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Abstract. A new approach to characterizing the performance of point-
correspondence algorithms is presented. Instead of relying on any “gro-
und truth’, it uses the self-consistency of the outputs of an algorithm
independently applied to different sets of views of a static scene. It al-
lows one to evaluate algorithms for a given class of scenes, as well as to
estimate the accuracy of every element of the output of the algorithm
for a given set of views. Experiments to demonstrate the usefulness of
the methodology are presented.

1 Introduction and Motivation

Our visual system has a truly remarkable property: given a static natural scene,
the perceptual inferences it makes from one viewpoint are almost always con-
sistent with the inferences it makes from a different viewpoint. We call this
property self-consistency.

The ultimate goal of our research is be able to design computer vision al-
gorithms that are also self-consistent. The first step towards achieving this goal
is to measure the self-consistency of the inferences of current computer vision
algorithm over many scenes. An important refinement of this is to measure the
self-consistency of subsets of an algorithm’s inferences, subsets that satisfy cer-
tain measurable criteria, such as having a “high confidence.”

Once we can measure the self-consistency of an algorithm, and we observe
that this measure remains reasonably constant over many scenes (at least for
certain subsets), then we can be reasonably confident that the algorithm will
be self-consistent over new scenes. More importantly, such algorithms are also
likely to exhibit the self-consistency property of the human visual system: given a
single view of a new scene, such an algorithm is likely to produce inferences that
would be self-consistent with other views of the scene should they become available
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later. Thus, measuring self-consistency is a critical step towards discovering (and
eventually designing) self-consistent algorithms. It could also be used to learn
the parameters of an algorithm that lead to self-consistency.

There are a number of caveats that one needs to make with regards to self-
consistency.

First, self-consistency is a necessary, but not sufficient, condition for a com-
puter vision algorithm to be correct. That is, it is possible (in principle) for
a computer vision algorithm to be self-consistent over many scenes but be se-
verely biased or entirely wrong. We conjecture that this cannot be the case for
non-trivial algorithms. If bias can be ruled out, then the self-consistency distri-
bution becomes a measure of the accuracy of an algorithm—one which requires
no “ground truth.”

Second, self-consistency must be measured over a wide variety of scenes to
be a useful predictor of self-consistency over new scenes. In practice, one can
measure self-consistency over certain classes of scenes, such as close-up views of
faces, or aerial images of natural terrain.

In the remainder of this paper we develop a particular formalization of self-
consistency and an instantiation of this formalism for the case of stereo (or, in
general, multi-image point-correspondence) algorithms. We then present mea-
surements of the self-consistency of some stereo algorithms to a variety of real
images to demonstrate the utility of these measurements and compare this to
previous work in estimating uncertainty.

2 A Formalization of Self-Consistency

We begin with a simple formalization of a computer vision algorithm as a fun-
ction that takes an observation Ω of a world W as input and produces a set of
hypotheses H about the world as output:

H = (h1, h2, . . . , hn) = F (Ω, W ).

An observation Ω is one or more images of the world taken at the same time,
perhaps accompanied by meta-data, such as the time the image(s) was acquired,
the internal and external camera parameters, and their covariances.

A hypothesis h nominally refers to some aspect or element of the world (as
opposed to some aspect of the observation), and it nominally estimates some
attribute of the element it refers to. We formalize this with the following set of
functions that depend on both F and Ω:

1. Ref(h), the referent of the hypothesis h (i.e., which element in the world
that the hypothesis refers to).

2. R(h, h′) = Prob(Ref(h) = Ref(h′), an estimate of the probability that two
hypotheses h and h′, (computed from two observations of the same world),
refer to the same object or process in the world.

3. Att(h), an estimate of some well-defined attribute of the referent.
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4. Acc(h), an estimate of the accuracy distribution of Att(h). When this is
well-modeled by a normal distribution, it can be represented implicitly by
its covariance, Cov(h).

5. Score(h), an estimate of the confidence that Att(h) is correct.

Intuitively, we can state that two hypotheses h and h′, derived from obser-
vations Ω and Ω′ of a static world W , are consistent with each other if they
both refer to the same object in the world and the difference in their estima-
ted attributes is small relative to their accuracies, or if they do not refer to the
same object. When the accuracy is well modeled by a normal distribution, the
consistency of two hypotheses, C(h, h′), can be written as

C(h, h′) = R(h, h′)(Att(h) − Att(h′))T (Cov(h) + Cov(h′))−1(Att(h) − Att(h′))T

Note that the second term on the right is the Mahalanobis distance between
the attributes, which we refer to as the normalized distance between attributes
throughout this paper.

Given the above, we can measure the self-consistency of an algorithm as
the histogram of C(h, h′) over all pairs of hypotheses in H = F (Ω(W )) and
H ′ = F (Ω′(W )), over all observations over all suitable static worlds W . We call
this distribution of C(h, h′) the self-consistency distribution of the computer
vision algorithm F over the worlds W . To simplify the exposition below, we
compute this distribution only for pairs h and h′ for which R(h, h′) ≈ 1. We will
discuss the utility of the full distribution in future work.

3 Self-Consistency of Stereo Algorithms

We can apply the above abstract self-consistency formalism to stereo algorithms
([14,12]). For the purposes of this paper, we assume that the projection matrices
and associated covariances are known for all images.

The hypothesis h produced by a traditional stereo algorithm is a pair of
image coordinates (x0,x1) in each of two images, (I0, I1). In its simplest form, a
stereo match hypothesis h asserts that the closest opaque surface element along
the optic ray through x0 is the same as the closest opaque surface element along
the optic ray through x1. That is, the referent of h, Ref(h), is the closest opaque
surface element along the optic rays through both x0 and x1.

Consequently, two stereo hypotheses have the same referent if their image
coordinates are the same in one image. In other words, if we have a match in
image pair (I0, I1) and a match in image pair (I1, I2), then the stereo algorithm
is asserting that they refer to the same opaque surface element when the coor-
dinates of the matches in image I1 are the same. Self-consistency, in this case,
is a measure of how often (and to what extent) this assertion is true.

The above observation can be used to write the following set of associated
functions for a stereo algorithm. We assume that all matches are accurate to wit-
hin some nominal accuracy, σ, in pixels (typically σ = 1). This can be extended
to include the full covariance of the match coordinates.
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Fig. 1. Results on two different types of images: terrain (top) vs. tree canopy (bottom).

1. Ref(h), The closest opaque surface element visible along the optic rays
through the match points.

2. R(h, h′) = 1 if h and h′ have the same coordinate (within σ) in one image;
0 otherwise.

3. Att(h), The triangulated 3D (or projective) coordinates of the surface ele-
ment.

4. Acc(h), The covariance of Att(h), given that the match coordinates are
N(x0, σ) and N(x0, σ) random variables.

5. Score(h), A measure such as normalized cross-correlation or sum of squared
differences.

Without taking into account Score(h), the self-consistency distribution is
the histogram of normalized differences in triangulated 3D points for pairs of
matches with a common point in one image (Sec. 4.2). Items 3 and 4 above will
be expanded upon in Sec. 5. One way, further described in Sec. 4.3, to take into
account Score(h) is to plot a scatter diagram using as x-axis Score(h), and as
y-axis the normalized differences in triangulated 3D points.

4 The Self-Consistency Distribution

4.1 A Methodology for Estimating the Self-Consistency
Distribution

Ideally, the self-consistency distribution should be computed using all possible
variations of viewpoint and camera parameters (within some class of variations)
over all possible scenes (within some class of scenes). However, we can compute
an estimate of the distribution using some small number of images of a scene,
and average this distribution over many scenes.
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Here we start with some fixed collection of images assumed to have been
taken at exactly the same time (or, equivalently, a collection of images of a static
scene taken over time). Each image has a unique index and associated projection
matrix and (optionally) projection covariances. We then apply a stereo algorithm
independently to all pairs of images in this collection.1 Each such pair of images
is an observation in our formalism. The image indices, match coordinates, and
score, are reported in match files for each image pair.

We now search the match files for pairs of matches that have the same co-
ordinate in one image. For example, if a match is derived from images 1 and
2, another match is derived from images 1 and 3, and these two matches have
the same coordinate in image 1, then these two matches have the same referent.
Such a pair of matches, which we call a common-point match set, should be
self-consistent because they should correspond to the same point in the world.
This extends the principle of the trinocular stereo constraint [22,2] to arbitrary
camera configurations and multiple images.

Given two matches in a common-point match set, we can now compute the
distance between their triangulations, after normalizing for the camera configu-
rations (see Sec. 5). The histogram of these normalized differences, computed
over all common-point matches, is our estimate of the self-consistency distribu-
tion.

Another distribution that one could compute using the same data files would
involve using all the matches in a common-point match set, rather than just
pairs of matches. For example, one might use the deviation of the triangulations
from the mean of all triangulations within a set. This is problematic for several
reasons.

First, there are often outliers within a set, making the mean triangulation
less than useful. One might mitigate this by using a robust estimation of the
mean. But this depends on various (more or less) arbitrary parameters of the
robust estimator that could change the overall distribution.

Second, and perhaps more importantly, we see no way to extend the norma-
lization used to eliminate the dependence on camera configurations, described
in Sec. 5, to the case of multiple matches.

Third, we see no way of using the above variants of the self-consistency
distribution for change detection.

4.2 An Example of the Self-Consistency Distribution

To illustrate the self-consistency distribution, we first apply the above methodo-
logy to the output of a simple stereo algorithm [7]. The algorithm first rectifies
the input pair of images and then searches for 7×7 windows along scan lines that
maximize a normalized cross-correlation metric. Sub-pixel accuracy is achieved
by fitting a quadratic to the metric evaluated at the pixel and its two adjacent
1 Note that the “stereo” algorithm can find matches in n > 2 images. In this case, the

algorithm would be applied to all subsets of size n. We use n = 2 to simplify the
presentation here.
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neighbors. The algorithm first computes the match by comparing the left image
against the right and then comparing the right image against the left. Matches
that are not consistent between the two searches are eliminated. Note that this
is a way of using self-consistency as a filter.

The stereo algorithm was applied to all pairs of five aerial images of bare
terrain, one of which is illustrated in the top row of Figure 1(a). These images
are actually small windows from much larger images (about 9000 pixels on a
side) for which precise ground control and bundle adjustment were applied to
get accurate camera parameters.

Because the scene consists of bare, relatively smooth, terrain with little ve-
getation, we would expect the stereo algorithm described above to perform well.
This expectation is confirmed anecdotally by visually inspecting the matches.

However, we can get a quantitative estimate for the accuracy of the algorithm
for this scene by computing the self-consistency distribution of the output of the
algorithm applied to the ten images pairs in this collection. Figure 1(b) shows
two versions of the distribution. The solid curve is the probability density (the
probability that the normalized distance equals x). It is useful for seeing the mode
and the general shape of the distribution. The dashed curve is the cumulative
probability distribution (the probability that the normalized distance is less than
x). It is useful for seeing the median of the distribution (the point where the curve
reaches 0.5) or the fraction of match pairs with normalized distances exceeding
some value.

In this example, the self-consistency distribution shows that the mode is
about 0.5, about 95% of the normalized distances are below 1, and that about
2% of the match pairs have normalized distances above 10.

In the bottom row of Figure 1 we see the self-consistency distribution for
the same algorithm applied to all pairs of five aerial images of a tree canopy.
Such scenes are notoriously difficult for stereo algorithms. Visual inspection of
the output of the stereo algorithm confirms that most matches are quite wrong.
This can be quantified using the self-consistency distribution in Figure 1(b).
Here we see that, although the mode of the distribution is still about 0.5, only
10% of the matches have a normalized distance less than 1, and only 42% of the
matches have a normalized distance less than 10.

Note that the distributions illustrated above are not well modelled using
Gaussian distributions because of the predominance of outliers (especially in the
tree canopy example). This is why we have chosen to compute the full distribu-
tion rather than use its variance as a summary.

4.3 Conditionalization

As mentioned in the introduction, the global self-consistency distribution, while
useful, is only a weak estimate of the accuracy of the algorithm. This is clear
from the above examples, in which the unconditional self-consistency distribution
varied considerably from one scene to the next.

However, we can compute the self-consistency distribution for matches having
a given “score” (such as the MDL-base score described in detail in Appendix A).
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This is illustrated in Figure 1(c) using a scatter diagram. The scatter diagram
shows a point for every pair of matches, the x coordinate of the point being
the larger of the scores of the two matches, and the y coordinate being the
normalized distance between the matches.

There are several points to note about the scatter diagrams. First, the terrain
example (top row) shows that most points with scores below 0 have normalized
distances less than about 1. Second, most of the points in the tree canopy ex-
ample (bottom row) are not self-consistent. Third, none of the points in the tree
canopy example have scores below 0. Thus, it would seem that this score is able
to segregate self-consistent matches from non-self-consistent matches, even when
the scenes are radically different (see Sec. 6.3).

5 Projection Normalization

To apply the self-consistency method to a set of images, all we need is the set
of projection matrices in a common projective coordinate system. This can be
obtained from point correspondences using projective bundle adjustment [16,19]
and does not require camera calibration. The Euclidean distance is not invariant
to the choice of projective coordinates, but this dependence can often be reduced
by using the normalization described below. Another way to do so, which actually
cancels the dependence on the choice of projective coordinates, is to compute the
difference between the reprojections instead of the triangulations, as described
in more detail in [14]. This, however, does not cancel the dependence on the
relative geometry of the cameras.

5.1 The Mahalanobis Distance

Assuming that the contribution of each individual match to the statistics is the
same ignores many imaging factors like the geometric configuration of the came-
ras and their resolution, or the distance of the 3D point from the cameras. There
is a simple way to take into account all of these factors, applying a normaliza-
tion which make the statistics invariant to these imaging factors. In addition,
this mechanism makes it possible to take into account the uncertainty in camera
parameters, by including them into the observation parameters.

We assume that the observation error (due to image noise and digitalization
effects) is Gaussian. This makes it possible to compute the covariance of the
reconstruction given the covariance of the observations. Let us consider two
reconstructed estimates of a 3-D point, M1 and M2 to be compared, and their
computed covariance matrices Λ1 and Λ2. We weight the squared Euclidean
distance between M1 and M2 by the sum of their covariances. This yields the
squared Mahalanobis distance: (M1 − M2)T (Λ1 + Λ2)−1(M1 − M2) .

5.2 Determining the Reconstruction and Reprojection Covariances

If the measurements are modeled by the random vector x, of mean x0 and of
covariance Λx, then the vector y = f(x) is a random vector of mean is f(x0)
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and, up to the first order, covariance Jf (x0)ΛxJf (x0)T , where Jf (x0) is the
Jacobian matrix of f , at the point x0.

In order to determine the 3-D distribution error in reconstruction, the vector
x is defined by concatenating the 2-D coordinates of each point of the match,
ie [x1, y1, x2, y2, . . . xn, yn] and the result of the function is the 3-D coordina-
tes X, Y, Z of the point M reconstructed from the match, in the least-squares
sense. The key is that M is expressed by a closed-form formula of the form
M = (LT L)−1LT b, where L and b are a matrix and vector which depend on
the projection matrices and coordinates of the points in the match. This makes
it possible to obtain the derivatives of M with respect to the 2n measurements
wi, i = 1 . . . n, w = x, y. We also assume that the errors at each pixel are in-
dependent, uniform, and isotropic. The covariance matrix Λx is then diagonal,
therefore each element of ΛM can be computed as a sum of independent terms
for each image.

The above calculations are exact when the mapping between the vector of
coordinates of mi and M (resp. m′

j and M ′) is linear, since it is only in that case
that the distribution of M and M ′ is Gaussian. The reconstruction operation is
exactly linear only when the projection matrices are affine. However, the linear
approximation is expected to remain reasonable under normal viewing conditi-
ons, and to break down only when the projection matrices are in configurations
with strong perspective.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10

3-D, projection random general, p d f, un-normalized, sigma=1.0

0

0.005

0.01

0.015

0.02

0.025

0 2 4 6 8 10

3-D, projection perturbed, p d f, un-normalized, sigma=1.0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2 4 6 8 10

3-D, projection random affine, p d f, un-normalized, sigma=1.0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 2 4 6 8 10

3-D, projection random general, p d f, normalized, sigma=1.0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 2 4 6 8 10

3-D, projection perturbed, p d f, normalized, sigma=1.0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 2 4 6 8 10

3-D, projection random affine, p d f, normalized, sigma=1.0

random general projections perturbed projections random affine projections
Fig. 2. Un-normalized (top) vs normalized (bottom) self-consistency distributions.



290 Y.G. Leclerc, Q.-T. Luong, and P. Fua

6 Experiments

6.1 Synthetic Data

In order to gain insight into the nature of the normalized self-consistency distri-
butions, we investigate the case when the noise in point localization is Gaussian.

We first derive the analytical model for the self-consistency distribution in
that case. We then show, using monte-carlo experiments that, provided that
the geometrical normalization described in Sec.5 is used, the experimental self-
consistency distributions fit this model quite well when perspective effects are
not strong. A consequence of this result is that under the hypothesis that the
error localization of the features in the images is Gaussian, the self-consistency
distribution could be used to recover exactly the accuracy distribution.

Modeling the Gaussian self-consistency distributions. The squared Mahalanobis
distance in 3D follows a chi-square distribution with three degrees of freedom:

χ2
3 =

1√
2π

√
xe−x/2

In our model, the Mahalanobis distance is computed between M , M ′, recon-
structions in 3D, which are obtained from matches mi, m′

j of which coordinates
are assumed to be Gaussian, zero-mean and with standard deviation σ. If M ,
M ′ are obtained from the coordinates mi, m′

j with a linear transformation A,
A′, then the covariances are σ2AAT , σ2A′A′T . The Mahalanobis distance follows
the distribution:

d3 = x2/σ3
√

2/πe−x2/2σ2
(1)

Using the Mahalanobis distance, the self-consistency distributions should be
statistically independent of the 3D points and projection matrices. Of course, if
we were just using the Euclidean distance, there would be no reason to expect
such an independence.

Comparison of the normalized and unnormalized distributions To explore the
domain of validity of the first-order approximation to the covariance, we have
considered three methods to generate random projection matrices:

1. General projection matrices are picked randomly.
2. Projection matrices are obtained by perturbing a fixed, realistic matrix

(which is close to affine). Entries of this matrix are each varied randomly
within 500% of the initial value.

3. Affine projection matrices are picked randomly.

Each experiment in a set consisted of picking random 3D points, random
projection matrices according to the configuration previously described, projec-
ting them, adding random Gaussian noise to the matches, and computing the
self-consistency distributions by labelling the matches so that they are perfect.
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To illustrate the invariance of the distribution that we can obtain using the
normalization, we performed experiments where we computed both the norma-
lized version and the unnormalized version of the self-consistency. As can be
seen in Fig. 2, using the normalization reduced dramatically the spread of the
self-consistency curves found within each experiment in a set. In particular, in
the two last configurations, the resulting spread was very small, which indicates
that the geometrical normalization was successful at achieving invariance with
respect to 3D points and projection matrices.

Comparison of the experimental and theoretical distributions Using the Maha-
lanobis distance, we then averaged the density curves within each set of experi-
ments, and tried to fit the model described in Eq. 1 to the resulting curves, for
six different values of the standard deviation, σ = 0.5, 1, 1.5, 2, 2.5, 3. As illust-
rated in Fig. 3, the model describes the average self-consistency curves very well
when the projection matrices are affine (as expected from the theory), but also
when they are obtained by perturbation of a fixed matrix. When the projection
matrices are picked totally at random, the model does not describe the curves
very well, but the different self-consistency curves corresponding to each noise
level are still distinguishable.

6.2 Comparing Two Algorithms

The experiments described here and in the following section are based on the
application of stereo algorithms to seventeen scenes, each comprising five images,
for a total of 85 images and 170 image pairs. At the highest resolution, each image
is a window of about 900 pixels on a side from images of about 9000 pixels on
a side. Some of the experiments were done on Gaussian-reduced versions of the
images. These images were controlled and bundle-adjusted to provide accurate
camera parameters.

A single self-consistency distribution for each algorithm was created by mer-
ging the scatter data for that algorithm across all seventeen scenes. In previous
papers, [14,11], we compared two algorithms, but using data from only four
images. By merging the scatter data as we do here, we are now able to compare
algorithms using data from many scenes. This results in a much more compre-
hensive comparison.

The merged distributions are shown in Figure 4 as probability density func-
tions for the two algorithms. The solid curve represents the distribution for our
deformable mesh algorithm [8], and the dashed curve represents the distribution
for the stereo algorithm described above.

Comparing these two graphs shows some interesting differences between the
two algorithms. The deformable mesh algorithm clearly has more outliers (mat-
ches with normalized distances above 1), but has a much greater proportion of
matches with distances below 0.25. This is not unexpected since the strength of
the deformable meshes is its ability to do very precise matching between ima-
ges. However, the algorithm can get stuck in local minima. Self-consistency now
allows us to quantify how often this happens.



292 Y.G. Leclerc, Q.-T. Luong, and P. Fua

But this comparison also illustrates that one must be very careful when
comparing algorithms or assessing the accuracy of a given algorithm. The dis-
tributions we get are very much dependent on the scenes being used (as would
also be the case if we were comparing the algorithms against ground truth—the
“gold standard” for assessing the accuracy of a stereo algorithm). In general,
the distributions will be most useful if they are derived from a well-defined class
of scenes. It might also be necessary to restrict the imaging conditions (such as
resolution or lighting) as well, depending on the algorithm. Only then can the
distribution be used to predict the accuracy of the algorithm when applied to
images of similar scenes.

6.3 Comparing Three Scoring Functions

To eliminate the dependency on scene content, we propose to use a score asso-
ciated with each match. We saw scatter diagrams in Figure 1(c) that illustrated
how a scoring function might be used to segregate matches according to their
expected self-consistency.

In this section we will compare three scoring functions, one based on Mini-
mum Description Length Theory (the MDL score, Appendix A), the traditional
sum–of–squared–differences (SSD) score, and the SSD score normalized by the
localization covariance (SSD/GRAD score) [6]. All scores were computed using
the same matches computed by our deformable mesh algorithm applied to all
image pairs of the seventeen scenes mentioned above. The scatter diagrams for
all of the areas were then merged together to produce the scatter diagrams show
in Figure 5.

The MDL score has the very nice property that the confidence interval (as
defined earlier) rises monotonically with the score, at least until there is a paucity
of data, when then score is greater than 2. It also has a broad range of scores
(those below zero) for which the normalized distances are below 1, with far fewer
outliers than the other scores.

The SSD/GRAD score also increases monotonically (with perhaps a shallow
dip for small values of the score), but only over a small range.

The traditional SSD score, on the other hand, is distinctly not monotonic. It
is fairly non-self-consistent for small scores, then becomes more self-consistent,
and then rises again.

6.4 Comparing Window Size

One of the common parameters in a traditional stereo algorithm is the window
size. Figure 6 presents one image from six urban scenes, where each scene com-
prised four images. Figure 7 shows the merged scatter diagrams (a) and global
self-consistency distributions (b) for all six scenes, for three window sizes (7× 7,
15 × 15, and 29 × 29). Some of the observations to note from these experiments
are as follows.

First, note that the scatter diagram for the 7×7 window of this class of scenes
has many more outliers for scores below -1 than were found in the scatter diagram
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for the terrain scenes. This is reflected in the global self-consistency distribution
in (b), where one can see that about 10% of matches have normalized distances
greater than 6. The reason for this is that this type of scene has significant
amounts of repeating structure along epipolar lines. Consequently, a score based
only on the quality of fit between two windows (such as the MDL-based score)
will fail on occasion. A better score would include a measure of the uniqueness
of a match along the epipolar line as a second component. We are currently
exploring this.

Second, note that the number of outliers in both the scatter diagram and the
self-consistency distributions decreases as window size decreases. Thus, large
window sizes (in this case) produce more self-consistent results. But it also pro-
duces fewer points. This is probably because this stereo algorithm uses left-
right/right-left equality as a form a self-consistency filter.

We have also visually examined the matches as a function of window size.
When we restrict ourselves to matches with scores below -1, we observe that
matches become sparser as window size increases. Furthermore, it appears that
the matches are more accurate with larger window sizes. This is quite different
from the results of Faugeras et al.— [5]. There they found that, in general, mat-
ches became denser but less accurate as window size increased. We believe that
this is because an MDL score below -1 keeps only those matches for which the
scene surface is approximately fronto-parallel within the extent of the window,
which is a situation in which larger window sizes increases accuracy. This is
borne out by our visual observations of the matches. On the other hand, this
result is basically in line with the results of Szeliski and Zabih [18,20], who show
that prediction error decreases with window size. Deeper analysis of these results
will be done in future work.

6.5 Detecting Change

One application of the self-consistency distribution is detecting changes in a
scene over time. Given two collections of images of a scene taken at two points
in time, we can compare matches (from different times) that belong to the same
surface element to see if the difference in triangulated coordinates exceeds some
significance level. This gives a mechanism for distinguishing changes which are
significant from changes which are due to modelization uncertainty. More details,
and experimental results are found in [13].

7 Previous Work in Estimating Uncertainty

Existing work on estimating uncertainty without ground truth falls into three
categories: analytical, statistical, and empirical approaches.

The analytical approaches are based on the idea of error propagation [23].
When the output is obtained by optimizing a certain criterion (like a correlation
measure), the shape of the optimization curve [6,15,9] or surface [1] provides
estimates of the covariance through the second-order derivatives. These appro-
aches make it possible to compare the uncertainty of different outputs given by
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the same algorithm. However, it is problematic to use them to compare different
algorithms.

Statistical approaches make it possible to compute the covariance given only
one data sample and a black-box version of an algorithm, by repeated runs of
the algorithm, and application of the law of large numbers [4].

Both of the above approaches characterize the performance of a given output
only in terms of its expected variation with respect to additive white noise.
In [21], the accuracy was characterized as a function of image resolution. The
bootstrap methodology [3] goes further, since it makes it possible to characterize
the accuracy of a given output with respect to IID noise of unknown distribution.
Even if such an approach could be applied to the multiple image correspondence
problem, it would characterize the performance with respect to IID sensor noise.
Although this is useful for some applications, for other applications it is necessary
to estimate the expected accuracy and reliability of the algorithms as viewpoint,
scene domain, or other imaging conditions are varied. This is the problem we
seek to address with the self-consistency methodology.

Our methodology falls into the real of empirical approaches. See [17], for a
good overview of such approaches.

Szeliski [18] has recently proposed prediction error to characterize the perfor-
mance of stereo and motion algorithms. Prediction error is the difference between
a third real image of a scene and a synthetic image produced from the disparities
and known camera parameters of the three images. This approach is especially
useful when the primary use of stereo is for view interpolation, since the me-
tric they propose directly measures how well the algorithm has interpolated a
view compared to a real image of that same view. In particular, their approach
does not necessarily penalize a stereo algorithm for errors in constant-intensity
regions, at least for certain viewpoints. Our approach, on the other hand, at-
tempts to characterize self-consistency for all points. Furthermore, our approach
attempts to remove the effects of camera configuration is computing the measure
over many observations and scenes.

Szeliski and Zabih have recently applied this approach to comparing ste-
reo algorithms [18,20]. A comprehensive comparison of our two methodologies
applied to the the same algorithms and same datasets should yield interesting
insights into these two approaches.

An important item to note about our methodology is that the projection ma-
trices for all of the images are provided and assumed to be correct (within their
covariances). Thus, we assume that a match produced by the stereo algorithm
always lies on the epipolar lines of the images. Consequently, a measure of how
far matches lie from the epipolar line, is not relevant.

8 Conclusion and Perspectives

We have presented a general formalization of a perceptual observation called
self-consistency, and have proposed a methodology based on this formalization
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as a means of estimating the accuracy and reliability of point-correspondence al-
gorithms algorithms, comparing different stereo algorithms, comparing different
scoring functions, comparing window sizes, and detecting change over time. We
have presented a detailed prescription for applying this methodology to multiple-
image point-correspondence algorithms, without any need for ground truth or
camera calibration, and have demonstrated it’s utility in several experiments.

The self-consistency distribution is a very simple idea that has powerful con-
sequences. It can be used to compare algorithms, compare scoring functions,
evaluate the performance of an algorithm across different classes of scenes, tune
algorithm parameters (such as window size), reliably detect changes in a scene,
and so forth. All of this can be done for little manual cost beyond the precise esti-
mation of the camera parameters and perhaps manual inspection of the output
of the algorithm on a few images to identify systematic biases.

Readers of this paper are invited to visit the self-consistency web site to
download an executable version of the code, documentation, and examples at
http://www.ai.sri.com/sct/ described in this paper.

Finally, we believe that the general self-consistency formalism developed in
Sec. 2, which examines the self-consistency of an algorithm across independent
experimental trials of different viewpoints of a static scene, can be used to assess
the accuracy and reliability of algorithms dealing with a range of computer vision
problems. This could lead to algorithms that can learn to be self-consistent over
a wide range of scenes without the need for external training data or “ground
truth.”

A The MDL Score

Given N images, let M be the number of pixels in the correlation window and
let gj

i be the image gray level of the ith pixel observed in image j. For image j,
the number of bits required to describe these gray levels as IID white noise can
be approximated by:

Cj = M(log σj + c) (2)

where σj is the measured variance of the gj
i 1≤i≤N and c = (1/2) log(2πe).

Alternatively, these gray levels can be expressed in terms of the mean gray
level gi across images and the deviations gj

i − gi from this average in each indi-
vidual image. The cost of describing the means, can be approximated by

C = M(log σ + c) (3)

where σ is the measured variance of the mean gray levels. Similarly the coding
length of describing deviations from the mean is given by

Cd
j = M(log σd

j + c) (4)

where σd
j is the measured variance of those deviations in image j. Note that,

because we describe the mean across the images, we need only describe N − 1
of the Cd

j . The description of the Nth one is implicit.
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The MDL score is the difference between these two coding lengths, normalized
by the number of samples, that is

Loss = C +
∑

1≤j≤N−1

Cd
j −

∑

1≤j≤N

Cj . (5)

When there is a good match between images, the gj
i 1≤j≤N have a small variance.

Consequently the Cd
j should be small, C should be approximately equal to any of

the Cj and Loss should be negative. However, Cj can only be strongly negative
if these costs are large enough, that is, if there is enough texture for a reliable
match. See [10] for more details.
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Fig. 6. Three of six urban scenes used for the window comparisons. Each scene con-
tained 4 images.

(a)

(b)
(7 × 7) (15 × 15) (29 × 29)

Fig. 7. Comparing three window sizes. (a) The combined self-consistency distributions
of six urban scenes for window sizes 7×7, 15×15, and 29×29. (b) The scatter diagrams
for the MDL score for these urban scenes.
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