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Abstract. In stereoscopic images, the behavior of a curve in space is
related to the appearance of the curve in the left and right image planes.
Formally, this relationship is governed by the projective geometry indu-
ced by the stereo camera configuration and by the differential structure
of the curve in the scene. We propose that the correspondence problem—
matching corresponding points in the image planes—can be solved by
relating the differential structure in the left and right image planes to
the geometry of curves in space. Specifically, the compatibility between
two pairs of corresponding points and tangents at those points is related
to the local approximation of a space curve using an osculating helix. To
guarantee robustness against small changes in the camera parameters,
we select a specific osculating helix. A relaxation labeling network de-
monstrates that the compatibilities can be used to infer the appropriate
correspondences in a scene. Examples on which standard approaches fail
are demonstrated.

1 Introduction

The objects in our visual environment weave through space in an endless variety
of depths, orientations and positions (Figs. 1, 2). Nevertheless, in computer vi-
sion the dominant theme has been to develop region-based methods to solve
the correspondence problem [G[7ITTIT3[T4[T6], or else to focus on long, straight
lines[5]. Edge features have been introduced to reduce the complexity of mat-
ching, but ambiguities along the epipolar lines (Fig. [[) are dealth with by a
distance measure, e.g. similarity of orientation, over the possible edge matches.
While this filters the number of potential matches, it does not solve the problem
of which edge elements in each figure should correspond.

To resolve these remaining ambiguities, global (heuristic) constraints have
been introduced, including the uniqueness constraint [6JI3I[16]; the ordering con-
straint (the projections of two objects in an image must have the same left to
right ordering as the objects in the scene) [IJ6J16]; the smoothness constraint |2
67/1314], and so on. However, each of these is heuristic, and breaks down for
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Fig.1. A stereo pair of twigs. There are many places in the stereo pair where the
ordering constraint breaks down. The images were taken using a verged stereo rig and
a baseline of 9cm.

the above images; see Fig. [3l It is our goal to develop a stereo correspondence
system that can work for scenes such as these.

The occluding contour of an object weaves through space as does the object
with which it is associated. The projection of the occluding contour is an edge
curve that winds across the image plane. We focus on the relationship between
the differential-geometric properties of curves in a scene and the projection of
those curves into the left and right image planes. These observations allow us to
explore the reasons why conventional stereo systems may fail for natural images
and will provide the basis for our new approach.

The distance measures that have been defined on features in the image plane,
together with global constraints, have not fully captured the relationships bet-
ween a space curve in the scene and the behavior of the projected curves in
the (left, right) image planes. For example, consider matching edge elements’ by
orientation along an epipolar line: if the threshold for determining a match were
too high (typical values include +30 deg [7T6]) then too many possible matches
would be admitted; if the threshold were too low, then the system would be
restricted to detecting edges that do not traverse through depth. Imposing addi-
tional measures, such as the curvature of lines in the image plane, does not solve
the problem of ambiguity because, like the measures on orientation, measures
on curvature do not take into account the behavior of curves in three space. The
structure of the curves in the image plane must derive from the geometry of the
space curve.

Fig. 2. A synthetic stereo pair consisting of a y-helix and a circular arc.
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Fig. 3. The false matches obtained using the PMF algorithm of Pollard, Mayhew, and
Frisby in the TINA system on the example in Fig. 2. (Top) Three orthogonal projec-
tions of the reconstruction. The rightmost ”birds-eye view” illustrates the complete
merging of two curves in depth. The incorrect reconstruction is due to the failure of
the ordering constraint in the image, which is highlighted in (BOTTOM) zoom. The
(filled) darkened pixels in the left and right images correspond in TINA according to
the ordering constraint, but are clearly incorrect.

Specifically, we will relate the local approximation of a curve in three space
to its projection in the left and right image planes. The behavior of a planar
curve can be described in terms of its tangent and curvature. Similarly, a curve
in three space can be described by the relationships between its tangent, normal
and binormal. As the curve moves across depth planes, there exists a positional
disparity between the projection of the curve in the left image and the projection
in the right image. However, there also exist higher order disparities, for example
disparities in orientation, that occur. It is these types of relationships that can
be capitalized upon when solving the correspondence problem. One approach
is to relate them directly to surface slant and tilt [12]. Rather than defining
a distance measure that compares the positions or orientations of a left/right
edge-element pair, we will require that neighboring pairs be locally consistent.
That is to say: (i) we shall interpret edge elements as signaling tangents; and
(i) we shall require that there exists a curve in three space whose projection in
the left and right image planes is commensurate with the locus of tangent pairs
in a neighborhood of the proposed match.

The reduction of the correspondence problem to relations between nearby
tangents distributed across (left, right) image pairs opens up a second goal for
this research - biologically plausible stereo correspondence algorithms that can
run in orientation hypercolumns. However, space limitations preclude us from
further developing this goal.
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Clearly, the role of projective geometry must not be ignored. One would
not want correspondence relations that depended in minute detail on camera
parameters and precise camera calibration, otherwise the solution would be too
delicate to use in practice. We seek those relationships between the differential
structure of a space curve and the differential structure of image curves on which
stereo correspondence is based to be invariant to small changes in the camera
parameters. We refer to this as the PRINCIPLE OF DIFFERENTIAL INVARIANCE.

2 Differential Formulation of the Compatibility Field

Let a(s) be a curve in R%. Assuming measurements of the curvature, torsion
and Frenet frame of the curve at «(0), we obtain a local approximation of the
curve by taking the third order Taylor expansion of a at s = 0. Using the Frenet
equations and keeping only the dominant term in each component, we obtain
the FRENET APPROXIMATION of « at s = 0 (see Fig. H):

2 3
a(s) = a(0) + sTy + Iio%No + HUT()%BO (1)

“s)~ (s

Fig. 4. The Frenet approximation to a curve in R* at a point a(0). Without loss of
generality, the point a(0) is assumed to be coincident with the origin.

Another approximation can be derived for the case of a planar curve. For the
moment let « be a unit speed planar curve with £ > 0. There is one and only one
OSCULATING CIRCLE % which approximates a near «(s) up to second-order in
the Frenet sense. This approximation was used in defining the CO-CIRCULARITY
CONSTRAINT for determining consistency between nearby edge elements [15].
Our technical goal in this section is to generalize co-circularity to stereo. The
following abstraction is useful:

TRANSPORT PROBLEM Given a unit speed curve «, determine a unit vector field,
u, on « such that a/(s) - u(s) = const.

For any unit speed curve, «, the vector field 4 = T can be defined such
that the pointwise relation o/ - w = 1 holds. If a curve is reconstructed from
an image, then the reconstructed curve must satisfy this property. However, this
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assumes—unrealistically!— that o was known around the point a/(0). The basis for
co-circularity is the observation that o can be locally approximated at 0 via the
osculating circle, v: if the tangent at the position ¢ (ds) is transported along the
osculating circle from t(0) to 1 (ds), it should approximate the tangent at a(ds)
to first order. This TRANSPORT CONSTRAINT was used to define compatibilities
for a relaxation labeling process.

For the stereo correspondence problem, two edge maps are given (one for the
left camera and one for the right); each of these will be consistent (in the sense
that they satisfy the monocular co-circularity transport constraint); our goal now
is to make them consistent with a local approximation to the space curve from
which they project. The generalization of the osculating circle for space curves
requires an osculating helix. To begin, recall that a unit speed circular helix is a
space curve h(s) where h(s) = (acos (£),asin (£),%) where ¢ = Va2 + b2.
OSCULATING HELIX Let o be a unit speed space curve with x > 0. There is one
and only one unit speed circular helix, iz, that locally approximates « at s in the
sense of Frenet: h(0) = a(s);T;(0) = To(s); N;(0) = No(s); kj, = kal(s); 1, =
Ta(8).

Now, consider a point M € R3. There exists a family of unit speed smooth
space curves that pass through M. For each such curve, it is possible to construct
an osculating helix that locally approximates the curve at M. Each such appro-
ximation is only valid in a small neighborhood around M (denoted N'(M)). The
projection of M onto the left image plane is m; = P;(M). Similarly, the pro-
jection of the neighborhood around M is a neighborhood around m;, N'(m;) =
P,(N(M)), where N'(m;) is a connected subset of the image plane. The neighbor-
hood of the stereo pair (m;, m,) = (B(M), P.(M)) is the set of corresponding
points in the space N (my) x N(m,.).

Let M be a point in 12 and Tjs the tangent vector at M. The mapping S
is the projection of M and T'j; onto the left and right image planes:

S:E*xT(E®) w E? x B? x T(E?) x T(E?)

We refer to the space B2 x E? xT(E?) xT(E?) as the stereo tangent space and de-
note it with the symbol ¥J. A point i € ¢ can be represented as (x;, yi, ©r, yr, 01, 6,)
where x and y are the projection of M in the image plane and 6 is the orienta-
tion of the projected tangent in T'(E?). The mapping S is invertible everywhere
except for the line between the optical centers and the focal planes.

Two image points, one from the left image plane and one from the right, are
referred to as corresponding points if the inverse projection of the pair is a point
on some object in the scene.

We also define the projection map:

7: E? x B> x T(E?) x T(E?) — E* x E?
W(xlayl,wrayraalver) = (xbylv‘r’my?“)

The map P~!(n(i)) maps the stereo tangent pair, 4, to the corresponding
point in three space. The map S~!(i) maps the stereo tangent pair, 4, to a point
in three space along with its associated tangent.
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Since a at M can be approximated by an osculating helix at M, the image of
the curve « in a neighborhood around (my,m,) = (P(M), P,(M)) is commen-
surate with the projection of the osculating helix into the left and right image
planes. Furthermore, the direction of corresponding tangents in the left and right
image planes is approximately equal to the direction of the projected tangents
along the osculating helix. Fach pair of corresponding points and tangents is
referred to as a stereo tangent pair. If i is a stereo tangent pair, ¢ € 1, associated
with a point on an arbitrary curve in three space, then in a neighborhood around
1, the set of stereo tangent pairs will be commensurate with the positions and
tangents of the projected osculating helix. We denote the neighborhood around
i as N(i), where N'(i) = {j € 9|n(j) € N(n(7))}. Formally,

STEREO COMPATIBLE: Let ¢ € ¥ and j € N(i). {i, 7} are stereo-compatible under
S if and only if h(s), a circular helix, such that S(h(s)) D {4, j}. We denote the

compatibility of ¢ and j under the helix h as (¢ i 7).

Figure [l depicts the projection of several helices onto the left and right
image planes, each of which is locally consistent (according to the co-circularity
transport constraint). Equivalently, for a pair of nearby points that lie on the
curve in the left image, for example m; and n;, the position and tangent at n;
satisfy the transport constraints at m;. The same property holds for m, and n,.,
two nearby points on the curve in the right image plane. In addition, for each
pair of neighboring stereo pairs, m = (m;,m,) and n = (n;,n,), the inverse
projection of the corresponding points lie on the original helix and the inverse
projection of the tangents at m and n have the same orientation as the tangent
in three space. This is true for every pair of corresponding points that lie on the
perspective projection of the helix. Since the inverse projections P~!(m) and
P~1(n) lie on a common helix, the transport constraints at m are necessarily
satisfied, when we transport along the image of the helix from n to m. Therefore,
we can express the compatibility between a pair of corresponding points as a
compatibility relationship between stereo tangent pairs. However, one cannot
arbitrarily pick a curve in the left image and a curve in the right image and
expect there to be a heliz in R3 that projects to the given curves. Only those
helices that satisfy the compatibility relation for a given stereo tangent pair are
admissible pairings of curves in left and right images. It is the difference in the
projection of the helices that allows us to solve the correspondence problem. In
fact, we have the UNIQUENESS LEMMA:

Let iy, ip € ¥ such that P~1(n(i1)) = P~(nw(i2)) and S=1(i1) # S~1(iz). There
does not exist a circular helix h and j € N (i1) = M (42), such that (i; Ed j) and
(iz % ).

Proof Suppose there exist h such that (i; L j) and (ig L j). From the definition

of compatibility S7!(j) lies on the helix and the helix h passes through M =
P~Y(7(i1)) = P~(m(i2)). We transport along the helix from P~!(7(j)) to M.

We denote the tangent at M as T'ps. Since (i1 b j), i1 € S(h) and the projection
of T'ps is the tangent at i;. But (ig A J), s0 iz € S(h) and the projection of the
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T is the tangent at 5. But the tangent at i; #* tangent at io and therefore
T s has two values.

Helices Proj in the L. Image Proj in the R. Image
i / B 1 ///'
A

Lo !
L e e

Fig.5. Four helices in three space whose projection pass through the point i =
(0,0,0,0,7/2,7/2). The projections in the left and right image planes are shown.

The COMPATIBILITY FIELD for ¢ € 9 under S is the set of all pairs (j,h;),
where j € N(i) and h; is a unit speed circular helix, such that the relation

(i 5 j) holds for the camera model S. We denote the compatibility fields for a
point i as CFg(7).

The solution to the correspondence problem can now be framed in terms of
the local approximation of curves. Consider a point M on a smooth curve in three
space and a pair of points, not necessarily corresponding points, in the image
plane m = {m;,m,} (the subscripts, respectively, indicate the left and right
components of the pair). Earlier, it was shown that there exists an osculating
helix to the curve at M. Therefore, m; and m, are a match if and only if the
image of the osculating helix in the left and right image planes is coincident with
the locus of edge points around m; and m,.

Formally, solving the correspondence problem is equivalent to solving the
transport problem. Consider two arbitrary curves, one in the left image plane
and one in the right. Pick two tangents, (my, ;) and (m,,6,.) such that they lie
on matching epipolar lines in the left and right image planes. The two curves
can be expressed as single curve 8 in ¢. Let 5(0) = (my, m,, 6;,0,.) and 3(ds) =
(ml,mr,él,ér) be two points along 5. (my,0;) and (m,,6,) are corresponding
tangents if there exists a helix in E3 that satisfies the transport criteria at 3(0)
and ((ds). That is to say, there exists a unit speed osculating helix, h € H,
such that S(h(0),T(0)) = 8(0) and S(h(dt), T (t)) =~ 3(ds). These transport
criteria are expressed as the position and tangent direction of the projected helix.

The compatibility field around a point i = (my, m,, 0;, 6,-) € ¥ is the set of all
stereo tangent pairs in a neighborhood of i for which the transport constraints
can be satisfied. To draw this in a figure we separate the left components of
i, (my,0;), from the right components (m,.,6,). The result is what appears to
be a tangent field surrounding the point for which the compatibility field was
constructed. Each tangent in the left compatibility field has a matching tangent
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in the right field. However, there may be a disparity in both the position and
orientation between the matching tangents. It is the differences in position and
orientation between corresponding tangents in the left and right compatibility
fields that are the key to solving the correspondence problem. This relationship
is captured directly in the compatibility fields.

However, we are now at the place where the projective geometry (the camera
model) interacts with the differential geometry:

OBSERVATION: Given a stereo tangent pair ¢, the equations used to deter-
mine the osculating helix to the curve o at a(S~1(i)), are underdetermined. For
a stereo tangent pair, it is possible to invert the perspective projection matrices
to obtain the position, M, and tangent of the curve in 3. However, given only
a stereo tangent pair, it is not possible to determine the direction of the nor-
mal, curvature or torsion. Therefore, there does not exist enough information to
uniquely determine the helix passing through M. The family of possible helices
passing through M is homeomorphic to the space S* x Rt x R (where S* deno-
tes the unit circle). In the next section, we will provide an argument based on
the principle of differential invariance to consider only a subset of the helices in
St x Rt x R.

2.1 The Invariant Compatibility Field

The construction of a compatibility field requires a precise characterization of
the camera (intrinsic/extrinsic) parameters. It would be exhausting if the com-
patibility fields had to be recomputed for every set of camera parameters; it
would be unrealistic to assume that the camera parameters could be obtained
with arbitrary precision. We seek an INVARIANT COMPATIBILITY FIELD: Consi-
der the mappings S; and S, where each mapping is constructed using a different
set of camera parameters. Let ¢ € J. For every j € CFg, (i) 3h; € H such that
Si(hj) D {4,j}. The CFg, (i) is invariant to changes in the camera parameters
if for all h that satisty S (h) D {i,j}, Sy 'Si(h) € H.

To simplify the analysis, we assume that only the camera parameters 6, dx
and dy are variable. Further we assume that the fixation point of the camera,
(Zo, Yo, 20) is such that z, > x,, 2o > y, and 2, > dx. The last restriction
constrains the value of 8 to be close to zero. Lastly, we assume that the cameras
are symmetrically verged at the fixation point.

If the compatibility field is computed for a small neighborhood around a point
1 € 9, then the affine projection equation can be used to study the invariance of
the compatibility fields under changes in the camera parameters. Specifically, we
determine if a helix that satisfies the compatibility criteria between two points in
¥ is preserved under changes in the camera parameters by studing the deforma-
tion of the spherical image of a circular helix under F £ Ag*l 0 Aj,, where Ay, is
the affine derivative map of S;. We refer to F as the affine stereo transformation.

We can use the spherical image of a helix, o, to define a circular cone in
R3, x,(u,v) = uo(v). Let a be a unit speed cylindrical helix. For every pa-
rameterization 3 of «, the image of 3’ lies on a cone defined by the spherical
image of .. This can be proved by defining 5 as 3(t) = a(r(t)) and consequently
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B'(t) =r'(t)d’(r(t)). Fix s € (0, L), where L is the arc-length of . We can write
B'(t*) = r'(t*)a/(s) where t* = r~1(s). o/(s) is a point on S? (unit sphere) re-
presented by the vector v so 8/(¢t*) = r'(t*)v. Thus for any reparameterization
by a function r, §'(t*) is a point along the ray defined by v and v lies on the
cone defined by the spherical image of «.

Thus an equivalence relation can be defined on the family of cylindrical heli-

ces. Each equivalence class consists of all helices that are the reparameterizations
of a given unit speed cylindrical helix. The spherical image of every helix in the
equivalence class lies on the cone defined by the spherical image of the unit speed
helix. We require the following results:
1. The image of a circular cone under a linear mapping F is a generalized cone.
2. By the Jordan curve theorem, the curve « has a well defined interior. Consider
the closed set, C, where a = 9C. Suppose the set C is convex. The image of
this set under the linear mapping F is also convex [3]. Therefore, if a(v) has
curvature less than zero, the curve &(v) also has curvature less than zero. This
implies that %X(u,v) is always bending away from the normal (if the cone is
oriented with outward normals) and that the normal curvature is less than or
equal to zero everywhere along the generalized cone. Along the rulings of the
cone, the principal curvature k; = 0. The other principal curvature is ks is less
than zero.

The above lemmas allows us to phrase the problem of invariance in terms of
deformations of the circular cone:

Theorem The compatibility field is invariant if Vh € H, F(x,) € C, where
C is the family of all circular cones, x, € C and o is the spherical image of the
circular helix.

A global property of a circular cone is that there exists a vector a such that
the angle between x(u,v) and a is a constant, Z(x,a) = k, Yu > 0,v € R. If the
cone F(x) is a circular cone then:

Z(F(x(u,v)),F(a) )=k

)\(U,U) é aZ(F(X(UéZ)%F(a’) ) =0 (2)

The function A is a smooth continuous function because the surface of the cone
is smooth. Since ) is a function of the derivative map A, it is also a function
of the camera parameters, e.g. §; and 6,.. If the camera parameters defined by
A; are fixed, and if initially Ay = A;, the derivative of A with respect to some
camera parameter of A measures the invariance of the compatibility field to
changes in that camera parameter. If for example g—e)‘l is non-zero, then the helix

is deformed by the mapping A; LA, as 6, varies. Therefore, A can be used to
study which unit speed circular helices are invariant to changes in the camera
parameters.

Consider the set of all unit speed circular helices, Hg, that lie on a circu-
lar cylinder whose axis goes through the origin. Let the direction of the axis
represent the direction of the helix. The direction of every helix in Hy can be
represented by a point on S2. We can change the direction of each helix with a
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rotation matrix R, which has two degrees of freedom. Consider the point (0,0, 1)
on S2. Any other point on S? can be defined by a rotation around the x-axis
followed by a rotation around the y-axis. We define the mapping R : S? — S?
as such a function. The mapping R is a smooth continuous function [3]. The
mapping R changes the direction of a helix and rotates the spherical image of
the helix accordingly. If o7 is the spherical image of unit speed helix, hy € Ho,
and we define ho = R(hy), then by the linearity of differentiation the spherical
image of hy is o9 = R(071).

Equation 2 can be used to study the invariance of the helix k1 by considering
its spherical image o7. Similarly, it is possible to study the invariance of hy using
the spherical image 0o = R(01). Therefore, it is possible to study the invariance
of an entire family of helices, each with a different direction by considering
different rotation matrices. There is a natural symmetry on S? (unit sphere)
based on the fact that the deformation associated with a point on S? and its
conjugate are equal. Figure[6l shows an example of the surface that is generated
by considering the deformation for a family of helices, a subset of Hg, that
have the same value of curvature and torsion but whose directions vary. The
locus of points along the bottom of the valley represent the helix whose axis is
defined by the vector (0,0,1). We will denote this helix as the z-helix. The figure
demonstrates that the z-helix is most stable to small changes in the camera
parameter ;. A similar observation is made when other camera parameters are
varied.

Fig. 6. The degree of deformation, normalized between 0 and 1, for helices pointing
in different directions. The direction of each helix is represented by a rotation around
the x and y axis of the standard Euclidean frame. The variables x and y represent a
rotation about the x and y axis respectively. The helix with 0deg of rotation around
the x-axis is referred to as the z-helix. The value of curvature and torsion for each helix

in the family is % and % See text for details.

Figure [} Top shows three helices which are oriented along three different and
mutually perpendicular axes. The degree of invariance to changes in 6; for each
of the helix directions are shown at the bottom of the figure. Of the three helices,
the z-helix is the most stable to changes in the camera parameters for most ratios
of T. A similar observation is made for small changes in 6., dx and dy.

It was stated earlier that any solution to the stereo correspondence problem
must satisfy the principle of differential invariance. In figure [ the magnitude of
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Fig.7. Top: Shown are three helices in E?, denoted x-helix, y-helix, z-helix from left
to right respectively. Bottom: The degree of deformation of each helix type as the left
camera angle is slightly perturbed. The maximum amount of deformation of each helix
type is shown as a function of the ratio 7/k. The line of sight is along the z-axis. The
z-helix, the rightmost helix, is significantly more stable under camera perturbations
than the other two.

the maximum deformation of the x- and y-helix are significantly larger compa-
red to the z-helix. Therefore, of the three helices, the z-helix comes closest to
satisfying the principle of differential invariance.

The orientation disparity encoded by a stereo tangent pair can now be in-
terpreted in terms of the physical behavior of a z-helix in three space. If the
amount of torsion is equal to zero, the helix is confined to the plane of fixation
and the orientation disparity is necessarily zero [9]. As the torsion increases, the
z-helix begins to twist out of the plane of fixation. The tangent at the point
where the helix crosses the plane of fixation is no longer parallel to the plane.
This difference induces an orientation disparity between the projection of the
tangent in the left eye and the tangent in the right eye.

Two technical details remain, that are beyond the space limitations in this
paper. First, the choice of the z-helix implies that it can be used as the local ap-
proximation to an arbitrary space curve. Unfortunately, this requires the Frenet
frame of the z-helix to be oriented in the same direction as the curve’s frame.
However, it can be shown that, for appropriately selected values of curvature
and torsion, the z-helix is a valid approximation to a curve under the limits
induced by the quantization of position, orientation and curvature in the image
planes. Second, the sampling of the stereo tangent space may introduce com-
plications because the inverse projection of a quantized stereo pair may not be
defined. However, it can be shown that, for suitable couplings between positon
and orientation quantization, a suitable pseudoinverse can be defined (Fig. B]).
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Fig. 8. Top: The positive discrete compatibility field for the point 7 =
(0,0,0,0,7/2,7/2) projected in the left and right image planes. Bottom: The posi-
tive discrete compatibility field for the point i = (0,0,0,0,7/3,7/3) projected in the
left and right image planes.

2.2 The Stereo Relaxation Labeling Process

We can now use the discrete compatibility fields to select pairs of points in the
stereo tangent space that are most consistent with one another. For motivation it
helps to recall the model for monocular edge consistency via relaxation labeling
with co-circular compatibilities. Abstractly, let a set of nodes (image positions)
be given, and a set of labels (edge orientations) be defined for each position.
Further, let the labels be ordered at each node by a probability measure p;()\),
indicating the probability that label X is correct for node i, with >, p;(\) =
1Vi. Labels are ”selected” at each position by an iterative gradient ascent that
extremizes the functional A(p) = > p;(A)r; i (A, X)p;(N) in parallel for all nodes
i and all labels X\. The compatibilities r; j(A, \) derive from co-circularity[15].
For full description see [8]. In effect, the relaxation network selects those edges
that, if transported along the osculating circle locally, would most match their
neighbors.

A specialization of the above to the two-label relaxation labeling process was
developed to allow multiple labels at a position[TH], and it is this specialization
that will be used to disambiguate the stereo tangent pairs. Let Z = {1,... ,n} be
a set of nodes. Each node is assigned two labels A € {TRUE,FALSE} where p;())
represents the confidence in the label at node i and p;(TRUE) + p;(FALSE) = 1.
Since it is sufficient to know the value of p;(TRUE) to determine p;(FALSE),
only values of p;(TRUE) need be updated. For notational convenience, let p; =
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p;(TRUE). The update rule is:

P = [ph + il
= [P} + > rispils (3)
7

where

1, if x> 1
[x](lJ: z, f0<z>1
0, ifx<0

We denote ¢; as the support at p; and R = {r;;} as the compatibility matrix.

We use the two-label relaxation process to infer the correspondences between
tangents in the left and right tangent fields. Let each kernel point, 7 € 19, be a
node in the relaxation labeling network, where the ” denotes discretization. Thus,
each node in the network encodes absolute horizontal disparity, vertical dispa-
rity, and orientation disparity. Intuitively, the value of p;(TRUE) represents the
confidence that the stereo tangent pair 7, is a correct correspondence. The initial
labeling assignment is the set of all possible correspondences in the image plane.
The value of the compatibility matrix element r;; is the discrete compatibility
between the pair 7, j. As a consequence, the set of all discrete compatibility fields
is commensurate with the compatibility matrix R.

3 Results

The first step in our stereo process is to obtain a discrete tangent map repre-
sentation of the stereo pair. Figure[9|is the reconstruction of the scene from the
synthetic stereo pair using our approach to correspondence matching (without
curvature information). In those few places where the differential geometric con-
straints are inadequate, we select those matches that lie closest to the fixation
plane. The most significant observation with respect to the reconstruction is that
the change in the ordering of primitives, in this case discrete tangent elements,
does not effect the matching algorithm. Two curves, a y-helix and an arc, are
both successfully segmented and rendered at the correct depth. Another signifi-
cant difference between the TINA reconstruction and ours is that our curves are
both isolated in space. This difference is due in part to the failure of the PMF
matching algorithm near junctions in the image. We handle such structures in
the discrete tangent map by representing multiple tangents at a given (image)
point. At image junctions, the tangent map encodes two separate tangent direc-
tions, one for the arc and the other for the helix. The multiple tangents at the
junction in the left image participate in the matching process with the appro-
priate tangents at the junction in the right image. This ensures that the parts of
the helix in the scene that correspond with the junction areas in the image have
valid matches in the left and right image planes. The same fact also applies for
the arc.
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The errors in matching induced by the lack of ordering are further exagge-
rated when the helix is farther out in front of the circular arc. This is because
the image extent increases over which the ordering constraint is invalid. Fig.
contains the same curves as the previous stereo pair but exaggerates the parts of
the image where the ordering constraint breaks down. Predictably, the number
of pixels that are falsely matched using the PMF algorithm increases (Fig. [3).
The reconstruction of the scene as computed by TINA is shown in Fig. 3.

In contrast to the TINA reconstructions, our stereo algorithm returns a more
veridical reconstruction of the original scene (see figure [d). As in the previous
stereo pair, the only constraint used in the computation was a bias for matches
close to the fixation plane. The stereo reconstruction results in two curves, an
arc and a y-helix that are separated in depth.

arc e,

sl

Fig. 9. The reconstruction of the stereo scene from the stereo pair in Fig. 2 is shown
from three separate projections. The color of each space tangent represents its depth
(red is closest to the camera and blue the farthest away). Note that the approximate
geometry of the curves in three space is reconstructed and that the curves are localized
at distinct depths. The result is obtained after 5 iterations of relaxation labelling and
o. = 1.75.

Fig.10. A stereo pair of Asiatic lilies. The cameras had a 9cm baseline. The stereo
pair can be fused using uncrossed fusing.
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Fig. 11. The discrete tangent map of the lilies in Fig[I0. The tangent map was created
using logical/linear operators [L0] and a relaxation labelling process [I5] followed by
a deblurring function (after [4]). The quantization of space and orientation has been
improved by six times in both dimensions.
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Fig. 12. The depth map associated with the stereo lily pair. The color bar at the right
indicates the depth associated with the colors in the image. Each point in the image is
a tangent in three space that is geometrically consistent with its neighbors.

Fig. 13. Left: A detail of a flower from the stereo reconstruction. The colored depth
map is shown to the right of the image. The red curve segments are false matches that
are spatially located in front of the flower. The graduated coloring along the petals
indicates a smooth transition along the petals. Right: A cropping plane 1.01m away
from the cyclopean center is inserted to show the details of objects in the foreground.
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The gaps in the stereo reconstructions are due mainly to the inability match
horizontal tangents. Image tangents whose orientations are less than 20deg from
the horizontal are not used in the stereo reconstruction. There are some false
matches as shown in the left panel of the above figures.

We have shown that a key assumption used in algorithms like PMF is the
ordering constraint. In the synthetic images we showed that if the ordering con-
straint is violated then the PMF algorithm performs poorly. In contrast, our
stereo algorithm is relatively unaffected by the lack of ordering in parts of the
image. The stereo pair of twigs in Fig. [l shows a real world situation where the
ordering constraint breaks down but where our algorithm succeeds (Fig. [I4)).
While there are false matches associated with the twigs farthest in the backgro-
und, they are few in number and are often short in length. They occur in this
implementation because preference is given to matches closest to the fixation
plane which is in front of the receding twigs.

i ]
S f. * .
3 - _
osiil

Fig. 14. Left: The stereo reconstruction of the twigs scene. There are some mismatches
near the base of the twigs and along the branch receding in depth. The reconstruction
is not affect by those areas where there is failure of the ordering constraint. Middle: A
cropping plane 1.03m from the cyclopean point was placed to highlight the twigs in the
foreground. Right: A birdseye view of the reconstructed scene. The twigs are arranged
in roughly three layers as can be seen by fusing the stereo pair.

In summary, we have shown how the differential geometry of curves in mo-
nocular images can be made consistent with (the Frenet estimate of) the spatial
curve from which they project to define a relaxation labeling algorithm for stereo
correspondence. In effect we have generalized co-circularity for planar curves to
co-helicity for spatial curves. Invariance to camera-model uncertainties dictates
the z-helix from among a family of possible space helices, and a unique feature
of this correspondence is the natural way that orientation disparity combines
with positional disparity. Examples illustrate how our system functions even
in situations when ordering (and other heuristic) constraints break down. The
evolutionary pressures on early tree-dwelling mammals, in particular early pri-
mates, suggests that uncertainties in reaching for a branch while swinging across
space could not be tolerated. Given the mapping of our stereo tangent space onto
orientation hypercolumns, perhaps our algorithm also implies a mechanism for
stereo correspondence in visual cortex.
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