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Abstract. In this paper we introduce a non-parametric clustering algo-
rithm for 1-dimensional data. The procedure looks for the simplest (i.e.
smoothest) density that is still compatible with the data. Compatibility
is given a precise meaning in terms of the Kolmogorov-Smirnov statistic.
After discussing experimental results for colour segmentation, we outline
how this proposed algorithm can be extended to higher dimensions.

1 DMotivation and Overview

The quest for robust and autonomous image segmentation has rekindled the inte-
rest of the computer vision community in the generic problem of data clustering
(see e.g. BIGII5ITI2IT6]). The underlying rationale is rather straightforward: As
segmentation algorithms try to divide the image into regions that are fairly ho-
mogeneous, it stands to reason to map the pixels into various feature-spaces (such
as colour- or texture-spaces) and look for clusters. Indeed, if in some feature-
space pixels are lumped together, this obviously means that, with respect to
these features, the pixels are similar. By the same token, image regions that are
perceptually salient will map to clusters that (in at least some feature-spaces)
are clearly segregated from the bulk of the data.

Unfortunately, the clustering problems encountered in segmentation applica-
tions are particularly challenging, as neither the number of clusters, nor their
shape is known in advance. Moreover, clusters are frequently unbalanced (i.e.
have widely different sizes) and often distinctly non-Gaussian (e.g. skewed). This
heralds serious difficulties for most “classical” clustering algorithms that often
assume that the number of clusters is known in advance (e.g. K-means), or even
that the shape of the data-density is explicitely specified up to a small number of
parameters that can be estimated from the data (e.g. Gaussian Mixture Models

(GMM)).
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Furthermore, strategies to estimate the number of clusters prior to, or con-
current with, the actual clustering are of limited value as they tend to be biased
towards solutions that favour spherical or elliptical clusters of roughly the same
size. The root for this bias is to be found in the fact that almost all cluster-
validity criteria compare variation within to variation between clusters (for more
details we refer to standard texts such as [911J10]).

To circumvent the problems outlined above, we focus on clustering based
on non-parametric density estimation (for prior work, see e.g. [3[15]). In
contradistinction to parametric density estimation (such as GMM), no explicit
parametric form of the density is put forward, and the data-density is obtai-
ned by convolving the dataset by a density-kernel. More precisely, given an
d-dimensional dataset {x; € IR%; i = 1...n} a density f(x) is obtained by
convolving the dataset with a unimodal density-kernel K, (x):

n

£ = S Ko~ x0), 1)

i=1

where o is the size-parameter for the kernel, measuring its spread. Although
almost any unimodal density will do, one typically takes K, to be a (rotation-
invariant) Gaussian density with o2 specifying its variance:
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After convolution we identify clusters by using gradient ascent (hill-climbing) to
pinpoint local maxima of the density f. This procedure ends up assigning each
point to a nearby density-maximum, thus carving up the data-set in compact
and dense clumps.

However, it is obvious that unless the width o is judiciously picked within a
fairly narrow range, this procedure will result in either too many (if o is chosen
too small) or too few clusters (if o is set too large). Although a huge bulk of
the work on density-estimation concerns itself with this problem of choosing an
“optimal” value for o (e.g. see the book by Thompson and Tapia [I8]), it is fair
to say that it remains extremely tricky to try and estimate optimal (or even
acceptable) clustering parameters.

For this reason we propose a different approach: We start from a sub-optimal
(too small) choice for o, and then modify the resulting density f directly. The
proposed modification (which will be detailed in Section [) is based on the
Kolmogorov-Smirnov statistic and the resulting criterion has therefore a precise
and easy to grasp meaning, which does not involve arbitrarily chosen parameters.

The rest of this paper is organised as follows. In Section 2 we will argue
that performance of clustering is improved if the dimensionality of the problem
can be meaningfully reduced. Rather than trying to combine all the information
in one huge feature-vector, we will champion the view that it makes sense to
look at as simple a feature as reasonable. This amounts to projecting the high-
dimensional data-set on low-dimensional subspaces and is therefore similar in
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spirit to Projection Pursuit, a technique used in data analysis, where projections
on low-dimensional subspaces (1- or 2-dimensional) are used to gain insight into
the structure of high-dimensional data.

One particularly interesting and useful case of the aforementioned dimen-
sion reduction is that of clustering one-dimensional data, which boils down to
partitioning the corresponding histogram. This topic is discussed extensively in
Section [3 for several reasons. First, although one can argue that this is just a
special case of the general n-dimensional clustering problem, the topology of a
1-dimensional (non-compact) space (such as IR) is unique in that it allows a
total order. As a consequence, the mathematical theory is well understood and
yields sharp results. Furthermore, the 1-dimensional case furnishes us with a
useful stepping stone towards the more complex high-dimensional case that will
be discussed in Section Bl Finally, Section Bl will report on results obtained for
colour segmentation.

2 High-Dimensional Versus Low-Dimensional Clustering

Like most statistical procedures, clustering in high-dimensional spaces suffers
from the dreaded curse of dimensionality. This is true in particular, for density
estimation, as even for large data sets, high-dimensional space is relatively empty.

As a consequence the reliability and interpretability of the resulting cluste-
ring may be improved whenever it is possible to reduce the dimensionality of
the problem. In particular, this argument indicates that it is often ill-advised
to artificially increase the dimensionality of the problem by blindly concatena-
ting feature-vectors into high-dimensional datapoints. More precisely, if there
is no theoretical or prior indication that features are mutually dependent, it
is advisable to cluster them separately. The reason for this is straightforward:

if features x1,xo,...,x, are independent, then their joint probability density
function factorizes into a product of 1-dimensional densities:
f(xlvx%"wxn):fl(xl)fQ(l'Q)-'-fn(xn)? (3)

and interesting structure in the joint density f will also be apparant in (one
of) the marginal densities f;. For instance, computing the mean and variance of
the gray-values in a small window about every pixel produces two features at
each pixel. However, for an unconstrained image there is no reason why these
two features would be dependent. Therefore, it makes sense to cluster them
separately, rather than confounding the problem by focussing exclusively on
their joint distribution.

In particular, there are a number of perceptually relevant dichotomies (e.g.
dark versus bright, horizontal versus vertical, direction versus randomness, colou-
red versus gray, textured versus flat, etc.) that can be captured mathematically in
a relatively straightforward fashion, but that nevertheless yield important clues
for segmentation. This means that it makes sense to start studying 1-dimensional
densities (simple histograms) and this will be our main point of focus for most
of this paper.
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Indeed, one of the motivations for this work is the observation that lots of
effort in computer learning and artificial intelligence focuses on ways of finding
transformations (often non-linear ones) that vastly reduce the dimensionality of
the problem. The assumption is that in many cases there is a relatively small
set of so-called latent variables that capture the intrinsic structure of the pro-
blem and by determining the intrinsic dimensionality of the data, these (hidden)
variables are brought to the fore. Exponents of this approach are classical me-
thodologies such as principal component analysis (PCA) and multi-dimensional
scaling, but also more recent developments of similar flavour such as projection
pursuit (PP), generative topographic mapping (GTM), Kohonen’s self-organising
maps (SOM) and independent component analysis (ICA). The latter is actually
looking for transformations that decouple different components such that the
factorisation in eq.(3) is — at least approximately — realised.

3 Histogram Segmentation and 1-Dimensional Clustering

3.1 The Empirical Distribution Function

In this section we will concentrate on finding clusters in a sample z1,...,z, of
1-dimensional data. In principle, clustering 1-dimensional data by segmenting
the histogram should be fairly straightforward: all we need to do is locate the
peaks (local maxima) and valleys (local minima) of the data density (for which
the histogram is an estimator) and position the cluster boundaries at the local
minima. However, the problem is that the number and position of these local
minima will strongly depend on the width of the histogram bins. An appropriate
choice for this parameter is difficult to make.

For this reason we have decided to use the cumulative density function (also
called the distribution function) as the tool of choice for segmentation, since it
allows a non-parametric approach (see below). We recall that for a stochastic
variable X with density function f, the cumulative density (distribution) F is
defined in terms of the probability P by

F(x) ::P(Xga:):/f(u)du

Of course, in most cases of interest the underlying density f is unknown and we
proceed by using the empirical distribution F,,, which for a sample X;,..., X,
is given by

F.(z) = -

(4)

One can prove (see eg.[12]) that F), is an adequate estimator of F, as for
instance
F,(x) — F(x) as n — 0.

at every continuity point x of F.
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Compared to the histogram, the empirical distribution has a number of ad-
vantages. First, it is parameter-free as it is completely determined by the data
itself and there is no need to judiously pick values for critical parameters such
as bin-width. Second, working with the cumulative density rather than with
the density itself has the added benefit of stability. Indeed, the integration ope-
ration which transforms f into F' smooths out random fluctuations, thereby
highlighting the more essential characteristics. And last but not least, using
the distribution allows us to invoke the Kolmogorov-Smirnov statistic, a power-
ful non-parametric test that can be used to compare arbitrary densities. This
theme will be elaborated further in the next section.

3.2 Non-parametric Density Estimation Using Kolmogorov-Smirnov

To make good on our promise to proceed in a non-parametric fashion, we proceed
by asking ourselves the question: What is the smoothest density g that is compa-
tible with the data, in the sense that the corresponding cumulative distribution G
18 not significantly different from the empirical distribution F, ? This is basically
a reformulation of Occam’s razor and in that sense akin to the MDL-principle
that has made several appearances in this context. To tackle this question we
note that, recast in the appropriate mathematical parlance, it reads as follows
(see Fig.[I): Find the density g that solves the following constrained minimisation
problem:

minimize é(g) = /(g’(a:))2 dz, subject to sup |G(z)—F,(2)] < €y,
e x
(5)
where €, is the critical value for the Kolmogorov-Smirnov statistic at an ap-
propriate significance level, e.g. 5% (details regarding the Kolmogorov-Smirnov
statistic can be found in section [B3).
As there is no straightforward closed form solution to this problem, we pro-
ceed by invoking a gradient descent procedure,

dg
7 = ~D209), (6)

but this calls for a precise definition of the gradient of a functional. This concept
is studied extensively in funtional analysis and we briefly remind the reader of the
relevant definition (for more details, see e.g. Troutman[19], p. 44). To motivate
the approach we recall that in classical calculus, the rate of change of a function
in a specified direction is obtained by taking the inner-product of the gradient
and the unit-vector in the specified direction. Exactly the same procedure can

be used for functionals: The standard inner product on function spaces is given
by

<fg>= /R f(@)g(x) da
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and the functional equivalent of a directional derivative is provided by the im-
portant concept of the Gateauzr derivative of @ at g in the direction of v:
P(g+ ev) — D(g)

. o
Dy®(g) := limy ; = 5 P9 +ev) . (7)

Under quite mild regularity conditions one can prove that for each g there is a
unique function w, such that for all v, D,®(g9) =< wg,v >. This function is
called the gradient of @ at g and denoted by D®(g), resulting in the suggestive
formula

D,®(g) =< DP(g),v > (for all v) (8)

which is formally identical to the corresponding formula in standard vector cal-
culus relating the gradient to an arbitrary directional derivative.

It is now straightforward to compute the gradient for the functional in (&]).
Plugging the explicit form of the functional @ into eq.(d) yields:

1
Dy®(g) = lim - [ [(¢' +e')? — g dx

e—0 €

1
=lim — [ [(2eg'v" + €v?] dx

e—0 €
=2 [pgv dx

Next, using integration by parts and the assumption that the density function
g and its derivatives vanish at infinity (a reasonable assumption for a density
modelling a histogram), it immediately follows that
" 829
D,®(g) =-2<g¢",v> whence, DP(g)=-2 92
x
Therefore the gradient-descent method for the functional @ gives rise to the heat
equation:
9 _ O ( iate conductivity coefficient) (9)
= =c=—, ¢ appropriate conductivity coefficien
ot 02 Pprop y
which suggests the following strategy to search for a minimum in eq. (Bl): Take
an initial (fine-grained, i.e. small bins) estimate g = go for the density, e.g. by
constructing a histogram with small bins, or using a kernel estimator (as in (II))
with o sufficiently small. Next, subject g by plugging it into diffusion equation
(@) with go as initial condition. After each diffusion step, compute the cumulative
density

—oo
by (numerically) integrating g. Now stop the diffusion the moment the constraint

in (B is violated and use the final g as the estimate for the density for which
valleys and peaks can be determined.
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Although this approach has been implemented and yields very satisfactory
results, we hasten to point out that there is no guarantee that the evolution
equation (@) actually ends up at a minimum (even a local one). The reason for
this is that although the functional is quadratic, the diffusion is stopped as soon
as it hits (domain-boundary specified by) the constraint. In most cases it will be
possible to further reduce the functional @ by sliding along the constraint.

In fact, one obvious way for doing this would be to make the diffusion coef-
ficient ¢ in eq(@) dependent on the Kolmogorov-Smirnov difference:

pla) = |G(x) — Fu(2)]
yielding a non-linear diffusion:

99 _ g

2
5 = c(p(x)) 2’ where e.g.  ¢(p) = exp <

p
& — p?

) 0<rze

(10)
The conductivity coefficient c¢ is engineered to behave like a Gaussian function
near the origin, but to drop smoothly to zero when the difference p approa-
ches the critical distance €,,. This ensures that the diffusion is stopped wherever
the smoothed density is about to violate the constraint, whereas it can pro-
ceed unhampered in locations where the Kolmogorov-Smirnov difference is still
sufficiently small. In the actual implementation we used an even simpler compu-
tational scheme to guarantee the same effect: whenever the evolving distribution
hits the KS-boundary the conductance-coeflicient ¢ in the region sandwiched
between the two flanking minima was set to zero. This halts the smoothing in
that region, but allows further reduction in complexity at other locations.

The sole drawback is that the diffusion tends to displace minima, so that for
an accurate location it might be worthwhile to locally refit. Alternatively, one
can simply pick the location of the actual minimal value (of the original data) in
a small neighbourhood of the suggested minimum or trace it back to the original
data.

3.3 Confidence Band Based on Kolmogorov-Smirnov Statistic

To implement the rationale underlying eq. (@) and amplified in the preceding
section we still need to specify a principled way to determine the amount of
acceptable deviation |G(z) — F,,(x)|. To this end we introduce the Kolmogorov-
Smirnov statistic which directly compares distribution functions (eg. see [17]).
More precisely, if F,(z) is the cumulative distribution for a sample of size n
drawn from F', the Kolmogorov-Smirnov test-statistic is defined to be the L°°-
distance between the two functions:

D,, = sup |F,,(z) — F(z)| (11)
z€IR

for which the p-value can be computed using:

P(Dn > 5) = QKs(\/ﬁf)7 (12)
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Fig. 1. Segmenting densities (histograms) using the cumulative density. Left: The em-
pirical cumulative density F, flanked by its Kolmogorov-Smirnov confidence bands
F,, £ €,, together with the smoothed cumulative density G that fits within the band.
Right: The corresponding densities (obtained by differentiation).

where

QKS(E) _ 22(71)k+16—2k2£2.
k=1

(A reference can be found in Mood et.al. [I2]). However, the alternating
character makes this series expansion rather unwieldy to use, and we therefore
hark back to Good [8§] who proved the following approximation. First, define the
one-sided difference

Dy =sup(Fu(2) — F(2))  and Dy = sup(F () — Fu(2)),

then Good showed that under the null-hypothesis (i.e. if F,, does indeed cor-
respond to a sample taken from the underlying distribution F'), both statistics
D;F and D, are identically distributed and tend to the following asymptottic
distribution (for n sufficiently large):

4nD}? ~ X3 (13)

This approximation is eminently useful as it provides us with an handle to com-
pute the boundary €, in eq.(B). More precisely, we pick €, so that under the
null-hypothesis, it is unlikely that the KS-distance exceeds €,:

P(D} >¢,)=a where e.g. o = 0.05 or 0.1. (14)

Selecting a critical point ¢, for the y3-distribution such that P(x3 > c4) = «

we see that the probability in eq.([d]) can be rewritten as P(4nD;? > 4ne2) =

a whence €2 = c,/4n. We therefore conclude that the bound ¢, in eq.(B) is

I Jca
=35 ‘@ where P(x3>co) = . (15)
n

determined by
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The only point that needs further amplification concerns the fact that we are in-
terested in statistics on the two-sided distance D, whereas eq. (I5) yields bounds
on the one-sided distances Dt or D~. However, since

P(D>¢) =P((D* >¢) or (D™ >¢))
< P(D* >¢&)+P(D™ >¢€)
=2P(Dt >¢)

Hence, we see that we get a (conservative) confidence bound if we set ¢, in eq.(B)
to be equal to

Ca/2
n

€p —

where  P(x3 > ca/2) = /2. (16)

DO =

3.4 Comparison to Fitting Gaussian Mixture Models

Fitting a Gaussian Mizture Model (GMM) is probably the most popular me-
thod to partition a histogram into a unknown number of groups. If the num-
ber of clusters is known in advance, one can take recourse to the well-known
Ezpectation-Mazimisation algorithm (EM) [4] to estimate the corresponding pa-
rameters (ie. mean, variance and prior probabilities of each group). However,
caution is called for as the sensitivity of the EM-algorithm to its initialisation is
well-documented: Initially assigning a small number of “outliers” to the wrong
group (albeit with small probability) often lures the algorithm to an erroneous
local likelihood minimum, from which it never recovers.

The second problem has to do with the fact that the number of groups
isn’t known in advance and needs to be determined on the fly. Obviously, ma-
ximum likelihood methods are unable to extract the number of clusters as the
likelihood increases monotonically with the number of clusters. One possibility,
proposed by Carson et.al. [2], is to use a criterion based on Minimum Descrip-
tion Length (MDL). The idea is combine the likelihood of the data with respect
to a (Gaussian mixture) model with a penalty term that grows with the number
of parameters that need to be determined to fit the model. More precisely, for
a sample x of size n they choose the number K of components in the Gaussian
mixture (determined by parameters §) by maximisizing

Lo | x) - %bgn (17)

where m is the number of free parameters needed for a model with K Gaussian
(d-dimensional) mixture components:

d(d+1)

mic = (K 1)+ Kd + K=

(The significance of the S-factor will be discussed presently).
There are two, potentially serious, problems. First, there are the aforemen-
tioned problems regarding the instabilities inherent to the EM-algorithm. But
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even if the EM-algorithm is successful in identifying the underlying mixture,
there is the need for an adhoc factor 8 to balance out the contribution from
both cost-terms in eq.([[d), as they may differ by an order of magnitude.

One could of course object that the fudge-factor 3 is comparable to the
parameter « that needs to be fixed in the KS-approach. But there is an important
difference: unlike 3, the factor « specifying the confidence level has a clear and
operational meaning in terms of the risk of committing a type-I error and this
risk needs to be fixed in any statistical approach to data-analysis.

In all fairness we need to point out that there is one situation in which the
EM-algorithm yields a more satisfying result than the non-parametric approach.
Whenever we have two Gaussian densities that encroach on one another, there
is a possibility that the global density shows two ill-separated bumps without
a clearcut minimum. In such cases EM has little difficulty extracting the indi-
vidual Gaussians (granted of course, that the number of Gaussians is specified
beforehand). As there is no minimum in the original density, our method will
have no alternative but to lump the Gaussians together in one cluster.

Having said that, it is also worthwhile to point out that there are situations
where EM will fail to deliver the goods while the non-parametric approach has
no difficulty whatsoever The simplest example is a uniformly distributed density.
In an attempt to come up with a good approximation to this flat density, the
EM-algorithm has no other option but to insert a variable number of Gaussians,
resulting in a excessive fractioning of the cluster.

In conclusion we can say the EM-algorithm for GMM is a typical example
of a parametric approach to density estimation. As such it enjoys an advantage
over a non-parametric approach (such as the one detailed in this paper) whene-
ver there is clear evidence that the underlying data-distribution is well modeled
by the proposed parametrised density. However, in typical image-segmentation
problems such an assumption is seldomly warranted and consequently, EM is
almost invariably outperformed by the proposed non-parametric histogram seg-
mentation.

4 Some Experimental Results

We also tested this strategy on a number of challenging colour images (see
Figs. B). In keeping with the spirit of our approach we project each image on the
axes of a number of different colour-spaces (such as RGB, rgb, and opponent-
colours). This yields for each image 9 histograms which are all segmented. The
resulting histogram clusterings can easily be scored by marking whether there is
more than one cluster (uninteresting) and if so, how well-separated and pronoun-
ced these clusters are (e.g. by comparing their mean distance to their variance).
In the experiments reported below we display for each image the two most salient
histograms. More precisely, the original colour images (left), together with two
histograms obtained by projection on an appropriate colour-axis (the choice of
which is image dependent) and the resulting image segmentation based on the
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segmentation of the histogram. It is clear that combining the information from
the different projections often yields very acceptable segmentation results.

To enhance the robustness of the segmentation we apply two simple pre-
processing steps:

1. Slight diffusion of the colours in the original image; apart from reducing noise
it introduces some sort of spatial correlation into the statistics and therefore
compensates for the fact that spatial information is completely lost when
mapping pixels into colour-spaces.

2. Global perturbation of the 1-dimensional data by adding independent Gaus-
sian noise to all the datapoints:

T; = + 0;

where §; ~ N(0,0?) are independent and the standard deviation o is taken
to be a fraction of the data range R:

oc=19R (typically, v = 0.01).

The reason for introducing this perturbation is that it resolves ties and re-
moves artifacts due to quantisation, thus improving the final results.

It goes without saying that segmentation based on a single 1-dimensional
histogram will only reflect a particular visual aspect (if any at all), and as such
only has a very limited range of applicability. However, we contend that as
different aspects are highlighted by different histograms, combinations of the
regions thus obtained will yield complementary information.

This topic will be taken up in a forthcoming paper but for now, let us just
point out that it is helpful to think of the segmentation results for the one-
dimensional histograms as some sort of spatial binding. If for some feature pixels
are mapped into the same region, then they are in effect “bound together” in the
sense that, with respect to that particular feature, they are very similar. In this
way, each different projection (feature) imposes its own binding-structure on the
pixels and pixels that are often “bound together” in the same region therefore
accrue a lot of mutual spatial correlation. This spatial correlation structure can
be used to improve segmentation or to suggest to the user a number of different
possible segmentations, the correlation structure detailing for each of them their
statistical support.

5 Extensions to Higher Dimensions

The main thrust of the argument in this paper was based on the Kolmogorov-
Smirnov distance, and it is therefore of interest to note that there is multi-
dimensional extension of sorts for the KS-statistic. This opens up the possibility
to extend this approach to higher dimensions, always bearing in mind of course
that the dimension should not be inflated without proper reason.
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The generalisation of the distribution function for a d-dimensional stochastic
variable X is straightforward:

F(x):=P(X<x)=P(X; <x1,...,Xq < 24q) (18)

For the sake of brevity, we limit ourselves here to formulating the relevant theo-
rem (for more details, see [20]):

For any € > 0 there exists a sufficiently large ny such that for n > ng the
inequality

P {St}l{p |F(x) — Fo(x)| > e} < 2e0cm (19)

holds true, where a is any constant smaller than 2.

Notice how this result falls short of mathematical solidity and elegance enjoyed
by the 1-dimensional result (I2). First of all, having to deal with an inequality
rather than an equality means that we are only given an upperbound for the
probability. Furthermore, as stated above, the result is akward to use as it pon-
tificates the existence of an appropriate sample size (n), given a KS-distance e.
However, in practice the sample size is fixed in advance and there is little scope
for an asymptotic expansion. In fact, for most realistic sample sizes, the specified
upper bound is much larger than 1 and therefore of little use.

These theoretical proviso’s notwithstanding, there is no good reason why a
strategy similar to the one expounded in section ] cannot be explored in higher
dimensions, if we are willing to shoulder a higher computational burden. More
specifically we propose the following algorithm to cluster d-dimensional data.

Algorithm Given a sample x1, .. .,Xy, in IR%;

1. Compute for each x; the empirical distribution function F,(x;) = #{xx |
x < x;}/n (the ordering relation is defined component-wise, as in eq.(T8).
Next, pick a small initial value for o;

2. Use eq.(d) to construct the kernel-estimate f, for the density. In order to
evaluate the KS-statistic we need the corresponding cumulative density F,
which can be obtained by integration:

n

R =1 / Ko (6 — i) de (20)

If the kernel K, is a rotation-invariant Gaussian (2) (actually the most
common choice), then its integral can be straightfowardly expressed in terms
of products of the error-function erf (x), and (20) therefore yields an explicit
expression.

3. Compute the KS-distance between the proposed distribution F, and the
empirical one supported by the actual data:

D(F5) = sup |[Fo(xi) = Fn(xi)]
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4. To assess how (un)acceptable this result is we need to compute the p-value
for D(F,), ie. we need to compute the probability that a sample from F, will
yield a value at least as large as D(F,). To this end we draw M samples of
size n from F, and construct for each of them the corresponding empirical
£, (m = 1,...,M) and the associated distance D(™). Ranking D(F,)
relative to the sequence {D("™); m = 1,..., M} yields an estimate for the
required p-value. (Note that since F), is based on a convolution (), sampling
from this distribution is straigthforward: first pick a data-point x; at random
and next, sample from the Gaussian K, centered at x;.)

5. Finally, if the p-value thus obtained indicates that there is still room to
further increase o (ie. to further smooth f), do so and return to step 2. Notice
how we can change o globally (which amounts to a global smoothing), or
locally at those locations where KS-difference indicates that there is further
leeway for data-smoothing. This is the multi-dimensional equivalent of the
non-linear smoothing proposed in eq.(I0).

6 Conclusion and Outlook

In this paper we have introduced a non-parametric clustering algorithm for 1-
dimensional data. The procedure looks for the simplest (i.e. smoothest) density
that is still compatible with the data. Compatibility is given a precise meaning in
terms of the Kolmogorov-Smirnov statistic. This approach is therefore genuinely
nonparametric and does not involve fixing arbitrary cost- or fudge-factors.

We have argued that it often makes sense to look for salient regions by
investigating projections on appropriate 1-dimensional feature-spaces, which are
inspected for evidence of clusters. We note in passing that this provides us with
a operational tool for automatic and data-driven selection of promising features:
a feature is deemed interesting (for the image under scrutiny) whenever it gives
rise to a non-trivial clustering. Finally, we have outlined how the results obtained
in the 1-dimensional case can be generalised to higher-dimensional settings.
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Fig. 2. Original colour images (left), together with two histograms obtained by pro-
jection on an appropriate colour-axis (the choice of which is image dependent) and the
resulting image segmentation based on the segmentation of the histogram.
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