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Abstract. This paper considers a fundamental problem in visual motion
perception, namely the problem of egomotion estimation based on visual
input. Many of the existing techniques for solving this problem rely on
restrictive assumptions regarding the observer’s motion or even the scene
structure. Moreover, they often resort to searching the high dimensional
space of possible solutions, a strategy which might be inefficient in terms
of computational complexity and exhibit convergence problems if the se-
arch is initiated far away from the correct solution. In this work, a novel
linear constraint that involves quantities that depend on the egomotion
parameters is developed. The constraint is defined in terms of the optical
flow vectors pertaining to four collinear image points and is applicable re-
gardless of the egomotion or the scene structure. In addition, it is exact in
the sense that no approximations are made for deriving it. Combined with
robust linear regression techniques, the constraint enables the recovery of
the FOE, thereby decoupling the 3D motion parameters. Extensive simu-
lations as well as experiments with real optical flow fields provide evidence
regarding the performance of the proposed method under varying noise
levels and camera motions.

1 Introduction

Knowledge of the velocity of a mobile system with respect to its environment is
essential for various servoing tasks that are based on visual feedback, e.g. collision
avoidance, docking, image stabilization, etc. Given a sequence of images acqui-
red by a monocular observer pursuing unrestricted rigid motion, the problem of
egomotion estimation can be defined as the problem of recovering the linear and
angular velocities comprising the motion of the observer. Although simply stated,
the problem of estimating egomotion using visual input is particularly difficult.
This difficulty primarily stems from the fact that the only information available
from images is related to the observed 2D motion of image points, which depends
both on the sought egomotion and the unknown 3D structure of the viewed scene.
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Since the dependence of the 2D image motion on the scene structure is nonlinear,
small errors in the estimates of 2D motion can have a significant impact on the
accuracy of the recovered 3D motion [4]. In addition, the confounding of transla-
tion and rotation makes the problem of estimating unrestricted egomotion much
harder compared to the problem of estimating pure translation or rotation [4].
Due to its importance, many algorithms dealing with the problem of estimating
egomotion have appeared in the literature. The following paragraphs provide a
short review of a few representative methods; more detailed discussions can be
found in [7,8,10]. Most of the methods reviewed here rely on the availability of a
dense optical flow field to describe 2D motion. Prazdny [19], for example, assu-
mes that surfaces in the viewed scene are smooth and recovers rotation through
numerical optimization techniques using a set of nonlinear equations that are
independent of translation. Prazdny [20] and later Burger and Bhanu [2] also
suggested solving for rotation first and employed a search in the space of rota-
tional parameters. For each hypothesized rotation, the corresponding rotational
field was subtracted from the optical flow and the remaining field was tested
for conformance to a purely translational flow field. Bruss and Horn [1] combine
information from the whole visual field to determine the 3D motion that is the
best least squares fit to the observed velocity field. They developed three different
algorithms, the first two of which give closed form solutions for translation and
rotation when the motion is purely translational or rotational respectively. The
third algorithm applies to the case of general motion and estimates translation
by minimizing an appropriate residual function using iterative numerical proce-
dures. Reiger and Lawton [21] solve for translation by exploiting the phenomenon
of motion parallax. By subtracting the optical flow vectors at two image locations
whose corresponding 3D points have sufficiently different depths, a flow vector
that is approximately pointing towards the FOE1 is obtained. The main drawb-
ack of this approach stems from the fact that most optical flow algorithms cannot
give accurate estimates of optical flow in areas with large depth variations. Re-
cently, Irani et al [9] alleviated some of the difficulties related to the estimation
of motion parallax by decomposing image motion into the sum of the motion of
a planar surface and a residual planar parallax field that is purely translational.

Heeger and Jepson [7] also make use of the residual function introduced in [1]
and propose an efficient search technique for locating its minimum. Hummel and
Sundareswaran [8] present an algorithm for finding the rotational motion and one
for locating the FOE. The first algorithm is based on the observation that the
curl of the optical flow field is approximately a linear function whose coefficients
are proportional to the desired rotational parameters of motion. The algorithm
for locating the FOE extends the work of Heeger and Jepson [7] by considering for
each candidate FOE the projection of the optical flow along vectors emanating
from the former. Da Vitoria Lobo and Tsotsos [10] develop a constraint (the
Collinear Point Constraint - CPC) involving flow projections at three collinear
image points, which provides a means for canceling rotation and at the same time

1 The FOE gives the direction of translation and is defined more rigorously in the
following.
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constraining the FOE to lie on the line defined by the collinear points. The CPC
is discussed in more detail in Section 3. Optical flow projections are also used
in [13] and the FOE is recovered through their pairwise differences. Daniilidis [3]
employs fixation on a scene point to reduce the number of motion parameters to
be estimated from five to four. The associated spherical motion field is projected
on two latitudinal directions and the motion parameters are then found by two
one-dimensional searches along meridians of the image sphere.

In this paper, it is assumed that either the viewed scene is static or the
independently moving objects have been identified and masked out [14]. The
motivation behind our egomotion estimation method is twofold. First, we are
interested in estimating egomotion by means of linear constraints. Second, we
want to avoid making any restrictive assumptions regarding the egomotion or the
scene structure. Hence, we have developed a novel linear constraint regarding the
motion parameters, defined in terms of four collinear image points. The constraint
is applicable regardless of the egomotion or the scene structure and combined
with robust linear regression techniques, permits the recovery of the direction of
translation, thereby decoupling the 3D motion parameters. The rest of this paper
is organized as follows. Section 2 presents an overview of some preliminary results
that are essential for the development of the proposed method. Section 3 develops
the proposed constraint and shows how it can be employed to recover egomotion.
Experimental results from an implementation of the method are presented in
Section 4. The paper is concluded with a brief discussion in Section 5. A more
detailed version can be found in [12].

2 Visual Motion Representation

Before proceeding with the description of the proposed method, issues related
to motion representation are discussed. Consider a coordinate system OXY Z
positioned at the optical center (nodal point) of a pinhole camera, such that
the OZ axis coincides with the optical axis. Suppose that the camera is mo-
ving rigidly with respect to its 3D static environment with translational motion
(U, V,W ) and rotational motion (α, β, γ). Under perspective projection, the 3D
point P (X,Y, Z) projects to image point p(x, y) which moves on the image plane
with velocity (u, v), given by [11]:

u =
(−Uf + xW )

Z
+ α

xy

f
− β

(
x2

f
+ f

)
+ γy

v =
(−V f + yW )

Z
+ α

(
y2

f
+ f

)
− β

xy

f
− γx (1)

Equations (1) describe the optical flow field, which relates the 3D motion of points
to their projected 2D motion on the image plane. The problem of estimating the
optical flow from an image sequence is fundamental to motion analysis. However,
due to space limitations, it will not be discussed further here. An excellent intro-
duction to the problem as well as a review of the state of the art can be found
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in [18]. Several observations regarding Eqs. (1) can be made. First, the effect
of translation on the observed 2D motion is independent from that of rotation,
i.e. the translational and rotational components of motion are separable. Second,
the rotational component of motion is independent of scene structure, since the
depth Z influences the translational component only. Third, the vectors defined
by the translational components of the motion field, lie on lines going through
the point (x0, y0) ≡ (Uf/W, V f/W ), which is known as the Focus Of Expansion
(FOE). The FOE defines the direction of the translational motion, and is of cen-
tral importance for several motion analysis problems. Finally, if the quantities
W and Z are multiplied by the same scale factor, the flow defined by Eqs. (1)
remains the same. In other words, there exists a scale ambiguity that prevents us
from differentiating between a close object moving slowly and a distant one that
is moving fast. Thus, the information related to the translational component of
egomotion that can be recovered from Eqs. (1) is at most its direction, i.e. the
FOE. The ratio Z

W is often referred to as the time-to-contact [16].

3 Using Quadruples of Collinear Points to Constrain the
FOE

In the following, it is assumed that the camera has been intrinsically calibrated,
so that the retinal transformations among pixel and image coordinate systems
are known [15]. Before proceeding to the description of the proposed method, we
state two theorems which are essential for its derivation. The proofs, which are
omitted due to space limitations, can be found in [12].

3.1 Two Precursory Theorems

Theorem 1 Suppose that two image points p1 = (x1, y1) and p2 = (x2, y2) lie
on a line that goes through the origin of the image coordinate system (i.e. the
principal point). The difference of the projections of their corresponding optical
flow vectors along the direction n = (nx, ny) that is normal to the line is equal to

un1 − un2 = DW (
1
Z1

− 1
Z2

) +
γ

ny
(x2 − x1), (2)

where uni = uinx + viny, i = 1, 2 and D = (x1 − x0)nx + (y1 − y0)ny.

Theorem 2 Let p1 = (x1, y1), p2 = (x2, y2) and p3 = (x3, y3) be three collinear
image points lying on a line whose equation is y = κx + ν. Let also (x0, y0) be
the FOE and assume that p2 divides the line segment

−→
p1 p3 in ratio λ. For the

projections uni, i = 1 . . . 3 of the optical flow vectors at points p1,p2 and p3

along an arbitrary direction (nx, ny), the following holds

un2 − 1
1 + λ

un1 − λ

1 + λ
un3 = D2W (

1
Z2

− 1
1 + λ

1
Z1

− λ

1 + λ

1
Z3

) +

d21
1 + λ

W (
1
Z1

− 1
Z3

) +
κd21(x2 − x3)

f
α − d21(x2 − x3)

f
β (3)
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In the above equation, D2 = (x2 − x0)nx + (y2 − y0)ny and d21 = (x2 − x1)nx +
(y2 − y1)ny.

By inspecting Eq. (3), it can easily be seen that in the case that the direction
of projection (nx, ny) is perpendicular to the line defined by the points pi, the
term d21 is zero, thus the sum of the rotational components vanishes. The re-
maining terms are identical to the expression for the Collinear Point Constraint
(CPC) that was derived by Da Vitoria Lobo and Tsotsos in [10]. The CPC states
that when an appropriate linear combination of the projections of optical flow
vectors in the direction perpendicular to the line joining them is zero, there exist
two possible situations. Either the three 3D points whose projections form the
collinear triplet are also collinear in the scene (i.e. 1

Z2
− 1

1+λ
1

Z1
− λ

1+λ
1

Z3
= 0),

or the line defined by the collinear triplet passes through the FOE (i.e. D2 = 0).
By employing a voting scheme to differentiate between these two cases, the CPC
has been combined in [10] with exhaustive image based search for locating the
FOE.

3.2 The Proposed Constraint on Egomotion

Assume now a mobile observer undergoing rigid motion in a static environment.
Let p1 = (x1, y1), p2 = (x2, y2) and p3 = (x3, y3) be three collinear image points
lying on a line L through the image principal point. Let also (nx, ny) be the
direction normal to L and (n

′
x, n

′
y) and (n

′′
x , n

′′
y ) two other directions that are not

perpendicular to L. According to Theorem 2, for the projections of the optical
flow vectors along the direction (n

′
x, n

′
y) the following holds

un
′
2 − 1

1 + λ
un

′
1 − λ

1 + λ
un

′
3 = D

′
2W (

1
Z2

− 1
1 + λ

1
Z1

− λ

1 + λ

1
Z3

) + (4)

d
′
21

1 + λ
W (

1
Z1

− 1
Z3

) + (κα − β)
d

′
21(x2 − x3)

f
,

where the primed terms are defined analogously to the unprimed ones in Eq. (3).
Similarly, for the projections along the normal direction (nx, ny), Eq. (3) gives

un2 − 1
1 + λ

un1 − λ

1 + λ
un3 = D2W (

1
Z2

− 1
1 + λ

1
Z1

− λ

1 + λ

1
Z3

) (5)

Dividing Eq. (4) with Eq. (5) yields

un
′
2 − 1

1+λun
′
1 − λ

1+λun
′
3

un2 − 1
1+λun1 − λ

1+λun3
=

D
′
2

D2
+

d
′
21

1 + λ

1
Z1

− 1
Z3

D2( 1Z2
− 1

1+λ
1

Z1
− λ

1+λ
1

Z3
)
+ (6)

(κα − β)
d

′
21(x2 − x3)

f

1
un2 − 1

1+λun1 − λ
1+λun3

Applying Eq. (2) for points p1 and p3 results in un1 − un3 = D2W ( 1Z1
− 1

Z3
) +

γ
ny
(x3 − x1). Solving this equation for 1

Z1
− 1

Z3
, dividing in terms by Eq. (5) and
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substituting the result into Eq. (6) yields

Let now p4 = (x4, y4) be a fourth point collinear with the triplet p1,p2 and p3

and such that point p2 divides the segment
−→

p1 p4 in ratio µ. Eq. (7) gives for
the projections along the direction (n

′′
x , n

′′
y )

Subtracting Eq. (8) from Eq. (7) and noting that x1−x3
1+λ = x2 − x3 and x1−x4

1+µ =
x2 − x4, results in

un
′
2− 1

1+λ un
′
1− λ

1+λ un
′
3

un2− 1
1+λ un1− λ

1+λ un3

1
d

′
21

− un
′′
2 − 1

1+µ un
′′
1 − µ

1+µ un
′′
4

un2− 1
1+µ un1− µ

1+µ un4

1
d

′′
21

= D
′
2/d

′
21−D

′′
2 /d

′′
21

D2
+

1
D2

( 1
1+λ

un1−un3
un2− 1

1+λ un1− λ
1+λ un3

− 1
1+µ

un1−un4
un2− 1

1+µ un1− µ
1+µ un4

)+ (9)

( γf
D2ny

+ κα − β)( x2−x3
f(un2− 1

1+λ un1− λ
1+λ un3)

− x2−x4
f(un2− 1

1+µ un1− µ
1+µ un4)

)

The term D
′
2/d

′
21−D

′′
2 /d

′′
21

D2
in Eq. (9) is independent of the FOE and can be com-

puted using the point retinal coordinates only. Indeed, it can be shown that

D
′
2/d

′
21 − D

′′
2 /d

′′
21

D2
=

(n
′′
xny

′ − n
′
xn

′′
y )ny

(nxn
′
y − n′

xny)(nxn
′′
y − n′′

xny)(x2 − x1)
(10)

Equation (9) is independent of the scene depths and linear in the two unknowns
1

D2
and γf

D2ny
+κα− β, therefore forms the basis for the development of the pro-

posed egomotion estimation method: Given a line L through the image principal
point, Eq. (9) is employed for estimating the term 1

D2
corresponding to L. In

theory, two quadruples of image points lying on L suffice to provide estimates
of the unknown parameters 1

D2
and γf

D2ny
+ κα − β. However, to enhance noise

immunity, multiple quadruples of points on L are selected at random and robust
estimates of the two unknowns are computed using the LMedS robust estima-
tor [22]. Knowledge of the term DL

2 for a line L provides one constraint on the
location of the FOE, namely

x0n
L
x + y0n

L
y = xLnL

x + yLnL
y − DL

2 , (11)
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where (x0, y0) is the sought FOE, (nL
x , n

L
y ) is the unit normal for line L and

(xL, yL) is a point on L. Noting that each line L through the image principal
point supplies one constraint of the form of Eq. (11) regarding the FOE, the
constraints arising from multiple such lines can be combined to yield the FOE.
More specifically, using many lines through the image principal point, robust
estimates of the corresponding distances 1

DL
2
are obtained as previously outlined.

For each of the obtained distance estimates, Eq. (11) gives rise to a linear con-
straint regarding the FOE. The LMedS estimator is then applied once again on
these constraints to give a robust estimate of the FOE. If required, estimates of
the rotational velocity can be obtained in a similar manner by employing robust
regression for (α, β, γ) on the constraints derived from the terms γf

DL
2 ny

+ κα− β

computed for each line through the image principal point. Alternatively, rotation
can be estimated using optical flow projections along directions that are normal
to lines through the estimated FOE and therefore are independent of translation.

4 Experimental Results

The proposed method has been extensively tested with the aid of simulated and
real flow fields. Representative results from these experiments are given in this
section. In all the experiments reported here, at most 180 lines through the image
principal point and 400 quadruples of points along each line have been employed.

4.1 Synthetic Flow Fields

The use of simulated data is justified by the fact that knowledge of the ground
truth facilitates a quantitative assessment of the accuracy of the results. Besides,
simulation enables us to vary in a controlled manner subsets of the parameters
involved in the problem of egomotion estimation and then study their effect on
the recovered motion. Therefore, a simulator has been constructed, which given
appropriate values for the intrinsic parameters of the simulated camera (focal
length and principal point), the translational and rotational motion parameters,
the dimensions of the retina and the depth corresponding to each image point,
employs Eqs. (1) to synthesize an optical flow field. The depths of image points
are generated by random variables following various distributions. For the expe-
riments reported here, a uniform distribution in the range [Zmin, Zmax] and a
Gaussian distribution with nonzero mean have been employed. All distances and
sizes used by the simulator are specified in units of pixels. To account for the fact
that optical flow fields might be sparse, their density, i.e. a percentage specifying
the fraction of image points for which optical flow vectors have been computed,
can be supplied. To make the simulated optical flow fields more realistic, noise is
added to the synthetic optical flows. The noise we employ is generated according
to the model suggested in [10]:

unoisy = u+ sign1 ∗ N(a, b) ∗ 0.01 ∗ u , vnoisy = v + sign2 ∗ N(a, b) ∗ 0.01 ∗ v
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where sign1 and sign2 are binary values (i.e. 1 or -1) that are randomly chosen
with equal probability and N(a, b) is a Gaussian random variable with mean a
and standard deviation b. This noise model is referred to as “Gaussian noise with
mean a% and σ = b%”. As noted in [10], 8% and 2% are realistic values for the
noise mean and the standard deviation respectively, accounting for most of the
errors observed in actual flow fields.

Throughout all experiments, image size was 512×512 pixels and the principal
point was assumed to be in the center of the image. Also, in all but the third set
of experiments, the focal length was 256 pixels, amounting to a field of view of 90
degrees. The density of the optical flow fields was 70%. Two different scenarios
for the scene depth were simulated. The first uses a random variable that is
uniformly distributed in the range [10000, 50000] pixels to model the depth of
a scene with large depth variations. The second scenario employs a Gaussian
distribution with mean 15000 pixels and standard deviation 3000, to emulate
a scene with less depth variation, in which the majority of the points lie at
a dominant depth rather close to the camera. To ensure that the results are
independent of the exact depth values used to synthesize the optical flow field,
each experiment was run 100 times, each time using a different depth population
drawn from the distributions described above.

In the first set of experiments, the effect of noise on the accuracy of the
estimated FOE is examined. Employing increasing noise levels, Figures 1 (a)
and (b) illustrate the mean and the standard deviation respectively of the FOE
error for both depth distributions. Each point in the plots summarizes error
statistics computed from 100 runs. If f is the focal length and the true FOE
is at (x0, y0) while the estimated is at (x̂0, ŷ0), the error in the FOE estimate
is defined as the angle between the vectors (x0, y0, f) and (x̂0, ŷ0, f), given by
cos−1( (x0,y0,f)·(x̂0,ŷ0,f)

||(x0,y0,f)|| ||(x̂0,ŷ0,f)|| ). The 3D motion parameters used to synthesize flow
were (U, V,W ) = (−120, 100, 150) (measured in pixels per frame) and (α, β, γ) =
(0.005, 0.004, 0.002) (measured in radians per frame). The egomotion parameters
and the depth values are such that the magnitude of the average translational
component of the flow fields is comparable to that of the average rotational
component. The angle between the direction of translation and the optical axis
is about 46 degrees. The noise mean was increased to 12% in steps of 1% and
the standard deviation was kept equal to 2%. As expected, the error increases
with noise but remains acceptable even with very large amounts of noise. The
error in the case of Gaussian depths is smaller since in this case the translational
component of motion is larger than that in the case of uniformly distributed
depths; this is further explained in the discussion of the experiments related to
the magnitude of translation below.

It has been observed in previous work on egomotion estimation that the error
of the estimated FOE increases with the angle between the direction of translation
and the direction of gaze (i.e. the direction defined by the optical axis) [4]. The
second set of experiments studies the dependence of the FOE error on this angle
for the proposed method. Figures 2 (a) and (b) show the mean and standard
deviation of the FOE error with respect to the angle between the direction of
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Fig. 1. (a) Mean FOE error versus noise and (b) Standard deviation of FOE error
versus noise.

translation and the direction of gaze. The direction of translation was varied from
(0, 0, f) to (f, 0, f), where f is the focal length. In other words, the translations
considered range from a straight ahead motion to a sideways motion forming
an angle of 45 degrees with the direction of gaze. The rotation parameters were
again equal to (α, β, γ) = (0.005, 0.004, 0.002) and the magnitude of translation
has been kept constant, equal to 216.565 pixels per frame, which is the magnitude
of translation used in the first set of experiments. Each point in the graphs has
been computed from 100 trials, performed with Gaussian noise of mean 8% and
standard deviation of 2%. As can be seen from Fig. 2 (a), the FOE error does not
vary considerably when the angle between the direction of translation and the
direction of gaze is increased. This is a desirable characteristic of the proposed
method, since it implies that the observer does not need to fixate on the estimated
FOE to ensure small errors in the FOE estimates.
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Fig. 2. (a) Mean FOE error versus the angle between the direction of translation and
the direction of gaze and (b) Standard deviation of FOE error versus the angle between
the direction of translation and the direction of gaze.
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The third set of experiments investigates the dependence of the FOE error on
the field of view size. Figures 3 (a) and (b) show the mean and standard deviation
of the FOE error with respect to the size of the field of view. The field of view size
was varied by adjusting the focal length while keeping the image size constant.
More specifically, the former was decreased by a multiplicative factor of 0.5 from
2048 to 64 pixels while the image size remained equal to 512 × 512 pixels. This
change of the focal length amounts to the field of view being increased from 14.250
to 151.927 degrees. Recall that a focal length of 256 pixels used in the previous
experiments corresponds to a field of view equal to 90 degrees. The simulated 3D
velocity was identical to that of the first set of experiments, i.e. translation was
equal to (−120, 100, 150) and rotation to (0.005, 0.004, 0.002). Gaussian noise of
mean 8% and standard deviation of 2% was added to the simulated flows and
each point in the graphs was again computed from 100 trials. As can be seen
from Figs. 3, the error in the recovered FOE is almost identical for both depth
distributions. More specifically, the FOE error is very large for small fields of
view but becomes acceptable when the latter are larger than 25 degrees. This
observation agrees with the theoretical findings of [6,5], which conclude that the
inhomogeneous flow characteristics of a large field of view make it more helpful for
determining the singularities of the flow field (i.e. the FOE and axis of rotation)
compared to a narrow field of view. This conclusion holds independently of the
particular algorithm that is employed to recover 3D motion.
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Fig. 3. (a) Mean FOE error versus the size of the field of view and (b) Standard devia-
tion of FOE error versus the size of the field of view.

The last set of experiments evaluates the performance of the method when the
ratio between the magnitude of translation and that of rotation is varied. More
specifically, assuming that the rotation is constant, Figures 4 (a) and (b) depict
the effect of variable translation magnitude on the mean and the standard devia-
tion of the FOE error. In this series of experiments, the direction of translation
is identical to that defined by (U, V,W ) = (−120, 100, 150), but its magnitude is
increased by a multiplicative factor of 1.5 between successive experiments. The
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rotation has been kept constant at (α, β, γ) = (0.005, 0.004, 0.002) and 100 runs
were made for each set of motion parameters. The noise was Gaussian with mean
8% and standard deviation 2%. As can be clearly seen from the plots, the FOE
error is significant when the translation magnitude is small (less than 130 pixels
per frame in Fig. 4 (a)). This is due to the fact that in this case, the translational
components of the optical flow vectors are negligible compared to the rotational
ones. Therefore, noise has a more pronounced effect on the translational compo-
nents from which the FOE is recovered. However, as the magnitude of translation
increases beyond 130 pixels per frame, the translational parts become comparable
or even larger than the rotational ones. Thus, the translational parts are more
immune to noise, giving rise to small FOE errors which are almost constant with
respect to the magnitude of translation. Assuming constant translation, Figu-
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Fig. 4. (a) Mean FOE error versus magnitude of translation (b) Standard deviation of
FOE error versus magnitude of translation. Note that the scale on the horizontal axes
is logarithmic with base 1.5.

res 5 (a) and (b) show the effects on the mean and the standard deviation of the
FOE error induced by altering the rotation magnitude. Here, the behavior of the
method is the converse of that observed in the case of constant rotation investi-
gated in the previous paragraph. As can be seen from Fig. 5 (a), the error in the
FOE estimates is almost constant for realistic amounts of rotation (less than 0.5
degrees per frame). When the rotation increases too much, the flow field becomes
mainly rotational, with the rotational components accounting for a large fraction
of the full flow field. Thus, noise has an increased impact on the translational
parts, resulting in large errors for the FOE estimates. During the experiments
outlined in Fig. 5, translation was kept fixed at (U, V,W ) = (−120, 100, 150), the
rotation magnitude was increased by a multiplicative factor of 2.0 between suc-
cessive experiments and 100 runs were made for each experiment. As before, the
noise was Gaussian with mean 8% and standard deviation 2%. Note that a rota-
tion of (α, β, γ) = (0.005, 0.004, 0.002) has a magnitude of 0.3845 degrees. When
assuming continuous image motion (i.e. fine time sampling), rotations having
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magnitudes larger than one degree per frame are very large and thus unrealistic.
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Fig. 5. (a) Mean FOE error versus magnitude of rotation and (b) Standard deviation
of FOE error versus magnitude of rotation. Note that the scale on the horizontal axes
is logarithmic with base 2.0.

4.2 Real Image Sequences

The method has also been tested using flow fields computed from real imagery for
which the ground truth was known a priori. Throughout all experiments, optical
flow was computed using an implementation of the Lucas & Kanade algorithm
[17]. The first experiment employed the “yosemite” image sequence, one frame
of which is shown in Fig. 6 (a). This sequence contains both translation and ro-
tation and depicts a flight through Yosemite valley. Since the clouds are moving
independently, only the optical flow vectors computed at the lower portion of
the images have been employed. This portion of the original images corresponds
to a field of view equal to 49.6 degrees horizontally and 29 degrees vertically.
The true FOE is rather close to the center of the field of view, namely at (0,
58)2 while the estimate computed by the proposed method was (-17.3, 72.3), a
value that corresponds to an error of 22.4 pixels or 3.7 degrees. This amount of
error compares favorably to errors in the “yosemite” FOE estimates appearing
in the literature. More specifically, Heeger and Jepson [7] report an error of 3.5
degrees for the “yosemite” sequence and Daniilidis [3] reports an error of 4.0
degrees. The rotation recovered by the proposed method using robust regression
on projections of flow vectors that are perpendicular to lines through the reco-
vered FOE, was equal to (0.000906, 0.002116, 0.000481) (in radians/frame). As
mentioned in [7], the actual rotational velocity for the “yosemite” sequence is
(0.00023, 0.00162, 0.00028).
2 These are “calibrated” image coordinates, defined with respect to the image principal
point.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. (a)-(d) the “yosemite” image sequence, (b)-(e) the “marbled block” image se-
quence and (c)-(f) the “nasa” image sequence. One frame from each sequence is shown
in the top row, while the optical flow fields used for egomotion estimation are shown in
the bottom row.

The second experiment refers to the “marbled block” sequence, one frame of
which is shown in Fig. 6 (b). The sequence was captured by a translating camera
mounted on a robot arm that was moving above a textured floor in a right to
left direction and contains many sharp discontinuities in depth and motion. The
four dark blocks that lie on the floor are stationary, while the white block in the
middle of the scene is moving independently with a right to left direction. The
images of the “marbled block” sequence subtend 25.6 degrees of visual angle.
The primary difficulty when estimating the egomotion for this sequence stems
from the fact that the true FOE is outside the field of view, specifically at (777,
95.6). Thus, the angle between the direction of translation and the optical axis is
about 35 degrees. The proposed method estimated the FOE at (625.0, 111.4), in
error by 152.7 pixels or 5.65 degrees. For comparison, the FOE estimate reported
by Daniilidis in [3] amounts to an error of 7.17 degrees. The rotation estimated
by the proposed method was equal to (−0.000748, 0.000291, 0.000031), close to
being zero as expected.

The last experiment is based on the “nasa” image sequence, shown in Fig.
6 (c). Since the camera undergoes a purely translational motion, a rotation
of (α, β, γ) = (−0.00025,−0.0018, 0.00030) was added synthetically in order to
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make the experiment more challenging3. The ground truth for the FOE is (-5,
-8) while the recovered FOE was (2.21, 49.29), in error by 57.74 pixels or 5.5
degrees. For reference, the images of the “nasa” sequence subtend 24 degrees
of visual angle. The rotation estimated by the proposed method was equal to
(−0.000176,−0.001918, 0.000138). The rather large error in the recovered FOE
for the “nasa” sequence is due to the proximity between the true FOE and the
image principal point. Therefore, in this case, the distance D2 (see Eq. (9)) of the
FOE from every line through the principal point is very small and thus difficult
to estimate accurately.

5 Conclusions

Accurate estimation of camera motion is important for many vision based tasks.
In this paper, a novel constraint regarding the parameters of 3D motion has been
presented. This constraint was used to develop a method for egomotion estimation
that has several advantages. First, the method does not impose any constraints
on the egomotion that can be recovered or on the structure of the viewed scene.
Second, egomotion is computed through closed form solutions of linear equati-
ons, avoiding searching the space of possible solutions. The use of such linear
constraints permits the exploitation of overdetermined linear systems through
the application of robust linear regression techniques. The egomotion estimate
computed by the proposed method can either be used as is, or, optionally, for
bootstrapping more elaborate, iterative nonlinear egomotion estimation methods
for refining it. Third, instead of employing local information derived from small
image regions, redundancy is exploited by combining information across the whole
visual field. Fourth, the method does not assume the availability of a dense optical
flow field. This is very important for practical applications, since image sequences
often have uniform, textureless areas that give rise to sparse optical flow fields.
Finally, the use of a robust estimator such as LMedS safeguards against errors in
the input, which could otherwise have a significant effect on the accuracy of the
computations. Experimental results collected from extensive simulations as well
as real image sequences indicate the effectiveness and robustness of the proposed
method.
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