 ai 0

Under such velocity, motion evolves according to
T(t+1)= ea“)T(t) + V() 3)
R(t+1) = e*DR(1).

The exponential of a skew-symmetric matrix can be computed conveniently
using Rodrigues’ formula:

~ -~ ~2
w w

e’ =T+ —rsin(||wl]) + 5 (1 = cos (Jwl])) - (4)
[[wl] [[wl|?

We assume that - to an extent discussed in later sections - the correspondence
problem is solved, that is we know which point corresponds to which in different
projections (views). Equivalently, we assume that we can measure the (noisy)
projection

y'(t)=n (RHX'+T(t)) +n'(t) eR* Vi=1...N (5)

where we know the correspondence y? <+ X?. We take as projection model an

T
ideal pinhole, so that y = n(X) = [% %} . This choice is not crucial and

the discussion can be easily extended to other projection models (e.g. spherical,
orthographic, para-perspective, etc.). We do not distinguish between y and its
projective coordinate (with a 1 appended), so that we can write X = yXs.
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Finally, by organizing the time-evolution of the configuration of points and their
motion, we end up with a discrete-time, non-linear dynamical system:

X(t+1) = X(1) X(0) = Xo

T(t+1)= ei(”T(t) +V(t) T()="To

R(t+1) = e*DR(t) R(0) = Ro 6)
Vt+1)=V(t)+av(t) V(0) = Vo

wt+1) =w®) + au(t) w(0) =wo

y'(t) = (ROX(t) + T(1)) +n'(1) n'(t) ~ N(0, 2n)

where v ~ N (M, S) indicates that a vector v is distributed normally with mean
M and covariance S. In the above system, « is the relative acceleration between
the viewer and the scene. If some prior modeling information is available (for
instance when the camera is mounted on a vehicle or on a robot arm), this is the
place to use it. Otherwise a statistical model can be employed. In particular, we
can formalize our ignorance on acceleration by modeling o as a Brownian motion
proces. In principle one would like - at least for this simplified formalization
of SFM - to find the optimal solution. Unfortunately, as we explain in [5], there
exists no finite-dimensional optimal filter for this model. Therefore, at least for
this elementary instantiation of SFM, we would like to derive approximations
that are provably stable and efficient.

1.2 Tradeoffs in Structure from Motion

The first tradeoff involves the magnitude of the baseline and the correspondence
problem, and has been discussed extensively in [5]. When images are taken from
disparate viewpoints, estimating relative orientation is simple, given the cor-
respondence. However, solving the correspondence problem is difficult, for it
amounts to a global matching problem — all too often solved by hand — which
spoils the possibility of use in real-time control systems. When images are collec-
ted closely in time, on the other hand, correspondence becomes an easy-to-solve
local variational problem. However, estimating 3-D motion becomes rather dif-
ficult since — on small motions — the noise in the image overwhelms the feeble
information contained in the 2-D motion of the features.

No matter how one chooses to increase the baseline in order to bypass the
tradeoff with correspondence, one inevitably runs into deeper problems, namely
the fact that individual feature points can appear and disappear due to occlusions,
or to changes in their appearance due to specularities, light distribution etc. To
increase the baseline, it is necessary to associate the scale factor to an invariant
of the scene. Therefore, in order to process that information, the scale factor
must be included in the model. This tradeoff is fundamental and there is no
easy way around it: information on shape can only be integrated as long as the
shape is visible.

1 'We wish to emphasize that this choice is not crucial towards the conclusions reached
in this paper. Any other model would do, as long as the overall system is observable.
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1.3 Relation to Previous Work and Organization of the Paper

We are interested in estimating motion so that we can use the estimates to
accomplish spatial control tasks such as moving, tracking, manipulation etc.
In order to do so, the estimates must be provided in real time and causally,
while we can rely on the fact that images are taken at adjacent instants in time
and the relative motion between the scene and the viewer is somewhat smooth
(rather than having isolated “snapshots”). Therefore, we do not compare our
algorithms with batch multi-frame approaches to SFM. This includes iterative
minimization techniques such as “bundle adjustment”. If one can afford the
time for processing sequences of images off-line, of course a batch approach that
optimizes simultaneously on all frames will perform better

Our work falls within the category of causal motion and structure estimation
that has a long and rich history [TOJ7)T8I4,23T9132/9J30,2418/T226|TTI3T32433]
T3125/16/T2122/35]T5]. The first attempts to prove stability of the schemes pro-
posed are recent [21]. The first attempts to handle occlusions in a causal schemd?]
came only a few years ago [19J29]. Our approach is similar in spirit to the work of
Azarbayejani and Pentland [2], extended to handle occlusions and to give correct
weighting to the measurements.

The first part of this study [5] contains a proof of uniform observability and
stability of the algorithm that we describe here. In passing, we show how the
conditions we impose on our models are tight: imposing either more or less results
in either a biased or an unstable filter. The second part, reported in this paper,
is concerned with the implementation of a system working in real time on real
scenes, which we have made available to the public [T4].

2 Realization
In order to design a finite-dimensional approximation to the optimal filter, we

need an observable realization of the original modeld. In [5] we have proven the
following claim.

Corollary 1 The model

yé(tJrl):yf)(t) i=4...N yé_(O):yé

p'(t+1) =p'(t) i=2...N p'(0) = po
Tt+1)=exp@@)T#) + V(t) R T(0) =T

02t + 1) = Logsos) (exp(W(t)) exp(£2(t))) 2(0) = 2 (7)
Vit+1)=V(t)+ av(t) V(0) =Vo

w(t+1) :w(t)i—aw(t) w(0) = wo

Vi) =7 (exp(n(t))yg(t)pf(t) + T(t)) Yni(t)  i=1...N.

2 One may argue that batch approaches are now fast enough that they can be used for
real-time processing. Our take on this issue is exposed in [5], where we argue that
speed is not the problem; robustness and delays are.

There are several ways of handling missing data in a batch approach: since they do

not extend to causal processing, we do not review them here.

* Observability in SFM has been addressed first in 1994 [6/27] (see also [28] for a
more complete account of these results). Observability is closely related to “gauge
invariance” [20].
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is a minimal realization of (6). The notation Logsos)(R) stands for 2 such

that R = e and is computed by inverting Rodrigues’ formulaﬁ. 2 is called the
“canonical representation” of R.

Remark 1 Notice that in the above claim the index for y} starts at 4, while the
index for p' starts at 2. This corresponds to choosing the first three points as
reference for the similarity group and is necessary (and sufficient) for guaran-
teeing that the representation is minimal. As explained in [5] this can be done
without loss of generality, i.e. modulo a reordering of the states.

2.1 Partial Autocalibration

As we have anticipated, the models proposed can be extended to account for
changes in calibration. For instance, if we consider an imaging model with focal

length
= ®)

where the focal length can change in time, but no prior knowledge on how it
does so is available, one can model its evolution as a random walk

(X)) =

FE+1)=f(t) +art)  as(t) ~N(0,07) 9)

and insert it into the state of the model (@). As long as the overall system is

observable, the conclusions reached in [5] will hold. The following claim shows

that this is the case for the model (@) above. Another imaging model proposed
X1 X2]"

in the literature is [2]: n5(X) = % for which similar conclusions can be

drawn. The reader can refer to [5] for details on definitions and characterizations

of observability.
Proposition 1 Let g = {T, R} and v ={V,w}. The model

9(
ot 4+ 1) = v(t) v(0) = vo (10)
ft

s observable up to the action of the group represented by T.R,a acting on the
initial conditions.

Proof: Consider the diagonal matriz F(t) = diag{f(t), f(¢), 1} and the matriz of
scalings A(t) as in the proof of proposition 1 in [5]. Consider then two initial conditions

5 A Matlab implementation of Logso(s) is included in the software distribution.
5 This f is not to be confused with the generic state equation of the filter in section

B3
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{X1,91,v1, f1} and {Xa, g2, v2, f2}. For them to be indistinguishable there must exist
matrices of scalings A(k) and of focus F (k) such that

g Xa = F(1)(g2X2) - A(1) ~
e“le(k*)”lngl = F(k + 1) (evze(kfl)vngXQ) . A(k + 1) ]{J Z 1. (11)

Making the representation explicit we obtain

{ RiXy +Ti = F(1)(RaXs + T2) A(1) (12)

Uy F(k)XRA(K) + Vi = F(k + 1)(Us X + Va) Ak + 1)
which can be re-written as

X AK)A Y k+1) = F Y (B UTF(k+1)UsXy, = F(k) UL (F(k+1)VaA(k+1) — V1) A (k JE 1)).
13
The two sides of the equation have equal rank only if it is equal to zero, which draws us
to conclude that A(k)A™ (k+41) = I, and hence A is constant. From F~'(k)U{ F(k +
1)Uz = I we get that F(k + 1)Uz = U1 F(k) and, since Uy,Us € SO(3), we have
that taking the norm of both sides 2f2(k + 1) + 1 = 2f%(k) + 1, where f must be
positive, and therefore constant: FU; = U1 F. From the right hand side we have that
FVoA = \_/'1, from which we conclude that A = al, so that in vector form we have
Vi = aFVa. Therefore, from the second equation we have that, for any f and any «,
we can have Vi = aFVs, Uy = FUsF~' However, from the first equation we have that
RiXy 4+ 11 = aFR:Xo 4+ aFTs, whence - from the general position conditions - we
conclude that R1 = aF' Ry and therefore F' = I. From that we have that Ty = aF Ty =

aTy which concludes the proof.

Remark 2 The previous claim essentially implies that the realization remains
minimal if we add into the model the focal parameter. Note that observability
depends upon the structural properties of the model, not on the noise, which is
therefore assumed to be zero for the purpose of the proof.

2.2 Saturation

Instead of eliminating states to render the model observable, it is possible to
design a nonlinear filter directly on the (unobservable) model (@) by saturating
the filter along the unobservable component of the state space as we show in this
section. In other words, it is possible to design the initial variance of the state
of the estimator as well as its model error in such a way that it will never move
along the unobservable component of the state space.

As proposition 2 in [5] suggests, one can saturate the states corresponding to
v$,¥2,ys and pl. We have to guarantee that the filter initialized at ¥, po, go, Uo
evolves in such a way that y3(t) = ¥3,¥3(t) = ¥3,¥5(t) = y5,p () = pp. It is
simple, albeit tedious, to prove the following proposition.

Proposition 2 Let Py:i(0), P,:(0) denote the variance of the initial condition

corresponding to the state yl and p' respectively, and Xy, Xy the variance of

the model error corresponding to the same state, then Pyi(0) =0, X, =0 i=

1...3 X, =0 implies that y§(t[t) = y§(0), i=1...3, and p*(t|t) = p*(0).
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2.3 Pseudo-Measurements

Yet another alternative to render the model observable is to add pseudo-mea-
surement equations with zero error variance.

Proposition 3 The model

yo(t+1) = yo(t) i=1...N ¥6(0) = y§

S ) =) =1 N #(0) = ot
T(t+1) = exp@E)TH) +V(E) T(0) = 0
2(t + 1) = Logsogs (exp(@(1)) exp(2(1))) 2(0) =0
V(t+1) = V(D) +av(t) V(0) = Vi (14)
wt+1) =w(t )—L—aw(t) w(0) = wo
v = (exp(RW3o(0' () + T®) + (1) i=1...N

=1
yé(t):gi)’ i=1...3,

where 1y is an arbitrary (positive) constant and ¢* are three non-collinear points
on the plane, is observable.

3 Implementation: Occlusions and Drift in SFM

The implementation of an extended Kalman filter based upon the model (@) is
straightforward. However, for the sake of completeness we report it in section 3.3
The only issue that needs to be dealt with is the disappearing and appearing of
feature points, a common trait of sequences of images of natural scenes. Visible
feature-points may become occluded (and therefore their measurements become
unavailable), or occluded points may become visible (and therefore provide fur-
ther measurements). New states must be properly initialized. One way of doing
so0 is described in the next section [BIl Occlusion of point features do not cause
major problems, unless the feature that disappears happens to be associated
with the scale factor. This is unavoidable and results in a drift whose nature is
explained in section

3.1 Occlusions

When a feature point, say X!, becomes occluded, the corresponding measure-
ment y*(t) becomes unavailable. It is possible to model this phenomenon by
setting the corresponding variance to infinity or, in practice X,: = M, for a
suitably large scalar M > 0. By doing so, we guarantee that the corresponding
states y§(¢) and p’(t) are not updated:

Proposition 4 If ¥,,; = oo, then yi(t + 1) = yi(t) and pi(t + 1) = p(t).

An alternative, which is actually preferable in order to avoid useless computa-
tion and ill-conditioned inverses, is to eliminate the states y{, and p* altogether,
thereby reducing the dimension of the state-space. This is simple due to the
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diagonal structure of the model (7): the states p’, y} are decoupled, and there-
fore it is sufficient to remove them, and delete the corresponding rows from the
gain matrix K (¢) and the variance X, (t) for all ¢ past the disappearance of the
feature (see section B.3)).

When a new feature-point appears, on the other hand, it is not possible to
simply insert it into the state of the model, since the initial condition is unknown.
Any initialization error will disturb the current estimate of the remaining states,
since it is fed back into the update equation for the filter, and generates a spurious
transient. We address this problem by running a separate filter in parallel for
each point using the current estimates of motion from the main filter in order to
reconstruct the initial condition. Such a “subfilter” is based upon the following
model, where we assume that N, features appear at time 7:

yr(t+1) =yr(t) +nyiy  i=1...N; Yr(0) ~ Ny (1), Zpe)  t>7

pr(t+1) =pr(t) + iy  i=1...N; p'(0) ~ N (1, P,(0))

yi(t) = (exp@(tm) [exp(R(rr)|  [yH@ph@) T (r17)] + T(tu)) ' (1)
(15)

where §2(t|t) and T'(t|t) are the current best estimates of £2 and T, £2(7|7) and
T(7|7) are the best estimates of 2 and T at ¢ = 7. In pracice, rather than
initializing p to 1, one can compute a first approximation by triangulating on
two adjacent views, and compute covariance of the initialization error from the
covariance of the current estimates of motion. Several heuristics can be employed
in order to decide when the estimate of the initial condition is good enough for
it to be inserted into the main filter. The most natural criterion is when the
variance of the estimation error of p® in the subfilter is comparable with the

variance of p% for j # i in the main filter. The last step in order to insert the
feature 7 into the main filter consists in bringing the coordinates of the new
points back to the initial frame. This is done by

X' = [exp(@rlr))] [yirt —T(rI)] (16)

3.2 Drift

The only case when losing a feature constitutes a problem is when it is used to
fix the observable component of the state-space (in our notation, i = 1,2,3) as
explained in [5) [l. The most obvious choice consists in associating the reference
to any other visible point. This can be done by saturating the corresponding
state and assigning as reference value the current best estimate. In particular, if
feature 4 is lost at time 7, and we want to switch the reference index to feature

” When the scale factor is not directly associated to one feature, but is associated to
a function of a number of features (for instance the depth of the centroid, or the
average inverse depth), then losing any of these features causes a drift. See [5] for
more details.
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j, we eliminate y§, p’ from the state, and set the diagonal block of X, and P(7)
with indices 35 — 3 to 3;j to zero. Therefore, by proposition B} we have that

Vi +t)=yi(r) Yt>0. (17)

If yg(T) was equal to yg, switching the reference feature would have no effect on

the other states, and the filter would evolve on the same observable component
of the state-space defined by the reference feature 7. _

However, in general the difference y3(7) = y}(7) — ¥ is a random variable
with variance X, = P3;_3.3j-1,3j—3:3j—1. Therefore, switching the reference to
feature j causes the observable component of the state-space to move by an
amount proportional to ¥ (7). When a number of switches have occurred, we
can expect - on average - the state-space to move by an amount proportional
to || X, ||#switches. As we discussed in section [[2] this is unavoidable. What we
can do is at most try to keep the bias to a minimum by switching the reference
to the state that has the lowest variancel.

Of course, should the original reference feature ¢ become available, one can
immediately switch the reference to it, and therefore recover the original base
and annihilate the bias.

3.3 Complete Algorithm

The implementation of an approximate wide-sense nonlinear filter for the model
(D) proceeds as follows:

Initialization Choose the initial conditions y} = yi(0), p§ = 1, 7Ty =
0, 20=0, V=0, wg=0, Vi=1...N. For the initial variance P,
choose it to be block diagonal with blocks X,,:(0) corresponding to yj, a large
positive number M (typically 100-1000 units of focal length) corresponding to
p', zeros corresponding to Ty and 2y (fixing the inertial frame to coincide with
the initial reference frame). We also choose a large positive number W for the
blocks corresponding to Vg and wy.

The variance X, (t) is usually available from the analysis of the feature
tracking algorithm. We assume that the tracking error is independent in each
point, and therefore X, is block diagonal. We choose each block to be the covari-
ance of the measurement y*(¢) (in the current implementation they are diagonal
and equal to 1 pixel std.). The variance X, (t) is a design parameter that is
available for tuning. We describe the procedure in section [3.4l Finally, set

o . T T
£(O|0) = [ 407"'yNO7 P(2)7~~aP(I)Vu T0Tv Qg? VOT7 Wg]T (18)
P(0]0) = P.

8 Just to give the reader an intuitive feeling of the numbers involved, we find that
in practice the average lifetime of a feature is around 10-30 frames depending on
illumination and reflectance properties of the scene and motion of the camera. The
variance of the estimation error for y{ is in the order of 107% units of focal length,
while the variance of p’ is in the order of 10™* units for noise levels commonly
encountered with commercial cameras.
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Transient During the first transient of the filter, we do not allow for new
features to be acquired. Whenever a feature is lost, its state is removed from the
model and its best current estimate is placed in a storage vector. If the feature
was associated with the scale factor, we proceed as in section [3.2] The transient
can be tested as either a threshold on the innovation, a threshold on the variance
of the estimates, or a fixed time interval. We choose a combination with the time
set to 30 frames, corresponding to one second of video.

The recursion to update the state £ and the variance P proceed as follows:
Let f and h denote the state and measurement model, so that equation () can
be written in concise form as

{w+n—fwm+wu w(t) ~ (0, Z0) (19)
y(t) = h(&(t) +n(t) (t) ~ N (0, 2n)
We then have

Prediction:

e+ 11t = £
{P@+Hﬂ— FOPOFT (1) + S 20)

Update:

{é(t FUt+1) =+ 1) + Lt + 1) (y(t+ 1) — h(E(t+ 1]t)))
Plt+1/t+1)=T(t+1D)PE+ 1) (¢t 4+ 1)+ Lt + 1) 2, (t + 1)LT (¢ 4+ 1).

(21)
Gain:
Tt+1)=T—Lt+1)H({t+1)
{ Lit+1) =P+ 1) HT(t+ 1A (¢t +1) (22)
At +1) = HEt+D)PE+1UO)HT (t+1) + Zn(t +1)
Linearization: X
F(t) =3 (5( [t)) 9
{ H(+1) = 226t +110) 29

Let e; be the i-th canonical vector in IR® and define Yi(t) = (t) yo(t) pt(t)+
T(t), Z'(t) = el Y(t). The i-th block-row (z =1,...,N) H;(t) of the ma-

trix H(t) can be written as H; = g)y“ oy! = II; ag; where the time argu-

ment ¢ has been omitted for simplicity of notation. It is easy to check that
;=% [I, —n(Y")]and

i ayt oyt
oy’ 0 ... ‘Z;’Z ... 0 o0 ... %1;1_ .0 o7 50 0 0
= 0 N~~~
¢ ~N— =~ 3 3
2N—6 N—-1 3 3

The partial derivatives in the previous expression are given by

i 5 | 1 .
)% Q|42 i
oyy ¢ [O}p

aY: Q. i
api. =e ]yO
Yyt _

T 1

oY’

— Beﬁ i 1 8e 6eﬁ i1
082 [ IO Yopr o825 YOP }
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The linearization of the state equation involves derivatives of the logarithm
function in SO(3) which is available as a Matlab function in the software
distribution [14] and will not be reported here. We shall use the following
notation:

3LOQSO(3)(R) - [BLogso(S)(R) 0Logso(s)(R) BLogso(g)(R)]
OR or11 Oraq Tt Oras

where 7;; is the element in position (4, j) of R. Let us denote R = e“e¥: the
linearization of the state equation can be written in the following form:

Ihn_¢ 0 0 0 0 0
0 In_1 O 0 0 A 0 )
0 0 etf) 0 I [BewT Be“’T Oe®
- 1 o dw:
F= 8 8 8 BLog%%S)(R) on ? @ aLog%i;j)(R) %3
0 0 0 0 0 I
where 9R Y Y y
- :I)(')eﬁ waeﬁ 42)66'(}
o= (“8m)  (“8m) (%) ]
and

i) (5) ()

and the bracket (-)V indicates that the content has been organized into a
column vector.

Regime Whenever a feature disappears, we simply remove it from the state
as during the transient. However, after the transient a feature selection module
works in parallel with the filter to select new features so as to maintain roughly
a constant number (equal to the maximum that the hardware can handle in real
time), and to maintain a distribution as uniform as possible across the image
plane. We implement this by randomly sampling points on the plane, searching
then around that point for a feature with enough brightness gradient (we use an
SSD-type test [17]).

Once a new point-feature is found (one with enough contrast along two inde-
pendent directions), a new filter (which we call a “subfilter”) is initialized based
on the model (I5)). Its evolution is given by

Initialization: Ny _
yr(rlr) =y (1)
ph(rlr) =1
R (24)
Prry= | F )
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Prediction: ) ,
Yt +11t) = FL(tlD)
Pt +11t) = 54 (t]1) t>7 (25)
Pt +1]t) = P-(t + 1|t) + 2w (t)

Update:

i+1e+1) | _ | i +1]) (1) — mexp(2(8) [exp2en] " [yi)pit) — T (r
|:ﬁr(L+1\L+1):| = [MLHM]JrLT(tH) (wm (exp(2(e) [exp@)] T [yiwpiw - T + )

(26)

and P, is updated according to a Riccati equation in all similar to (21)).

After a probation period, whose length is chosen according to the same criterion
adopted for the main filter, the feature is inserted into the state using the trans-
formation (I[G). The initial variance is chosen to be the variance of the estimation
error of the subfilter.

3.4 Tuning

The variance X, (t) is a design parameter. We choose it to be block diagonal,
with the blocks corresponding to T'(t) and 2(t) equal to zero (a deterministic
integrator). We choose the remaining parameters using standard statistical tests,
such as the Cumulative Periodogram of Bartlett [3]. The idea is that the para-
meters in Y, are changed until the innovation process e(t) = y(t) — h(£(t)) is
as close as possible to being white. The periodogram is one of many ways to
test the “whiteness” of a stochastic process. In practice, we choose the blocks
corresponding to y§ equal to the variance of the measurements, and the elements
corresponding to p' all equal to o,. We then choose the blocks corresponding to
V and w to be diagonal with element o,, and then we change o, relative to o,
depending on whether we want to allow for more or less regular motions. We
then change both, relative to the variance of the measurement noise, depending
on the level of desired smoothness in the estimates.

Tuning nonlinear filters is an art, and this is not the proper venue to discuss
this issue. Suffices to say that we have only performed the procedure once and
for all. We then keep the same tuning parameters no matter what the motion,
structure and noise in the measurements.

4 Experiments

The complexity of SFM makes it difficult to demonstrate the performance of
an algorithm by means of a few plots. This is what motivated us to (a) obtain
analytical results, which are presented in [3], and (b) make our real-time imple-
mentation available to the public, so that the performance of the filter can be
tested first-hand [14].

In this section, for the sake of exemplification, we present a small sample
of the performance of the filter as characterized with a few experiments on our
real-time platform.
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4.1 Structure Error

One of the byproducts of our algorithms is an estimate of the position of a
number of point-features in the camera reference frame at the initial time. We use
such estimates for a known object in order to characterize the performance of the
filter. In particular, the distance between adjacent point on a checkerboard patter
(see figure ) is known to be 2cm. We have run the filter on a sequence of 200
frames and identified adjacent features, and plotted their distance (minus 2cm)
in figure [[l It can be seen that the distance, despite an arbitrary initialization,
remains well below Imm.

4 ergodic mean (frames 100-200):0.021cm, std:0.053

mean across points (final frame):0.013cm, std:0.044

—

o 20 40 60 80 100 120 140 160 180 200
frame (s)

Fig. 1. (Left) A display of the real-time system. Selected features are highlighted
by asterisks, and a virtual object (a reference frame) is placed in the scene. As the
camera moves, the image of the virtual object is modified in real time, according to
the estimated motion and structure of the scene, so as to make it appear stationary
within the scene. Other displays visualize the motion of the camera relative to an
inertial reference frame, and a bird’s eye view of the reconstructed position of the
points tracked. (Right) Structure error: the error in mutual distance between a set
of 20 points for which the relative position is known (the squares in the checkerboard
box on the left) are plotted for a sequence of 200 frames. Mean and standard deviation,
both computed across the set of points at the last frame and across the last 100 frames,
are below one millimeter. The experiment is performed off-line, and only unoccluded
features are considered.

4.2 Motion Error

Errors in motion are difficult to characterize on real sequences of images, for
external means of estimating motion (e.g. inertial, magnetic sensors, encoders)
are likely to be less accurate than vision. We have therefore placed a checkerboard
box on a turntable and moved it for a few seconds, going back to its original
position, marked with a accuracy greater than 0.5mm. In figure [ we show the
distance between the estimated position of the camera and the initial position.
Again, the error is below 1mm.
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Notice that in these experiments we have fixed the scale factor using the fact
that the side of a square in the checkerboard is 2cm and we have processed the
data off-line, so that only the unoccluded points are used.

04k mean: 0.0549cm, std: 0.0277cm

°
&
®

251

mean of shape error (cm)
>

o2k

Norm of repositioning erfor (cm)
o

5
number of trials

Fig. 2. (Left) Motion error: a checkerboard box is rotated on a turntable and then
brought back to the initial position 10 times. We plot the distance of the estimated
position from the initial time for the 10 trials. The ergodic mean and std are below
one millimeter. (Right) Scale drift: during a sequence of 200 frames, the reference
feature was switched 20 times. The mean of the shape error increases drifts away, but
at a slow pace, reaching about one centimeter by the end of the sequence

4.3 Scale Drift

In order to quantify the drift that occurs when the reference feature becomes
occluded, we have generated a sequence of 200 frames and artificially switched
the reference feature every 10 frames. The mean of the structure error is shown
in figure [2I Despite being unavoidable, the drift is quite modest, around lcm
after 20 switches.

4.4 Use of the Motion Estimates for Rendering

The estimates of motion obtained using the algorithm we have described can
be used in order to obtain estimates of shape. As a simple example, we have
taken an uncalibrated sequence of images, shown in figure 3, and estimated its
motion and focal length with the model described in section 1] while fixing
the optical center at the center of the image. We have then used the estimates
of motion to perform a dense correlation-based triangulation. The position of
some 120,000 points, rendered with shading, is shown in figure[, along with two
views obtained from novel viewpoints.

Although there is no ground truth available, the qualitative shape of the
scene seems to have been captured. Sure there are several artifacts. However, we
would like to stress that these results have been obtained entirely automatically.
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Fig. 3. The “temple sequence” (courtesy of AIACE): one image out of a sequence
of 46 views of an Etruscan temple (top-left): no calibration data is available. The
motion estimated using the algorithm presented in this paper can be used to triangulate
each pixel, thus obtaining a “dense” representation of the scene. This can be rendered
with shading (top-right) or texture-mapped and rendered from an arbitrary viewpoint
(bottom left and right). Although no ground truth is available and there are significant
artifacts, the qualitative shape can be appreciated from the rendered views.

5 Conclusions

The causal estimation of three-dimensional structure and motion can be posed
as a nonlinear filtering problem. In this paper we have described the implemen-
tation of an algorithm whose global observability, uniform observability, minimal
realization and stability have been proven in [5].

The filter has been implemented on a personal computer, and the imple-
mentation has been made available to the public. The filter exhibits honest
performance when the scene contains at least 20-40 points with high contrast,
when the relative motion is “slow” (compared to the sampling frequency of the
frame grabber), when the scene occupies a significant portion of the image and
the lens aperture is “large enough” (typically more than 30° of visual field).

While it is relatively simple to design an experiment where the implementa-
tion fails to provide reliable estimates (changing illumination, specularities etc.),
we believe that the algorithm we propose is close to the performance limits for
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causal, real-time algorithms to recover point-wise structure and motion]. In order
to improve the performance of motion estimates, we believe that a more “glo-
bal” representation of the environment is needed. Using feature-points alone, we
think this is as good as it gets.

The next logical steps are in two directions. On one hand to explore more
meaningful representations of the environment as a collection of surfaces with
certain shape emitting a certain energy distribution. On the other hand, a theo-
retically sound treatment of nonlinear filtering for these problem involves esti-
mation on Riemannian manifolds and homogeneous spaces. Both are open and
challenging problems in need of meaningful solutions.
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