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Abstract. This paper addresses the problem of motion estimation and reconstruc-
tion of 3D models from profiles of an object rotating on a turntable, obtained from
a single camera. Its main contribution is the development of a practical and accurate
technique for solving this problem from profiles alone, which is, for the first time,
precise enough to allow the reconstruction of the object. No correspondence between
points or lines are necessary, although the method proposed can be equally used when
these features are available, without any further adaptation. Symmetry properties of
the surface of revolution swept out by the rotating object are exploited to obtain the
image of the rotation axis and the homography relating epipolar lines, in a robust
and elegant way. These, together with geometric constraints for images of rotating
objects, are then used to obtain first the image of the horizon, which is the projec-
tion of the plane that contains the camera centres, and then the epipoles, thus fully
determining the epipolar geometry of the sequence of images. The estimation of the
epipolar geometry by this sequential approach (image of rotation axis — homogra-
phy — image of the horizon — epipoles) avoids many of the problems usually found
in other algorithms for motion recovery from profiles. In particular, the search for
the epipoles, by far the most critical step, is carried out as a simple one-dimensional
optimisation problem. The initialisation of the parameters is trivial and completely
automatic for all stages of the algorithm. After the estimation of the epipolar geom-
etry, the Euclidean motion is recovered using the fixed intrinsic parameters of the
camera, obtained either from a calibration grid or from self-calibration techniques.
Finally, the spinning object is reconstructed from its profiles, using the motion esti-
mated in the previous stage. Results from real data are presented, demonstrating the
efficiency and usefulness of the proposed methods.

1 Introduction
Methods for motion estimation and 3D reconstruction from point or line correspondences
in a sequence of images have achieved a high level of sophistication, with impressive results
[12,8]. Nevertheless, if corresponding points are not available the current techniques cannot
be applied. That is exactly the case when the scene being viewed is composed by non-
textured smooth surfaces, and in this situation the predominant feature in the image is the
profile or apparent contour of the surface [13]. Besides, even when point correspondences
can be established, the profile still offers important clues for determining both motion and
shape, and therefore should be used whenever available.

This work presents a method for motion estimation and reconstruction of an object
rotating around a fixed axis from information provided by its profiles. It makes use of sym-
metry properties of the surface of revolution swept out by the rotating object to overcome
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the main difficulties and drawbacks present in other methods which have attempted to es-
timate motion from apparent contours, namely: the need for a very good initialisation for
the epipolar geometry and an unrealistic demand of a large number of epipolar tangencies
[5,1,2] (here as few as two epipolar tangencies are needed), restriction to linear motion [18]
(whereas circular motion is a more practical situation), or the use of an affine approximation
[14,22] (which may be used only for shallow scenes). After obtaining the motion, the re-
construction can be achieved by a simple technique, based on the epipolar parameterisation
[6], which extends the common triangulation methods from points to profiles.

The first attempts to approach the problem of motion estimation from apparent con-
tours date back to Rieger, in 1986 [17], who introduced the concept of frontier point, in-
terpreted as “centres of spin” [sic] of the image motion. The paper dealt with the case of
fronto-parallel orthographic projection, which is a rather restrictive situation. This idea was
further developed by Porrill [16], who recognised the frontier point as a fixed point on the
surface, corresponding to the intersection of two consecutive contour generators [6]. The
connection between the epipolar geometry and the frontier points was established in [10],
and an algorithm for motion estimation from profiles was introduced in [5].

Related works also include [1], where a technique based on registering the images using
a planar curve was first developed. This method was implemented in [7], which also showed
results of reconstruction from the estimated motion. In [14] the algorithm presented in [5]
is specialised to the affine case.

The first steps towards a solution for the problem of reconstruction from apparent con-
tours with known camera motion were given by Barrow and Tenenbaum, in 1981 [3],where
a technique to compute surface normals was introduced. Koenderink [13] established re-
lations between the differential geometry of a surface and the differential geometry of its
profiles. This work was extended in [9], where algorithms for computing the curvature of a
surface from its profiles were developed and implemented for orthographic projection.

In [20] a reconstruction method based on parameterising the surface by radial curves
was developed. Better results can be achieved by using an epipolar parameterisation, to-
gether with an interpolation using the osculating circle, as introduced in [6]. Further re-
finements were obtained in [4], and a simple technique was developed in [22], based on
a finite-difference implementation of [6]. Despite its simplicity, the method developed in
[22] renders results comparable to those in [4] and [6], and was thus the technique chosen
to be used here.

An interesting comparison can be made between the work presented here and [8]. Both
papers tackle the same problem, but while in [8] hundreds of points are tracked and matched
for each pair of adjacent images, it is shown here that a solution can be obtained even when
only two epipolar tangencies are available, with at least comparable results.

Section 2 presents a summary of the theoretical background and notation used in the re-
maining of the paper. It reviews the symmetry properties of images of surfaces of revolution
related to the harmonic homology, and presents two useful parameterisations of the funda-
mental matrix. These parameterisations allow the estimation of the epipoles to be carried
out as independent one-dimensional searches, avoiding points of local minima. This greatly
reduces the computational complexity of the estimation. Section 3 presents the algorithm
for motion recovery, and the implementation of the algorithm for real data is shown in Sec-
tion 4, which also makes comparisons with previous works. The reconstruction technique
is described in Section 5, together with experimental results for reconstruction.
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2 Theoretical Background

This section is a concise review of the mathematical background necessary for the rest of
the paper, and only the main results will be presented. Details of the derivations can be
found in [15].

2.1 Symmetry Properties of Images of Surfaces of Revolution

A 2D homography that keeps the pencil of lines through a point u and the set of points on
a line l fixed is called a perspective collineation with centre u and axis l. A homology is a
perspective collineation whose centre and axis are not incident (otherwise the perspective
homology is called elation). Let x be a point mapped by an homology onto a point x′

and let q be the line passing through these points. The point of intersection of q and l is
denoted by v. If x and x′ are harmonic conjugates with respect to u and v, i.e., their cross-
ratio is one, the homology is said to be a harmonic homology (see details in [19, Chapter
IX]). A curve or set of points invariant to a harmonic homology will be henceforth called
harmonically symmetric.

Consider an object rotating about a fixed axis. The surface of the object sweeps out a
surface of revolution S. The image of S taken by a pinhole camera P is a curve s. Let ls be
the image of the axis of rotation of the surface S in the camera P. The optical centre of P
and the axis of rotation define a plane Ψ , whose normal direction is nΨ . The image of the
point at infinity in the direction nΨ is the vanishing point vx.

If vx and ls are represented in homogeneous coordinates, the 2D collineation W given
by

W = �− 2
vxlTs
vT

x ls
(1)

is a harmonic homology, and s is harmonically symmetric with respect to W. It is worth re-
membering that W is an involutary matrix, i.e., W2 = �. It can be shown that if the camera
P points towards the axis of rotation, the harmonic homology W reduces to a skew symme-
try transformation, and the curve s will simply be skew symmetric about ls. Furthermore,
if the camera aspect ratio is one and the skew is zero, the skew symmetry transformation
becomes a mirroring, and the curve s will be bilaterally symmetrical about ls, as shown in
Figure 1.

2.2 Parameterisations of the Fundamental Matrix

Consider a pair of camera matrices P1 and P2 related by a rotation with an angle θ �= 0
about an axis a not passing through their optical centres, represented as the matrix Rθ

a.
The image of the plane containing the optical centres of the cameras and orthogonal to the
axis a is the horizon, and it is represented as the line lh in homogeneous coordinates. The
fundamental matrix F relating P1 and P2 is given by (see [21,8])

F = [vx]× + k tan
θ

2
(lslTh + lhlTs ), (2)

with lTh vx = 0, using the notation of Section 2.1. The parameter k is unknown but fixed for
any angle θ, and cannot be obtained from two images alone. This should be expected, since
the terms in (2) are in homogeneous coordinates, and thus defined only up to arbitrary scale
factors.
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(a) (b) (c) (d)

(e)

Fig. 1. Lines joining points which are symmetric about the image of rotation axis ls (images are
scaled and translated independently for better observation). (a) The optical axis points directly to-
wards the rotation axis. (b) The camera is rotated about its optical centre by an angle ρ of 20◦ in a
plane orthogonal to the rotation axis. (c) ρ = 40◦. (d) ρ = 60◦. (e) Same as (d), but the vanishing
point vx is also shown.

From (2) it is easy to prove that the epipole ei, formed in the image of camera Pi, is
given by

ei = vx − (−1)ik tan
θ

2
[ls]× lh. (3)

From (3) it can be seen that all the epipoles lie on the horizon lh, independently of the value
of θ. It can also be shown that the parameterisation given by (2) is equivalent to

F = [e2]×W, (4)

where W is given by (1), and, moreover, e1 = We2. The result in (4) shows that there is a
plane in space that induces the homology W. The proof of the following theorem does not
appear anywhere else, and it will be shown here in more detail.

Theorem 1. The planar homology W relating the cameras P1 and P2 with θ �= nπ,
n ∈ �, is induced by the plane Ξ that contains the axis of rotation a and bisects the
segment joining the optical centres of the cameras.

Proof. The existence and uniqueness of Ξ satisfying the hypothesis of the Theorem are
trivial. Let x1 = [1 0 0]T, x2 = [0 1 0]T, and x3 = [0 0 1]T. Without loss of generality, let

P1 = KR[� |x3] and

P2 = KR[Rθ
y |x3], (5)

where K is the intrinsic parameters matrix of P1 and P2, R is the rotation matrix relating
the orientation of the coordinate system of P1 to the world coordinate system, and Rθ

y is a
rotation by θ about the y-axis of the world coordinate system, i.e.,
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Rθ
y =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 . (6)

Therefore, ∀α, β ∈ �, the point X = [−αsin(θ/2) β αcos(θ/2)]T lies on Ξ . Projecting
X using P1 and P2, one obtains u1 = KR(X + x3) and u2 = KR(Rθ

yX + x3). Since

Rθ
yX =




α sin θ cos(θ/2) − α cos θ sin(θ/2)
β

α sin θ sin(θ/2) + α cos θ cos(θ/2)




=




α sin(θ/2)
β

α cos(θ/2)


 =



−1 0 0

0 1 0
0 0 1


X, (7)

or Rθ
yX = (�− 2x1xT

1 )X, we have u2 = KR[(�− 2x1xT
1 )X + x3], or u2 = (�−

2KRx1xT
1 R−1K−1)u1. It can be shown [15] that KRx1 = vx and xT

1 R−1K−1 = lTs ,
and thus the result follows. ��

2.3 Epipolar Geometry and Apparent Contours

Consider a surface S of type C1 viewed by two pinhole cameras P1 and P2. The following
definitions are presented as a quick review:

– a contour generator associated with the surface S and the camera P1 corresponds to
the space curve C ⊂ S such that for all points c ∈ C the line passing through the optical
centre of P1 and c is tangent to S at c;

– the image of the contour generator associated with a camera P1 on this same camera
is a profile or apparent contour;

– if two contour generators associated with the surface S and the cameras P1 and P2

intersect, the points of intersection are denoted frontier points;
– the epipolar plane Π defined by the optical centres of the two cameras P1 and P2 and

the frontier point is tangent to the associated surface S;
– the epipolar lines corresponding to the epipolar plane Π are tangent to their associated

apparent contours and are called epipolar tangents;

The tangent point of associated epipolar tangencies corresponds to the image of the
same point on the surface S, namely the frontier point. All the above definitions can be
better understood by looking at Figure 2.

3 Motion Estimation

Consider an object that undergoes a full rotation around a fixed axis. The envelope ε of its
profiles is found by overlapping the images of the sequence and applying a Canny edge
detector to the resultant image (Figure 3(b)). This envelope corresponds to the image of a
surface of revolution, and thus it is harmonically symmetric. The homography W related
to ε is then found by sampling N points xi along ε and optimising the cost function
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epipolar plane

frontier point

apparent contour

epipolar tangency

epipole

camera center

contour generator

Fig. 2. The frontier point is a fixed point on the surface, corresponding to the intersection of two
contour generators. The epipolar lines corresponding to the frontier point are tangent to the profile.

fW(vx, ls) =
N∑

i=1

dist(ε,W(vx, ls)xi)2, (8)

where dist(ε,W(vx, ls)xi) is the distance between the curve ε and the transformed sample
point W(vx, ls)xi.

The initialisation of the line ls and the point vx can be made very close to the global
minimum by automatically locating one or more pairs of corresponding bitangents on the
envelope. The estimation of W is summarised in Algorithm 1.

Algorithm 1 Estimation of the harmonic homology W.

overlap the images in sequence;
extract the envelope ε of the profiles using a Canny edge detector;
sample N points xi along ε;
initialise the axis of symmetry ls and the vanishing point vx using bitangents
while not converged do

transform the points xi using W;
compute the distances between ε and the transformed points;
update ls and vx to minimise the function in (8);

end while

After obtaining a good estimation of W, one can then search for epipolar tangencies
between pairs of images in the sequence using the parameterisation given by (4). To obtain
a pair of corresponding epipolar tangents in two images, it is necessary to find a line tangent
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(a)

(b) (c)

Fig. 3. (a) Image 1, 8, 15 and 22 in the sequence of 36 images of a rotating vase. (b) Envelope of
apparent contours produced by overlapping all images in the sequence. (c) Estimation of the image
of the rotation axis.

(a) (b) (c)

Fig. 4. A pair of images of an object undergoing circular motion with a rotation of 80◦ is shown
in (a) and (b). The overlapping of the two images can be seen in (c). Corresponding epipolar lines
intersect at the image of the rotation axis, and all epipoles lie on a common horizon.

to one profile which is transformed by W−T onto a line tangent to the profile in the other
image (see Figure 4). The search for corresponding tangents may be carried out as a one-
dimensional optimisation problem. The single parameter is the angle α that defines the
orientation of the epipolar line l in the first image, and the cost function is given by

fα = dist(W−Tl(α), l′‖(α)), (9)

where dist(W−T l(α), l′‖(α)) is the distance between the transformed line l′ = W−T l and
a parallel line l′‖ tangent to the profile in the second image. Typical values of α lie between
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-0.5 rad and 0.5 rad, or −30◦ and 30◦. The shape of the cost function (9) for the profiles in
Figure 4 can be seen in Figure 5.
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(a) (b)

Fig. 5. Plot of the cost function (9) for a pair of images in the sequence. (a)/(b) Cost function for a
pair of corresponding epipolar tangents near the top/bottom of the profile in Figure 4.

Algorithm 2 Estimation of the orientation of the epipolar lines.

extract the profiles of two adjacent images using a Canny edge detector;
fit b-splines to the top and the bottom of the profiles;
initialise α;
while not converged do

find l, l′ and l′‖;
compute the distance between l′ and l′‖;
update α to minimise the function in (9);

end while

The epipoles can then be computed as the intersection of epipolar lines at the same
image. After obtaining this first estimate for the epipoles, the image of the horizon can then
be found by robustly fitting a line lh to the initial set of epipoles, such that lTh vx.

An alternative method to compute the epipoles is to register the profiles using the ho-
mology W, eliminating the effects of rotation on the images, and then apply any of the
methods in [1,18,7], in a plane + parallax approach. However, no advantage has been ob-
tained by doing so, since to use this method it is necessary to search for a common tangent
between two profiles, which involves a search at least as complex as the one in Algorithm 2.

Figure 7 shows a typical output of Algorithm 2, together with the horizon lh fitted to
the epipoles. After estimating the horizon, the only missing term in the parameterisation
of the fundamental matrix shown in (2) is the scale factor k tan θ/2. This parameter can
be found by, again, a one-dimensional search that minimises the geometric error of trans-
formed epipolar lines as shown in Fig 6.
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(a) (b)

Fig. 6. Geometric error for transformed epipolar lines, with the scale factor k tan θ/2 in (3) set to
100, for better visualisation. The terms vx, ls and lh were obtained from Algorithm 1 and Algo-
rithm 2. The solid lines in each correspond to tangents to the profile passing through the epipoles,
and the dashed lines correspond to lines transferred from the one image to the other by applying
the harmonic homology W. The distance between transformed lines and the corresponding tangent
points is the cost function that drives the search for the scale factor k tan θ/2 in (3).

4 Implementation and Experimental Results

The algorithms described in the previous session were tested using a set of 36 images of a
vase placed on a turntable (see Figure 3(a)) rotated by an angle of 10◦ between successive
snapshots. To obtain W, Algorithm 1 was implemented with 100 evenly spaced sample
points along the envelope (N = 100). Bitangents were used to find an initial guess for
homology W. Less then 10 iterations of the Levenberg-Marquadt algorithm are necessary,
with derivatives computed by finite differences. The final configuration of the rotation axis
can be seen in Figure 3(c).

In the implementation of Algorithm 2, 70 pairs of images were selected by uniformly
sampling the indexes of the images, and the resultant estimate for the epipoles is shown in
Figure 7, which also shows the horizon lh found by a robust fit. To get lh a minimisation
of the median of the squares of the residuals was used, followed by removal of outliers
and orthogonal least-squares regression using the remaining points (inliers). The epipolar
geometry was then re-estimated with the epipoles constrained to lie on lh. The resulting
camera configurations are presented in Figure 8.

 l
s

 l
 h

Fig. 7. Epipoles estimated by Algorithm 2. The horizon is found by doing a robust fit to the cloud
of epipoles.
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Rotation axis

Reconstructed vase

(a) (b)

Fig. 8. Lateral and top view of the estimated configuration of the cameras. The technique to recon-
struct the object shown at the bottom in (a) and in the centre in (b) is described in Section 5.

The object was rotated on a manual turntable with resolution of 0.01◦, but the real
precision achieved is highly dependent on the skills of the operator. The RMS error in the
estimated angles is less than 0.2◦, as can be seen from Figure 9, demonstrating the accuracy
of the estimation.

It is interesting to compare this result with the ones shown in [8, pg. 166] for the “Head”,
“Freiburg” and “Dinosaur” sequences, where the average number of point matches per
image pair varies from 137 to 399, depending on the sequence. It should be stressed that
only two epipolar tangents were used for each pair of images in the experiments presented
in this paper, with comparable results.
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Fig. 9. Estimated angle of rotation between successive views. The RMS error is 0.2◦, for a maximum
resolution of 0.01◦ for the manual turntable.
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5 Reconstruction from Image Profiles

The algorithm for motion estimation introduced here can perfectly be used even when point
correspondences can be established. On the other hand, methods as the ones in [8] and [12]
cannot deal with situations where profiles are the only available features in the scene, and
it is therefore natural to use the motion recovered by the technique shown in this paper to
the problem of reconstruction from apparent contours. To solve this problem under known
motion, the main algorithms can be found in [20,6,4,22]. Results reported in [22] compare
the last three, and although it slightly favours the one in [4], the simplicity of the method
proposed in [22] justifies its choice for evaluating the accuracy of the motion estimated
here.

5.1 Description of the Method

u2

u1

1C

C2

Epipolar plane

Fig. 10. The correspondence between the points u1 and u2 is established via the epipolar parame-
terisation. The result of the triangulation of u1 and u2 is not a point on the surface, but if the motion
is small, the error will be negligible.

The algorithm for reconstruction from apparent contours introduced in [22] is based on
the assumption that, if the motion is small, the error in triangulating correspondences on
images of successive contour generators, established via the epipolar parameterisation, will
be negligible (see Figure 10). This corresponds to a finite-difference approximation of the
technique shown in [6]. A summary of the procedure is shown in Algorithm 3.

Algorithm 3 Reconstruction from image profiles.

for i = 1 to N − 1 do
sample M points uj along the profile if image i;
for j = 1 to M do

compute the epipolar line l at image i+ 1 corresponding to the point uj ;
find the intersection u′

j of the line l with the profile in image i+ 1;
triangulate the points uj and u′

j ;
end for

end for
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5.2 Implementation and Experimental Results

A B-spline was fitted to the left side of the profile in the sequence of images shown in Fig-
ure 3(a). From the top to the bottom, 18 points were sampled on the spline in the first image
(see Figure 11(a)), from which the corresponding epipolar lines in the second image were
computed, and associated points where then triangulated. The intersection of the epipolar
lines with the profile at the second image is shown in Figure 11(b). Since the points satisfy
the epipolar constraint by construction, the triangulation will be exact, i.e., the rays asso-
ciated with the points at the first image will exactly intersect the corresponding rays at the
second image. As pointed in [11], in this case the choice of triangulation method becomes
irrelevant, and a simple least-squares solution was adopted.

(a) (b)

Fig. 11. (a) Points sampled at the first image. (b) Corresponding epipolar lines at the second im-
age. The triangulation is carried out between a point in the first image and the intersection of its
correspondent epipolar line and the profile in the second image.

Figure 8 shows the relative position of the reconstructed object. Incidentally, the cam-
era is far away, making both the motion estimation and the reconstruction an even more
challenging problem, since the most appropriate model to deal with such situations is the
affine model, instead of the projective model used throughout this paper. Details of the 3D
reconstruction of the object are shown in Figure 12 and Figure 13.

6 Summary and Conclusions

This paper introduces a novel technique for motion estimation from image profiles. It does
not make use of expensive search procedures, such as bundle adjustment, although it natu-
rally integrates data from multiple images. The method is mathematically sound, practical
and highly accurate. From the motion estimation to the model reconstruction, no point
tracking is required and it does not depend on having point correspondences beforehand.

The convergence to local minima, a critical issue in most non-linear optimisation prob-
lems, is avoided by a divide-and-conquer approach which keeps the size of the problem
manageable. Moreover, a search space with lower dimension results in fewer iterations be-
fore convergence. The quality of model reconstructed is remarkable, in particular if one
considers that only the least possible amount of information has been used.
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(a) (b) (c)

Fig. 12. Details of the reconstruction of the object in Figure 3(a). The reconstructed model is smooth,
even considering that the epipolar parameterisation is degenerate in the neighbourhood of the frontier
points. The views in (a) correspond to an angle ψ of 10◦ with respect to the y-axis. (b) ψ = 0◦. (c)
ψ = 170◦. The original viewing direction, computed from the estimated motion, is ψ = 24.35◦ .

Fig. 13. Reconstruction of the object in Figure 3(a), showing the shaded surface. The view points
are the same as in Figure 12.
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2. K. Åström and F. Kahl. Motion estimation in image sequences using the deformation of apparent
contours. IEEE Trans. Pattern Analysis and Machine Intell., 21(2):114–127, February 1999. 865

3. H. G. Barrow and J. M. Tenenbaum. Interpreting line drawings as three-dimensional surfaces.
Artificial Intelligence, 17:75–116, 1981. 865

4. E. Boyer and M. O. Berger. 3D surface reconstruction using occluding contours. Int. Journal of
Computer Vision, 22(3):219–233, 1997. 865, 865, 874, 874
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