Plane + Parallax, Tensors and Factorization

Bill Triggs

INRIA Rhdne-Alpes, 655 avenue de I’Europe, 38330 Montbonnot, France
Bill.Triggs@inrialpes.fr — http://www.inrial pes.fr/movi/people/ Triggs

Abstract. We study the special form that the general multi-image tensor formal-
ism takes under the plane + parallax decomposition, including matching tensors
and constraints, closure and depth recovery relations, and inter-tensor consistency
constraints. Plane + parallax alignment greatly simplifies the algebra, and uncov-
ers the underlying geometric content. We relate plane + parallax to the geometry
of translating, calibrated cameras, and introduce a new parallax-factorizing pro-
jective reconstruction method based on this. Initial plane + parallax alignment
reduces the problem to a single rank-one factorization of a matrix of rescaled
parallaxes into a vector of projection centres and a vector of projective heights
above the reference plane. The method extends to 3D lines represented by via-
points and 3D planes represented by homographies.

Keywords: Plane + parallax, matching tensors, projective reconstruction, factor-
ization, structure from motion.

1 Introduction

This paper studies the special forms that matching tensors take under the plane + par-
allax decomposition, and uses this to develop a new projective reconstruction method
based on rank-1 parallax factorization. The main advantage of the plane + parallax
analysis is that it greatly simplifies the usually rather opaque matching tensor algebra,
and clarifies the way in which the tensors encode the underlying 3D camera geometry.
The new plane + parallax factorizing reconstruction method appears to be even stabler
than standard projective factorization, especially for near-planar scenes. It is a one-step,
closed form, multi-point, multi-image factorization for projective structure, and in this
sense improves on existing minimal-configuration and iterative depth recovery plane +
parallax SFM methods [19, 4, 23, 22, 45]. As with standard projective factorization [37],
it can be extended to handle 3D lines (via points) and planes (homographies) alongside
3D points.

Matching tensors[29, 8, 36] are the image signature of the camera geometry. Given
several perspective images of the same scene taken from different viewpoints, the 3D
camera geometry is encoded by a set of 3 x 4 homogeneous camera projection matrices.
These depend on the chosen 3D coordinate system, but the dependence can be elimi-
nated algebraically to give four series of multi-image tensors (multi-index arrays of
components), each interconnecting 2—4 images. The different images of a 3D feature are
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constrained by multilinear matching relations with the tensors as coefficients. These
relations can be used to estimate the tensors from an initial set of correspondences, and
the tensors then constrain the search for further correspondences. The tensors implic-
itly characterize the relative projective camera geometry, so they are a useful starting
point for 3D reconstruction. Unfortunately, they are highly redundant, obeying a series
of complicated internal self-consistency constraints whose general form is known but
too complex to use easily, except in the simplest cases [36, 5, 17, 6].

On the other hand, a camera is simply a device for recording incoming light in vari-
ous directions at the camera’s optical centre. Any two cameras with the same centre are
equivalent in the sense that — modulo field-of-view and resolution constraints which
we ignore for now — they see exactly the same set of incoming light rays. So their
images can be warped into one another by a 1-1 mapping (for projective cameras, a 2D
homography). Anything that can be done using one of the images can equally well be
done using the other, if necessary by pre-warping to make them identical.

From this point of view, it is clear that the camera centres are the essence of the
3D camera geometry. Changing the camera orientations or calibrations while leaving
the centres fixed amounts to a ‘trivial’ change of image coordinates, which can be un-
done at any time by homographic (un)warping. In particular, the algebraic structure
(degeneracy, number of solutions, etc.) of the matching constraints, tensors and consis-
tency relations — and a fortiori that of any visual reconstruction based on these — is
essentially a 3D matter, and hence depends only on the camera centres.

It follows that much of the complexity of the matching relations is only apparent. At
bottom, the geometry is simply that of a configuration of 3D points (the camera centres).
But the inclusion of arbitrary calibration-orientation homographies everywhere in the
formulae makes the algebra appear much more complicated than need be. One of the
main motivations for this work was to study the matching tensors and relations in a
case — that of projective plane + parallax alignment — where most of the arbitrariness
due to the homographies has been removed, so that the underlying geometry shows up
much more clearly.

The observation that the camera centres lie at the heart of the projective camera ge-
ometry is by no means new. It is the basis of Carlsson’s “‘duality’ between 3D points and
cameras (i.e. centres) [2, 43, 3, 10], and of Heyden & Astrém’s closely related ‘reduced
tensor’ approach [13-15,17]. The growing geometry tradition in the plane + parallax
literature [19, 23,22, 4, 45] is also particularly relevant here.

Organization: §2 introduces our plane + parallax representation and shows how it ap-
plies to the basic feature types; §3 displays the matching tensors and constraints in
the plane + parallax representation; §4 discusses tensor scaling, redundancy and con-
sistency; §5 considers the tensor closure and depth recovery relations under plane +
parallax ; §6 introduces the new parallax factorizing projective reconstruction method;
§7 shows some initial experimental results; and §8 concludes.

Notation: Bold italic ‘X’ denotes 3-vectors, bold sans-serif ‘X’ 4-vectors, upper case
‘H, H’ matrices, Greek ‘), 1” scalars (e.g. homogeneous scale factors). We use homo-
geneous coordinates for 3D points x and image points x, but usually inhomogeneous

ones c for projection centresc = ( % ) We use P for 3 x 4 camera projection matrices,
e for epipoles. 3D points x = ( 1)1(, ) are parametrized by a point x on the reference plane
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and a ‘projective height” w above it. A denotes cross-product, [ — ], the associated 3 x 3
skew matrix [x], y = X Ay, and [a, b, c] the triple product.

2 ThePlane + Parallax Representation

Data analysis is often simplified by working in terms of small corrections against a
reference model. Image analysis is no exception. In plane + parallax, the reference
model is a real or virtual reference plane whose points are held fixed throughout the
image sequence by image warping (see, e.g. [24, 33, 19] and their references). The ref-
erence is often a perceptually dominant plane in the scene such as the ground plane.
Points that lie above the plane are not exactly fixed, but their motion can be expressed
as a residual parallax with respect to the plane. The parallax is often much smaller
than the uncorrected image motion, particularly when the camera motion is mainly ro-
tational. This simplifies feature extraction and matching. For each projection centre,
alignment implicitly defines a unique reference orientation and calibration, and in this
sense entirely cancels any orientation and calibration variations. Moreover, the residual
parallaxes directly encode useful structural information about the size of the camera
translation and the distance of the point above the plane. So alignment can be viewed
as a way of focusing on the essential 3D geometry — the camera centres and 3D points
— by eliminating the ‘nuisance variables’ associated with orientation and calibration.
The “purity’ of the parallax signal greatly simplifies many geometric computations. In
particular, we will see that it dramatically simplifies the otherwise rather cumbersome
algebra of the matching tensors and relations (c.f. also [19, 22, 4]).

The rest of this section describes our “plane at infinity + parallax” representation. It
is projectively equivalent to the more common “ground plane + parallax” representation
(e.g. [19,42]), but has algebraic advantages — simpler formulae for scale factors, and
the link to translating cameras — that will be discussed below.

Coordinate frame: We suppose given a 3D reference plane with a predefined projec-
tive coordinate system, and a 3D reference point not on the plane. The plane may be
real or virtual, explicit or implicit. The plane coordinates might derive from an image
or be defined by features on the plane. The reference point might be a 3D point, a pro-
jection centre, or arbitrary. We adopt a projective 3D coordinate system that places the
reference point at the 3D origin (0 00 1) T, and the reference plane at infinity in stan-
dard position (i.e. its reference coordinates coincide with the usual coordinates on the
plane at infinity). Examining the possible residual 4 x 4 homographies shows that this

fixes the 3D projective frame up to a single global scale factor. IfH = ( 60-} ; ) , then

the constraint that H fixes each point ( 6( ) on the reference plane implies that A = x|

and b = 0, and the constraint that H fixes the origin ( (1)) impliesthatt = 0. So

H = (MOI g),which is a global scaling by 11/ \.

3D points: 3D points are represented as linear combinations of the reference point/origin
and a point on the reference plane:

= () - ()0
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X is the intersection with the reference plane, of the line through x and the origin. w is
called x’s projective height above the plane. w = 0 is the reference plane, w = o
the origin. w depends on the normalization convention for x. If the reference plane is
made finite (z = 0) by interchanging z and w coordinates, w becomes the vertical
height above the plane. But in our projective, plane-at-infinity based frame with affine
normalization x, = 1, w is the inverse z-distance (or with spherical nhormalization
[IX|l = 1, the inverse “Euclidean” distance) of x from the origin.

Camera matrices: Plane + parallax aligned cameras fix the image of the reference
plane, so their leading 3 x 3 submatrix is the identity. They are parametrized simply by
their projection centres:

P = (ulsxs —c) with projection centre ¢ = (Z) )

Hence, any 3D point can be viewed as a plane + parallax aligned camera and vice versa.

But, whereas points often lie on or near the reference plane (w — 0), cameras centred

on the plane (v — 0) are too singular to be useful — they project the entire 3D scene
to their centre point c.

We will break the nominal symmetry between points and cameras. Points will be

treated projectively, as general homogeneous 4-component quantities with arbitrary

height component w. But camera centres ¢ = (5) will be assumed to lie outside

the reference plane and scaled affinely (v — 1), so that they and their camera matrices
P = (ul - c) are parametrized by their inhomogeneous centre 3-vector c alone.
This asymmetry is critical to our approach. Our coordinate frame and reconstruction
methods are essentially projective and are most naturally expressed in homogeneous co-
ordinates. Conversely, scaling u to 1 freezes the scales of the projection matrices, and
everywhere that matching tensors are used, it converts formulae that would be bilin-
ear or worse in the ¢’s and «’s, to ones that are merely linear in the ¢’s. This greatly
simplifies the tensor estimation process compared to the general unaligned case. The
representation becomes singular for cameras near the reference plane, but that is not
too much of a restriction in practice. In any case it had to happen — no minimal linear
representation can be globally valid, as the general redundant tensor one is.

Point projection: In image 4, the image P; x,, of a 3D point x, = ( w’; ) is displaced
linearly from its reference image? x,, towards the centre of projection c; , in proportion
to its height w,, :

Xp

)\ip Xip = P; Xp = (l —Ci) < > = Xp —wpC; (3)

Wp
Here \;;, is a projective depth [32, 37] — an initially-unknown projective scale factor
that compensates for the loss of the scale information in P; x,, when x;,, is measured in
its image. Although the homogeneous rescaling freedom of x,, makes them individually
arbitrary, the combined projective depths of a 3D point — or more precisely its vector

! The origin/reference point need not coincide with a physical camera, but can still be viewed as
areferencecamera Py = (I 0), projecting 3D points X, to their reference images X,.
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of rescaled image points (i, Xip),_, ,,, — implicitly define its 3D structure. This
is similar to the general projective case, except that in plane + parallax the projection
matrix scale freedom is already frozen: while the homogeneous scale factors of x,, and
X;p are arbitrary, c; has a fixed scale linked to its camera’s position.

Why not a ground plane?: In many applications, the reference plane is nearby. Push-
ing it out to infinity forces a deeply projective 3D frame. It might seem preferable to
use a finite reference plane, as in, eg. [19, 42]. For example, interchanging the = and
w coordinates puts the plane at z = 0, the origin at the vertical infinity (0 0 1 0)T
and (modulo Euclidean coordinates on the plane itself) creates an obviously rectilinear
3D coordinate system, where x gives the ground coordinates and w the vertical height
above the plane. However, a finite reference plane would hide a valuable insight that is
obvious from (2): The plane + parallax aligned camera geometry is projectively equiv-
alent to translating calibrated cameras. Any algorithm that works for these works for
projective plane + parallax, and (up to a 3D projectivity!) vice versa. Although not new
(see, e.g. [14]), this analogy deserves to be better known. It provides simple algebra
and geometric intuition that were very helpful during this work. It explicitly realizes
— albeit in a weak, projectively distorted sense, with the reference plane mapped to
infinity — the suggestion that plane + parallax alignment cancels the orientation and
calibration, leaving only the translation [22].

3D Lines: Any 3D line L can be parametrized by a homogeneous 6-tuple of Pliicker
coordinates (I, z) where: (i) | is a line 3-vector — L’s projection from the origin onto
the reference plane; (ii) zis a point 3-vector — L’s intersection with the reference plane;
(iii) zlieson |, -z = 0 (this is the Plicker constraint); (iv) the relative scaling of | and
zis fixed and gives L’s ‘steepness’: lines on the plane have z — 0, while the ray from
the originto zhas | — 0. This parametrization of L relates to the usual 3D projective
Pliicker (4 x 4 skew rank 2 matrix) representations as follows:

T . T .
L — ([I]X z ) contravariant L, = ([Z]Xl ) covariant 4y

—z 0 form -1 0 form

Thellnefrom( ) (%’) = (XAYy,wy—wvX). A3D pointx = (ff,)lies
A X

is
onLiffL,x = (wl+z ) 0. Inacameraatcl, L projects to:

Mili = |+Z/\Ci (5)

This vanishes if c; lies on L.

Displacements and epipoles: Given two cameras with centres ¢; = ( (-f ) andc; =
o . . .

( 1" ) the 3D displacement vector between their two centres is ¢;; = ¢; — c;. The

scale of c;; is meaningful, encoding the relative 3D camera position. Forgetting this

scale factor gives the epipole e;; — the 2D projective point at which the ray from c; to

c; crosses the reference plane:

€j = Cj = G —C (6)
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We will see below that it is really the inter-camera displacements c;; and not the
epipoles e;; that appear in tensor formulae. Correct relative scalings are essential for
geometric coherence, but precisely because of this they are also straightforward to es-
timate. Once found, the displacements c;; amount to a reconstruction of the plane +
parallax aligned camera geometry. To find a corresponding set of camera centres, sim-
ply fix the 3D coordinates of one centre (or function of the centres) arbitrarily, and the
rest follow immediately by adding displacement vectors.

Parallax: Subtracting two point or line projection equations (3, 5) gives the following
important par allax equations:

/\i X; — )\j Xj = —w Cij (7)
pili —psly = ZAcCyj (8)

Given the correct projective depths ), u, the relative parallax caused by a camera dis-
placement is proportional to the displacement vector. The RHS of (7) already suggests
the possibility of factoring a multi-image, multi-point matrix of rescaled parallaxes into
(w) and (c;;) matrices. Results equivalent to (7) appear in [19, 22], albeit with more
complicated scale factors owing to the use of different projective frames.

Equation (7) has a trivial interpretation in terms of 3D displacements. For a point

X = ({fj) above the reference plane, scaling to w = 1 gives projection equations
AiX; = P;X = X —c¢, S0 \;X; is the 3D displacement vector from c; to x. (7)
just says that the sum of displacements around the 3D triangle C; C; X vanishes. On the
reference plane, this entails the alignment of the 2D points x;, X; and e;; (along the
line of intersection of the 3D plane of C; C; X with the reference plane — see fig. 1), and
hence the vanishing of the triple product [x;, &;;,X; | = 0. However the 3D information
in the relative scale factors is more explicit in (7).

3D Planes: The 3D plane p = (n' d) has equationp-x = n-x+dw = 0. It
intersects the reference plane in the line n - x = 0. The relative scaling of n and d
gives the ‘steepness’ of the 3D plane: n = O for the reference plane, d = 0 for planes
through the origin. A point x; in image j back-projects to the 3D point B; x; on p,
which induces an image j to image ¢ homography H;;, where:

Cij n’
n-c;+d
(9)

For any 4, j and any p, this fixes the epipole e;; and each point on the intersection line
n-x = 0.H;; is actually a planar homology [30, 11] — it has a double eigenvalue
corresponding to the points on the fixed line.

Any chosen planep = (nT d) can be made the reference plane by applying a 3D
homography H and compensating image homographies H; :

-1 1
Il 0 I 0 cn' cn'
H = <nT/d].> = <—nT/d].> Hl = I_n.ci+d = <I+ d >

e nT/(ne
B;(p) = <I _‘;frr}(ﬁF;ijc};d)) Hij(p) = P:B; = 1+
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Reference positions x are unchanged, projective heights are warped by an affinity w —

w + n - x/d, and camera centres are rescaled c — #‘id c (infinitely, if they lie on the
plane p):
X
x= () — Hx= (w+n-x/d) (10)
p=(n"d — pH'=(0d) (11)
P = (1-¢) — HiPH = (1 =1%) (12)

When p is the true plane at infinity, the 3D frame becomes affine and the aligned camera
motion becomes truly translational.

Given multiple planes p;, and images 7, and choosing some fixed base image 0, the
3 columns of each H,o(px) can be viewed as three point vectors and incorporated into
the rank-one factorization method below to reconstruct the c;, and ng/ (Ng - Co + di.).
Consistent normalizations for the different H,q are required. If e, is known, the cor-
rect normalization can be recovered from [e;o |, Hio = [€jo .. This amounts to the
point depth recovery equation (19) below applied to the columns of H;o and Hpg = 1.
Alternatively, H,o = | + ... has two repeated unit eigenvalues, and the right (left)
eigenvectors of the remaining eigenvalue are e,y (n"). This allows the normalization,
epipole and plane normal to be recovered from an estimated H;q. Less compact rank
4 factorization methods also exist, based on writing H;o as a 9-vector, linear in the
components of | and either ¢;q or n; [28, 44,45].

Carlsson duality: Above we gave the plane + parallax correspondence between 3D
points and (the projection centres of aligned) cameras [19, 22]:

x:<;(j> = P=(wl —x)

Carlsson [2, 3] (see also [13, 14, 43, 10, 42]) defined a related but more “‘twisted” duality
mapping based on the alignment of a projective basis rather than a plane:

-1
1/x —1/w x
x:(x) — P:( 1/y —1/w) :( Y ) (wl  —x)
w 1/z —-1/w z

Provided that x, y, z are non-zero, the two mappings differ only by an image homog-
raphy. Plane + parallax aligns a 3D plane pointwise, thus forcing the image —x of the
origin to depend on the projection centre. Carlsson aligns a 3D projective basis, fix-
ing the image of the origin and just 3 points on the plane (and incidentally introducing
potentially troublesome singularities for projection centres on the x, y and z coordi-
nate planes, as well as on the w = 0 one). In either case the point-camera “duality”
(isomorphism would be a better description) allows some or all points to be treated as
cameras and vice versa. This has been a fruitful approach for generating new algorithms
[2,43,3,10,42,19,22,4]. All of the below formulae can be dualized, with the proviso
that camera centres should avoid the reference plane and be affinely normalized, while
points need not and must be treated homogeneously.
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3 Matching Tensorsand Constraintsin Plane + Parallax

Matching Tensors: The matching tensors for aligned projections are very simple func-
tions of the scaled epipoles / projection centre displacements. From a tensorial point of
view?, the simplest way to derive them is to take the homography-epipole decomposi-
tions of the generic matching tensors [29, 8, 36], and substitute identity matrices for the
homographies:

Cia = C; —Cy displacement from ¢z to ¢,

Fio = [Ci2], = [c1 — G2y image 1-2 fundamental matrix

TB =12®@c3—Co®l} image 1-2-3 trifocal tensor
QhrAzdsAs =y (LpyitleAiAids i image 1-2-3-4 quadrifocal tensor

The plane + parallax fundamental matrix and trifocal tensor have also been studied in
[22,4]. The use of affine scaling u; — 1 for the centres ¢c; = ( 51 ) is essential here,
otherwise T is bilinear and Q quadrilinear in c, u.

Modulo scaling, c;2 is the epipole e;; — the intersection of the ray from c. to
c1 with the reference plane. Coherent relative scaling of the terms of the trifocal and
quadrifocal tensor sums is indispensable here, as in most other multi-term tensor rela-
tions. But for this very reason, the correct scales can be found using these relations. As
discussed above, the correctly scaled c;;’s characterize the relative 3D camera geometry
very explicitly, as a network of 3D displacement vectors. It is actually rather misleading
to think in terms of epipolar points on the reference plane: the c;; are neither estimated
(e.g. from the trifocal tensor) nor used (e.g. for reconstruction) like that, and treating
their scale factors as arbitrary only confuses the issue.

M atching constraints: The first few matching relations simplify as follows:

[X1,C12,X2] = 0 epipolar point (13)
(X1 AX2) (C13 AX3)| — (Cia AXa) (X1 AX3)| =0 trifocal point (14)
(|1 A\ |2) (|3 . C13) - (|2 . C12) (|1 A\ |3) =0 trifocal line (15)

(la-%X1) (Is-¢c13) — (I2-€12) (Is - X1) = 0 trifocal point-line  (16)

(Ia Alg) (1 - cra) + (I3 Aly) (I - Coa)
+ (1 Al)(3-¢c34) =0 quadrifocal 3-line  (17)

Equation (16) is the primitive trifocal constraint. Given three images X;|;—;...3 of a 3D
point X, and arbitrary image lines I, I3 through Xo, X3, (16) asserts that the 3D optical
ray of x; meets the 3D optical planes of |5, I3 in a common 3D point (x). The tri- and
quadrifocal 3-line constraints (16,17) both require that the optical planes of 11,15,15

2 There is no space here to display the general projective tensor analogues of the plane + parallax
expressions given here and below — see [35].
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Fig. 1. The geometry of the trifocal constraint.

intersect in a common 3D line. The quadrifocal 4-point constraint is straightforward
but too long to give here.

The trifocal point constraint contains [29, 35, 22, 4] two epipolar constraints in the
formxAXx" ~ cAX/, plus a proportionality-of-scale relation for these parallel 3-vectors:

(Xl A\ Xg) : (Clg A\ Xg) = (Xl A\ X3) : (C13 A\ X3) (18)

The homogeneous scale factors of the x’s cancel. This equation essentially says that X3
must progress from e;3 to X; in step with x5 as it progresses from e;» to x; (and both
in step with x as it progresses from c; to x; on the plane — see fig. 1). In terms of
3D displacement vectors ¢ and A x (or if the figure is projected generically into another
image), the ratio on the LHS of (18) is 1, being the ratio of two different methods of
calculating the area of the triangle ¢; ¢ X. Similarly for the RHS with ¢; c3X. Both
sides involve x, hence the lock-step.

Replacing the lines in the line constraints (15,16,17) with corresponding tangents to
iso-intensity contours gives tensor brightness constraintson the normal flow at a point.
The Hanna-Okamoto-Stein-Shashua brightness constraint (16) predominates for small,
mostly-translational image displacements like residual parallaxes [7,31]. But for more
general displacements, the 3 line constraints give additional information.

4 Redundancy, Scaling and Consistency

A major advantage of homography-epipole parametrizations is the extent to which they
eliminate the redundancy that often makes the general tensor representation rather cum-
bersome. With plane + parallax against a fixed reference plane, the redundancy can be
entirely eliminated. The aligned m camera geometry has 3m — 4 d.o.f.: the positions
of the centres modulo an arbitrary choice of origin and a global scaling. These de-
grees of freedom are explicitly parametrized by, e.g., the displacements C;; | j—2...m,
again modulo global rescaling. The remaining displacements can be found from¢;; =
Ci —C; = C;j — Cj, and all of the matching tensors are simple linear functions of
these. Conversely, the matching constraints are linear in the tensors and hence in the
basic displacements c;1, so the complete vector of basic displacements with the correct



10 Bill Triggs

Fig. 2. The various image projections of each triplet of 3D points and/or camera centres are in
Desargues correspondence [22, 4].

relative scaling can be estimated linearly from image correspondences. These proper-
ties clearly simplify reconstruction. They are possible only because plane + parallax is
a local representation — unlike the general, redundant tensor framework, it becomes
singular whenever a camera approaches the reference plane. However, the domain of
validity is large enough for most real applications.

Consistency relations: As above, if they are parametrized by an independent set of
inter-centre displacements, individual matching tensors in plane + parallax have no re-
maining internal consistency constraints and can be estimated linearly. The inter-tensor
consistency constraints reduce to various more or less involved ways of enforcing the
coincidence of versions of the same inter-camera displacement vector c;; derived from
different tensors, and the vanishing of cyclic sums of displacements:

Cji NCij = 0 Cij/\(Cij)/ =0 Cij +Cjk +Crt + ...+ Cpy = 0

In particular, each cyclic triplet of non-coincident epipoles is not only aligned, but has
a unique consistent relative scaling ¢;; = \;; €5 :

[eij,ejk,eki] =0 < Cij + Cjx +Ci; = 0

This and similar cyclic sums can be used to linearly recover the missing displacement
scales. However, this fails if the 3D camera centres are aligned: the three epipoles
coincide, so the vanishing of their cyclic sum still leaves 1 d.o.f. of relative scaling
freedom. This corresponds to the well-known singularity of many fundamental matrix
based reconstruction and transfer methods for aligned centres [40]. Trifocal or observa-
tion (depth recovery) based methods [32, 37] must be used to recover the missing scale
factors in this case.

The cyclic triplet relations essentially encode the coplanarity of triplets of optical
centres. All three epipoles lie on the line of intersection of this plane with the reference
plane. Also, the three images of any fourth point or camera centre form a Desargues
theorem configuration with the three epipoles (see fig. 2). A multi-camera geometry in-
duces multiple, intricately interlocking Desargues configurations — the reference plane
‘signature’ of its coherent 3D geometry.
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5 Depth Recovery and Closure Relations

Closurerédations: In the general projective case, the closurerelationsare the bilinear
constraints between the (correctly scaled) matching tensors and the projection matrices,
that express the fact that the former are functions of the latter [35, 40]. Closure based
reconstruction [38, 40] uses this to recover the projection matrices linearly from the
matching tensors. In plane + parallax, the closure relations trivialize to identities of the
form c;; A (c; —cj) = 0 (since ¢;; = ¢; — c;). Closure based reconstruction just
reads off a consistent set of ¢;’s from these linear constraints, with an arbitrary choice
of origin and global scaling. ¢; = ¢;; is one such solution.

Depth recovery relations:; Attaching the projection matrices in the closure relations
to a 3D point gives depth recovery relations linking the matching tensors to correctly
scaled image points [35, 32,40]. These are used, e.g. for projective depth (scale factor)
recovery in factorization based projective reconstruction [32, 37]. For plane + parallax
registered points and lines with unknown relative scales, the first few depth recovery
relations reduce to:

Cij A (AiXi —Aj%x;) =0 epipolar (19)
Cij Xk —Aix) T — (A% —Aixi) (cx) = 0 trifocal (20)
(Mz‘ |i — Hj |j) -G = 0 line (21)

These follow immediately from the parallax equations (7,8). As before, the trifocal
point relations contain two epipolar ones, plus an additional relative vector scaling pro-
portionality: (A; X; — AjX;) : Cj = (AiX; — Ag Xg) : Ci . Seefig. 1.

6 Reconstruction by Parallax Factorization

Now consider factorization based projective reconstruction under plane + parallax. Re-
call the general projective factorization reconstruction method [32, 37]: m cameras with
3 x 4 camera matrices P; | ;—1..,,, view n 3D points X, | ,—1...,, to produce mn image

points \;p X;p = P;X,. These projection equations can be gathered into a 3m x n
matrix:
A1X11 --- A Xin Py
: _ : = Pl (X X)) (22)
Aml Xml - - /\mn Xmn Pm

So the (A x) matrix factorizes into rank 4 factors. Any such factorization amounts to a
projective reconstruction: the freedom is exactly a 4 x 4 projective change of coordi-
nates H, withx, — Hx,andP; — P; H~!. With noisy data the factorization is not
exact, but we can use a numerical method such as truncated SVD to combine the mea-
surements and estimate an approximate factorization and structure. To implement this
with image measurements, we need to recover the unknown projective depths (scale
factors) A;p,. For this we use matching tensor based depth recovery relations such as
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Fijs (NjpXjip) = €,: A (Nip Xip) [35,32, 37]. Rescaling the image points amounts to an
implicit projective reconstruction, which the factorization consolidates and concretizes.
For other factorization based SFM methods, see (among others) [34, 27,18, 25, 26].

Plane + parallax point factorization: The general rank 4 method continues to work
under plane + parallax with aligned points x;, , but in this case a more efficient rank 1
method exists, that exploits the special form of the aligned projection matrices:

1. Align the mn image points to the reference plane and (as for the general-case fac-
torization) estimate their scale factors \;;, by chaining together a network of plane
+ parallax depth recovery relations (19) or (20).

2. Choose a set of arbitrary weights p; with 37" | p; = 1. We will work in a 3D frame
based at the weighted average of the projection centres:i.e.© = >, p; ¢; will
be set to 0. For the experiments we work in an average-of-centres frame p; = %
Alternatively, we could choose some image j as a base image, p; = J;;.

3. Calculate the weighted mean of the rescaled images of each 3D point, and their
residual parallaxes relative to this in each image. The theoretical values are given
for reference, based on (3) and our choice of framec — 0 :

Xp = 2010 QipXip) A Xp—wpC — Xp (23)

(inp = )\ip Xip — Xp ~ — (Ci — C) Wp — —Cwp (24)

4. Factorize the combined residual parallax matrix to rank 1, to give the projection
centres ¢; and point depths w,, with their correct relative scales:

0X11 ... OXip —C

Q

X1 - X, —Cpy

The ambiguity in the factorization is a single global scaling ¢; — p¢;, w, — w,/p
(the length scale of the scene).

. . X
5. The final reconstructionsare P; = (I —¢;) andx, = (wl; )

This process requires the initial plane + parallax alignment, and estimates of the epipoles
for projective depth recovery. It returns the 3D structure and camera centres in a pro-
jective frame that places the reference plane at infinity and the origin at the weighted
average of camera centres.

With affine coordinates on the reference plane, the heights w, reduce to inverse
depths 1/z, (w.r.t. the projectively distorted frame). Several existing factorization based
SFM methods try to cancel the camera rotation and then factor the resulting transla-
tional motion into something like (inverse depth)-(translation), e.g. [12, 25, 21]. Owing
to perspective effects, this is usually only achieved approximately, which leads to an it-
erative method. Here we require additional knowledge — a known, alignable reference
plane and known epipoles for depth recovery — and we recover only projective struc-
ture, but this allows us to achieve exact results from perspective images with a single
non-iterative rank 1 factorization. It would be interesting to investigate the relationships
between our method and [25, 26, 21], but we have not yet done so.
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Line Factorization: As in the general projective case, lines can be integrated into the
point factorization method using via points. Each line is parametrized by choosing two
arbitrary (but well-spaced) points on it in one image. The corresponding points on other
images of the line are found by epipolar or trifocal point transfer, and the 3D via points
are reconstructed using factorization. It turns out that the transfer process automatically
gives the correct scale factor (depth) for the via points:

_ Lin(FijX;)  general plane + parallax

_ X
Xi = R case Xj =X+, G case (26)
Under plane + parallax, all images zA ¢; + 1 of a line (1, 2) intersect in a common point
z If we estimate this first, only one additional via point is needed for the line.

Plane factorization: As mentioned in §2, inter-image homographies H ;o induced by
3D planes against a fixed base image 0 can also be incorporated in the above factor-
ization, simply by treating their three columns as three separate point 3-vectors. Under
plane + parallax, once they are scaled correctly as in §2, the homographies take the
form (9). Averaging over i as above gives an H,, of the same form, with c;, replaced by

C—Cy — —Cp. So the corresponding “homography parallaxes” 6H ;o = n%:;d factor

as for points, with #TM in place of w,. Alternatively, if ¢, is taken as origin and the
&’s are measured against image 0, | rather than H ; is subtracted.

Optimality properties: Ideally, we would like our structure and motion estimates to
be optimal in some sense. For point estimators like maximum likelihood or MAP, this
amounts to globally minimizing a measure of the (robustified, covariance-weighted)
total squared image error, perhaps with overfitting penalties, etc. Unfortunately — as
with all general closed-form projective SFM methods that we are aware of, and notwith-
standing its excellent performance in practice — plane + parallax factorization uses an
algebraically simple but statistically suboptimal error model. Little can be done about
this, beyond using the method to initialize an iterative nonlinear refinement procedure
(e.g. bundle adjustment). As in other estimation problems, it is safest to refine the results
after each stage of the process, to ensure that the input to the next stage is as accurate
and as outlier-free as possible. But even if the aligning homographies are refined in this
way before being used (c.f. [9, 1, 11]), the projective centering and factorization steps
are usually suboptimal because the projective rescaling A;, # 1 skews the statistical
weighting of the input points. In more detail, by pre-weighting the image data matrix
before factorization, affine factorization [34] can be generalized to give optimal results
under an image error model as general as a per-image covariance times a per-3D-point
weight3. But this is no longer optimal in projective factorization: even if the input er-

3 1.e. image point x,,, has covariance p, C;, where C; is a fixed covariance matrix for image i and
pp @ fixed weight for 3D point p. Under this error model, factoring the weighted data matrix
(pp /> C/? x;p) into weighted camera matrices C~'/2 P, and 3D point vectors p, '/ x,
gives statistically optimal results. Sde note: For typical images at least 90-95% of the image
energy is in edge-like rather than corner-like structures (“the aperture problem”). So assuming
that the (residual) camera rotations are small, an error model that permitted each 3D point to
have its own highly anisotropic covariance matrix would usually be more appropriate than a
per-image covariance. Irani & Anandan [20] go some way towards this by introducing an initial
reduction based on a higher rank factorization of transposed weighted point vectors.
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Fig. 3. A comparison of 3D reconstruction errors for plane + parallax SFM factorization, funda-
mental matrix based projective factorization [32, 37], and projective bundle adjustment.

rors are uniform, rescaling by the non-constant factors \;, distorts the underlying error
model. In the plane + parallax case, the image rectification step further distorts the error
model whenever there is non-negligible camera rotation. In spite of this, our experi-
ments suggest that plane + parallax factorization gives near-optimal results in practice.

7 Experiments

Figure 3 compares the performance of the plane + parallax point factorization method
described above, with conventional projective factorization using fundamental matrix
depth recovery [32,37], and also with projective bundle adjustment initialized from
the plane + parallax solution. Cameras about 5 radii from the centre look inwards at
a synthetic spherical point cloud cut by a reference plane. Half the points (but at least
4) lie on the plane, the rest are uniformly distributed in the sphere. The image size is
512 x 512, the focal length 1000 pixels. The cameras are uniformly spaced around a
90° arc centred on the origin. The default number of views is 4, points 20, Gaussian
image noise 1 pixel. In the scene flatness experiment, the point cloud is progressively
flattened onto the plane. The geometry is strong except under strong flattening and for
small numbers of points.
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The main conclusions are that plane + parallax factorization is somewhat more ac-
curate than the standard fundamental matrix method, particularly for near planar scenes
and linear fundamental matrix estimates, and often not far from optimal. In principle
this was to be expected given that plane + parallax applies additional scene constraints
(known coplanarity of some of the observed points). However, additional processing
steps are involved (plane alignment, point centring), so it was not clear a priori how ef-
fectively the coplanarity constraints could be used. In fact, the two factorizations have
very similar average reprojection errors in all the experiments reported here, which
suggests that the additional processing introduces very little bias. The plane + parallax
method’s greater stability is confirmed by the fact that its factorization matrix is con-
sistently a little better conditioned than that of the fundamental matrix method (i.e. the
ratio of the smallest structure to the largest noise singular value is larger).

8 Summary

Plane + parallax alignment greatly simplifies multi-image projective geometry, reducing
matching tensors and constraints, closure, depth recovery and inter-tensor consistency
relations to fairly simple functions of the (correctly scaled!) epipoles. Choosing projec-
tive plane + parallax coordinates with the reference plane at infinity helps this process
by providing a (weak, projective) sense in which reference plane alignment cancels out
precisely the camera rotation and calibration changes. This suggests a fruitful analogy
with the case of translating calibrated cameras and a simple interpretation of plane +
parallax geometry in terms of 3D displacement vectors.

The simplified parallax formula allows exact projective reconstruction by a simple
rank-one (centre of projection)-(height) factorization. Like the general projective fac-
torization method [32, 37], an initial scale recovery step based on estimated epipoles
is needed. When the required reference plane is available, the new method appears to
perform at least as well as the general method, and significantly better in the case of
near-planar scenes. Lines and homography matrices can be integrated into the point-
based method, as in the general case.

Futurework: We are still testing the plane + parallax factorization and refinements are
possible. It would be interesting to relate it theoretically to affine factorization [34], and
also to Oliensis’s family of bias-corrected rotation-cancelling multiframe factorization
methods [25, 26]. Bias correction might be useful here too, although our centred data is
probably less biased than the key frames of [25, 26].

The analogy with translating cameras is open for exploration, and more generally,
the idea of using a projective choice of 3D and image frames to get closer to a situa-
tion with a simple, special-case calibrated method, thus giving a simplified projective
one. E.g. we find that suitable projective rectification of the images often makes affine
factorization [34] much more accurate as a projective reconstruction method.

One can also consider autocalibration in the plane + parallax framework. It is easy
to derive analogues of [41] (if only structure on the reference plane is used), or [16, 39]
(if the off-plane parallaxes are used as well). But so far this has not lead to any valuable
simplifications or insights. Reference plane alignment distorts the camera calibrations,
so the aligning homographies can not (immediately) be eliminated from the problem.
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