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Abstract. The medial surface of a volumetric object is of significant
interest for shape analysis. However, its numerical computation can be
subtle. Methods based on Voronoi techniques preserve the object’s topo-
logy, but heuristic pruning measures are introduced to remove unwanted
faces. Approaches based on Euclidean distance functions can localize
medial surface points accurately, but often at the cost of altering the
object’s topology. In this paper we introduce a new algorithm for com-
puting medial surfaces which addresses these concerns. The method is
robust and accurate, has low computational complexity, and preserves
topology. The key idea is to measure the net outward flux of a vector field
per unit volume, and to detect locations where a conservation of energy
principle is violated. This is done in conjunction with a thinning process
applied in a cubic lattice. We illustrate the approach with examples of
medial surfaces of synthetic objects and complex anatomical structures
obtained from medical images.

1 Introduction

Medial surface based representations are of significant interest for a number of
applications in biomedicine, including object representation [20J30], registra-
tion [16] and segmentation [25]. Such descriptions are also popular for anima-
ting objects in graphics [31/23] and manipulating them in computer-aided design.
They provide a compact representation while preserving the object’s genus and
retain sufficient local information to reconstruct (a close approximation to) it.
This facilitates a number of important tasks including the quantification of the
local width of a complex structure, e.g., the grey matter in the human brain,
and the analysis of its topology, e.g., the branching pattern of blood vessels in
angiography images. Graph-based abstractions of such data have also been pro-
posed [9]. Despite their popularity, the stable numerical computation of medial
surfaces remains a challenging problem. Unfortunately, the classical difficulties
associated with computing their 2D analog, the Blum skeleton, are only exacer-
bated when a third dimension is added.
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1.1 Background

The 2D skeleton of a closed set A C R? is the locus of centers of maximal open
discs contained within the complement of the set [5]. An open disc is maximal if
there exists no other open disc contained in the complement of A that properly
contains the disc. The medial surface of a closed set A C R? is defined in an
analogous fashion as the locus of centers of maximal open spheres contained in
the complement of the set. It is often referred to as the 3D skeleton, though
this term is misleading since it is in fact comprised of a collection of 3D points,
curves and surfaces [3]. Whereas the above definition is quite general, in the
current context we shall assume that the closed set A is the bounding surface
of a volumetric object. Hence, this set will have two complementary medial
surfaces, one inside the volume and the other outside it. In most cases we shall
be referring to the former, though the development applies to both.

Interest in the medial surface as a representation for a volumetric object
stems from a number of useful properties: i) it is a thin set, i.e., it contains no
interior points, ii) it is homotopic to the volume, iii) it is invariant under Euc-
lidean transformations of the volume (rotations and translations), and iv) given
the radius of the maximal inscribed sphere associated which each medial surface
point, the volumetric object can be reconstructed exactly. Hence, it provides a
compact representation while preserving the object’s genus and making certain
properties explicit, such as its local width.

Approaches to computing skeletons and medial surfaces can be broadly or-
ganized into three classes. First, methods based on thinning attempt to realize
Blum’s grassfire formulation [5] by peeling away layers from an object, while
retaining special points [2IT4IT9]. Tt is possible to define erosion rules in a lat-
tice such that the topology of the object is preserved. However, these methods
are quite sensitive to Euclidean transformations of the data and typically fail to
localize skeletal or medial surface points accurately. As a consequence, only a
coarse approximation to the object is usually reconstructed [T9JT4].

Second, it has been shown that under appropriate smoothness conditions, the
vertices of the Voronoi diagram of a set of boundary points converges to the exact
skeleton as the sampling rate increases [24]. This property has been exploited to
develop skeletonization algorithms in 2D [21], as well as extensions to 3D [26]
27]. The dual of the Voronoi diagram, the Delaunay triangulation (or tetrahe-
dralization in 3D) has also been used extensively. Here the skeleton is defined as
the locus of centers of the circumscribed spheres of each tetraheda [12]20]. Both
types of methods preserve topology and accurately localize skeletal or medial
surface points, provided that the boundary is sampled densely. Unfortunately,
however, the techniques used to prune faces and edges which correspond to small
perturbations of the boundary are typically based on heuristics. In practice, the
results are not invariant under Euclidean transformations and the optimization
step, particularly in 3D, can have a high computational complexity [20].

A third class of methods exploits the fact that the locus of skeletal or medial
surface points coincides with the singularities of a Fuclidean distance function to
the boundary. These approaches attempt to detect local maxima of the distance
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function, or the corresponding discontinuities in its derivatives [II5/13]. The
numerical detection of these singularities is itself a non-trivial problem; whereas
it may be possible to localize them, ensuring homotopy with the original object
is difficult.

In recent work we observed that the grassfire flow leads to a hamilton-jacobi
equation, which by nature is conservative in the smooth regime of its underlying
phase space [29]. Hence, we suggested that a measurement of the net outward flux
per unit volume of the gradient vector field of the Euclidean distance function
could be used to associate locations where a conservation of energy principle was
violated with medial surface points [28]. Unfortunately, in practice, the resulting
medial surface was not guaranteed to preserve the topology of the object, since
the flux computation was a purely local operation. The main contribution of
the current paper is the combination of the flux measurement with a homotopy
preserving thinning process applied in a cubic lattice. The method is robust and
accurate, has low computational complexity and is now guaranteed to preserve
topology. There are other promising recent approaches which combine aspects
of thinning, Voronoi diagrams and distance functions [IRI33/8)32]. In spirit, our
method is closest to that of [I8] Ll but is grounded in principles from physics. We
illustrate the algorithm with a number of examples of medial surfaces of synthetic
objects and complex anatomical structures obtained from medical images.

2 Hamiltonian Medial Surfaces

We shall first review the hamilton-jacobi formulation used to simulate the eikonal
equation as well as detect singularities in [29l28]. Consider the grassfire flow

a8

ot N e
acting on a 3D surface S, such that each point on its boundary is moving with
unit speed in the direction of the inward normal A/. In physics, such equations are
typically solved by looking at the evolution of the phase space of an equivalent
Hamiltonian system. Since Hamiltonian systems are conservative, the locus of
skeletal points (in 2D) or medial surface points (in 3D) coincides with locations
where a conservation of energy principle is violated. This loss of energy can be
used to formulate a natural criterion for detecting singularities of the distance
function.

In more formal terms, let D be the Euclidean distance function to the initial
surface Sp. The magnitude of its gradient, ||V D], is identical to 1 in its smooth
regime. With q = (z,v, 2), p = (D, D, D), associate to the surface S C R3,
evolving according to Eq. [[l the surface C C RS given by
C:={(2,9,2,D4,Dy, D) : (x,y,2) €S, Di + D; + D? =1, p-q=1}.

! Malandain and Fernandez-Vidal use a heuristic estimation of the singularities of a
distance function to obtain an initial skeleton or medial surface, and then perform
a topological reconstruction to ensure homotopy with the original shape.
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The Hamiltonian function obtained by applying a Legendre transformation to
the Lagrangian L = ||q]| is given by

1
H=p-q—L=1-(D.+D;+D?)?".
The associated Hamiltonian system is:

OH OH
p:_aiq :(070’0)7 q:% :_(DmD?ﬁDz)‘ (2)
C can be evolved under this system of equations, with C'(t) € R® denoting the
resulting (contact) surface. The projection of C(t) onto R? will then give the
parallel evolution of S at time ¢, S(¢). Note that the interpretation of Eq. [ is
quite intuitive: the gradient vector field p does not change with time, and points
on the boundary of the surface move in the direction of the inward normal with
unit velocity.

It is straightforward to show that all Hamiltonian systems are conserva-
tive [22, p. 172]:

Theorem 1. The total energy H(p,q) of the Hamiltonian system (2) remains
constant along trajectories of (2).

Proof. The total derivative of H(p,q) along a trajectory p(t), q(t) of is
given by

dH OH ., OH . O0H 0OH O0H 0H

— =——PpP+——q=F— 7 — —.—— =0.

dt op dq op 0q Jp OJq
Thus H(p,q) is constant along any trajectory of (2).

The analysis carried out thus far applies under the assumption of a central
field of extremals such that trajectories of the Hamiltonian system do not inters-
ect. Conversely, when trajectories intersect, the conservation of energy principle
will be violated (energy will be absorbed). This loss of energy can be used to for-
mulate a robust and efficient algorithm for detecting singularities of the distance
function D, which correspond to medial surface points.

The key is to measure the flux of the vector field q, which is analogous to
the flow of an incompressible fluid such as water. Note that for a volume with
an enclosed surface, an excess of outward or inward flow through the surface
indicates the presence of a source, or a sink, respectively, in the volume. The
latter case is the one we are interested in, and the net outward flux is related to
the divergence of the vector field. More specifically, the divergence of a vector
field at a point, div(q), is defined as the net outward flux per unit volume, as
the volume about the point shrinks to zero:

.. . <q,N >ds
le(q) = hmAvg)QfsT (3)

Here Av is the volume, S is its surface and N is the outward normal at each
point on its surface. This definition can be shown to be equivalent to the classical
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definition of divergence as the sum of the partial derivatives with respect to each
of the vector field’s component directions:

s 04, Idx,,
div(q) = 0%, +...+ e (4)

However, Eq. @ cannot be used at points where the vector field is singular, and
hence is not differentiable. These are precisely the points we are interested in,
and Eq. |3 offers significant advantages for detecting medial surface points. In
particular, the numerator, which represents the net outward flux of the vector
field through the surface which bounds the volume, is an index computation on
the vector field. It is not surprising that this is numerically much more stable than
the estimation of derivatives in the vicinity of singularities. Via the divergence
theorem,

/div((})dvz / <q,N >ds. (5)

v S

Hence, the net outward flux through the surface which bounds a finite volume is
just the volume integral of the divergence of the vector field within that volume.
Locations where the flux is negative, and hence energy is lost, correspond to
sinks or medial surface points.

We now have a robust method for localizing medial surface points by discre-
tizing Eq.[H, and thresholding to select points with negative total outward flux.
However, since the computation is local, global properties such as the preser-
vation of the object’s topology, are not ensured. In our earlier work we have
observed that the method gives accurate medial surfaces, but that as the thres-
hold is varied new holes or cavities may be introduced and the medial surface
may get disconnected [2§]. The remedy, as we shall now show, is to introduce
additional criteria along the lines of those incorporated in [18], to ensure that
the medial surface is homotopic to the original object.

3 Homotopy Preserving Medial Surfaces

Our goal is to combine the divergence computation with a thinning process
acting in the cubic lattice, such that as many points as possible are removed
without altering the object’s topology. A point is called a simple point if its
removal does not change the topology of the object. Hence in 3D, its removal
must not disconnect the object, create a hole, or create a cavity. We shall adopt
a formal definition of a simple point introduced by Malandain et al. [T7]. First
we review a few basic concepts in digital topology.

3.1 Digital Topology

In 3D digital topology, the input is a binary (foreground and background) image
stored in a 3D array. We shall consider only cubic lattices, where a point is
viewed as a unit cube with 6 faces, 12 edges and 8 vertices. For each point, three
types of neighbors are defined:
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6 connected 18 connected 26 connected

Fig. 1. 6-neighborhoods, 18-neighborhoods and 26-neighborhoods in a cubic lattice.

— 06-neighbors: two points are 6-neighbors if they share a face,

— 18-neighbors: two points are 18-neighbors if they share a face or an edge,
and

— 26-neighbors: two points are 26-neighbors if they share a face, an edge or a
vertex.

The above definitions induce three types of connectivity, denoted n-connecti-
vity, where n € {6, 18,26}, as well as three different n-neighborhoods for z, called
Ny, (x) (see Figurel). A n-neighborhood without its central point is defined as
N = N,(z)\{z}. A few more definitions are needed to characterize simple
points:

— An object A is m-adjacent to an object B, if there exist two points x € A
and y € B such that x is an n-neighbor of y.

— A n-path from z1 to x is a sequence of points x1, xa, ..., ), such that for all
x;, 1 <i <k, x;_1 is n-adjacent to x;.

— An object represented by a set of points O is n-connected, if for every pair
of points (z;,z;) € O x O, there is a n-path from z; to z;.

Based on these definitions, Malandain et al. provide a topological classifica-
tion of a point z in a cubic lattice by computing two numbers [17]: i) C*: the
number of 26-connected components 26-adjacent to x in O N N3, and ii) C: the
number of 6-connected components 6-adjacent to z in O N Nig. An important
result with respect to our goal of thinning is that if C* = 1 and C' = 1, the point
is simple, and hence removable. When ensuring homotopy is the only concern,
simple points can be removed sequentially until no more simple points are left.
The resulting set will be thin and homotopic to the shape. However, the relati-
onship to the medial surface will be uncertain since the locus of surviving points
will depend entirely on the order in which the simple points have been remo-
ved. In the current context, we have derived a natural criterion for ordering the
thinning, based on the divergence of the gradient vector field of the Euclidean
distance function.
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t &4

End point of a Corner of a Rim of a
6-—connected curve 6-connected surface 6-connected surface

Necessary condition to find a 3D endpoint

Fig. 2. An endpoint is defined as the end of a 6-connected curve or the corner or rim
of a 6-connected surface in 3D. For each configuration, there exists at least one plane
in which the point has at least three background 6-neighbors.

3.2 Divergence-Ordered Thinning

Recall from Section 2 that a conservation of energy principle is violated at me-
dial surface points. The total outward flux of the gradient vector field of the
Euclidean distance function is negative at such points, since they correspond to
sinksH More importantly, the magnitude of the total outward flux is proportio-
nal to the amount of energy absorbed, and hence provides a natural measure
of the “strength” of a medial surface point, which we shall use for numerical
computations. The essential idea is to order the thinning such that the weakest
points are removed first, and to stop the process when all surviving points are
not simple, or have a total outward flux below some chosen (negative) value, or
both. This will accurately localize the medial surface, and also ensure homotopy
with the original object. Unfortunately the result is not guaranteed to be a thin
set, i.e., one without an interior.

One way of satisfying this last constraint is to define an appropriate notion
of an endpoint in a cubic lattice. Such a point would correspond to the endpoint
of a curve, or a point on the rim of a surface, in 3D. The thinning process would
proceed as before, but the threshold criterion for removal would be applied only
to endpoints. Hence, all surviving points which are not endpoints would not be
simple, and the result would be a thin set.

To facilitate this task, we shall restrict our definition of an endpoint to a
6-connected neighborhood. In other words, an endpoint is either the end of a

2 Conversely, medial surface points of the background correspond to sources, with
positive total outward flux.
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6-connected curve, or a corner or point on the rim of a 6-connected surface.
It is straightforward to enumerate the possible 6-connected neighborhoods of
the endpoint, and to show that they fall into one of three configurations (see
Figure 2). Notice that for each configuration, there exists at least one plane
in which the point has at least three background 6-neighbors. This gives us
a necessary condition to determine if a point is an endpoint according to our
definition. Note that before performing this check, one must also verify that the
point is simple.

3.3 The Algorithm

The thinning process can be made very efficient by observing that a point which
does not have at least one background point as an immediate neighbor cannot be
removed, since this would create a hole or a cavity. Therefore, the only potentially
removable points are on the border of the object. Once a border point is removed,
only its neighbors may become removable. This suggests the implementation of
the thinning process using a heap. A full description of the procedure can be
found in Algorithm [T

Algorithm 1 The divergence-ordered thinning algorithm.
Part I: Total Outward Flux
Compute the distance transform of the object D.
Compute the gradient vector field VD.
Compute the net outward flux of VD using Eq.[H
For each point P in the interior of the object
Flua:(P) = :L:l < Ni,VD(Pi) >,
where P; is a 26-neighbor of P and N; is the outward
normal at P; of the unit sphere in 3D, centered at P.
Part II: Homotopy Preserving Thinning
For each point P on the boundary of the object
if (P is simple)
insert(P, Heap) with Fluz(P)
as the sorting key for insertion
While (Heap.size > 0)
P = HeapExtractMax(Heap)
if (P is simple)
if (P is not an endpoint) or (Flux(P) > Thresh)
Remove P
for all neighbors @ of P
if (@ is simple)
insert(Q®, Heap)
else mark P as a skeletal (end) point
end { if }
end { if }
end { while }
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We now analyze the complexity of the algorithm. The computation of the
distance transform, the gradient vector field and the total outward flux are all
O(n) operations. Here n is the total number of points in the 3D array. The
implementation of the thinning is more subtle. We claim an O(klog(k)) worst
case complexity, where k is the number of points in the volumetric object. The
explanation is as follows. At first store only the points that are on the outer
layer of the object in a heap, using the total outward flux as the sorting key
for insertion. The extraction of the maximum from the heap will provide the
best candidate for removal. If this point is removable, then delete it from the
object and add its simple (potentially removable) neighbors to the heap. A point
can only be inserted a constant number of times (at most 26 times for a 26-
neighborhood), and insertion in a heap, as well as the extraction of the maximum,
are both O(log(l)) operations, where [ is the number of elements in the heap.
There cannot be more than k elements in the heap, because we only have a total
of k points in the volume. The worst case complexity for thinning is therefore
O(klog(k)). Hence, the complexity of the algorithm is O(n) + O(klog(k)).

4 Examples

Fig. 3. FIrsT COLUMN: Three views of a cube. SECOND COLUMN: The corresponding
medial surfaces computed using the algorithm of [T9]. THIRD COLUMN: The object
reconstructed from the medial surfaces in the previous column. FOURTH COLUMN: The
corresponding divergence-based medial surfaces. FIFTH CoOLUMN: The object recon-
structed from the medial surfaces in the previous column.
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We illustrate the algorithm with both synthetic data and volumes segmented
from MR and MRA images. In these simulations we have used the D-Euclidean
distance transform, which provides a close approximation to the true Euclidean
distance function [6]. The only free parameter is the choice of the divergence
value below which the removal of endpoints is blocked. For all examples, this
was selected so that approximately 25% of the points within the volume had a
lower divergence value.

Figures [ and Bl compare our approach with the parallel thinning method
introduced by Manzanera et al. [I9]. The results reveal that both frameworks
are robust, and yield structures that are homotopic to the underlying object.
However, note that the latter method yields only a subset of the “true” medial
surface for these data sets, and hence only a coarse approximation to the ob-
ject is possible. In contrast, a near perfect reconstruction is possible from the
divergence-based medial surfaces.

Fig. 4. FIrST CoLUMN: Three views of a cylinder. SECOND COLUMN: The correspon-
ding medial surfaces computed using the algorithm of [19]. THIRD CoLUMN: The object
reconstructed from the medial surfaces in the previous column. FOURTH COLUMN: The

corresponding divergence-based medial surfaces. FIFTH COLUMN: The object recon-
structed from the medial surfaces in the previous column.

Recall from Section [ that the computation of the distance transform, its
gradient vector field and the total outward flux are all O(n) operations. Hence,
one may be tempted to simply threshold the divergence map below a certain
(negative) value to obtain a medial surface extremely efficiently, as in [28]. Un-
fortunately, due to discretization, the result will not always be satisfactory. On
the one hand, if the threshold is too high, slight perturbations of the boundary
will be represented, and the resulting structure will not be a thin set. On the
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Fig. 5. FIrST COLUMN: Four views of the ventricles of a brain, segmented from volume-
tric MR data using an active surface. SECOND COLUMN: The corresponding medial sur-
faces obtained by thresholding the divergence map. THIRD COLUMN: The divergence-
based medial surfaces obtained using the same threshold, but with the incorporation
of homotopy preserving thinning. FOURTH COLUMN: The ventricles reconstructed from
the divergence-based medial surfaces in the previous column.

other hand, lowering the threshold can provide a thin set, but at the cost of
altering the object’s topology. This is illustrated in Figure [ (second column)
where the medial surfaces corresponding to the views in the first column are
accurate and thin, but have holes. This motivates the need for the topological
constraints along with the characterization of endpoints discussed in Section
Observe that with the same threshold as before, the divergence-based thinning
algorithm now yields a thin structure which preserves topology, Figure [ (third
column). The ventricles reconstructed from the medial surfaces in the fourth
column are shown in the fifth column.

Next, we illustrate the robustness of the approach on a (partial) data set
of blood vessels obtained from an MRA image of the brain, in Figure . The
blood vessels have complex topology with loops (due to pathologies), and are
already quite thin in several places. The bottom row illustrates the accuracy of
the method, where the medial surfaces are shown embedded within the original
data set. Generically these structures are thin sheets which approach 3D curves
when the blood vessels become perfectly cylindrical. In a number of medical
applications where the objects are tubular structures, an explicit reduction of
the medial surface to a set of 3D curves is of interest [ITI7I8J33]. There is a
straightforward modification of our framework which allows this, provided that
certain special points on the medial surface have been identified. The essential
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S

Fig. 6. Tor Row: Blood vessels segmented from volumetric MRA data, with magni-
fied parts shown in the middle and right columns. MIDDLE ROw: The corresponding
divergence-based medial surfaces. THIRD Row: The divergence-based medial surfaces
(solid) are shown within the vessel surfaces (transparent).

idea is to preserve such special points, but to remove all other simple points in
a sequence ordered by their divergence values. This is illustrated for a portion
of the vessel data in Figure[7, where the endpoints of 3 branches were selected
as special points. Observe that the result is now composed of three 1 voxel wide
26-connected 3D digital curves.

As a final example, Figure [§] illustrates the medial surface of the sulcii of a
brain, where we have shown an X, Y and Z slice through the volume. Observe
that the medial surface is well localized, and captures the complex topology of
the object’s shape.
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Fig. 7. LEFT COLUMN: Blood vessels segmented from volumetric MRA data, with a
magnified portion shown in the second row. MIDDLE COLUMN: The divergence-based
3D curves. RIGHT COLUMN: The divergence-based 3D curves are shown embedded
within the vessel data.

5 Conclusions

We have introduced a novel algorithm for computing medial surfaces which is
robust and accurate, computationally efficient, invariant to Euclidean transfor-
mations and homotopy preserving. The essential idea is to combine a divergence
computation on the gradient vector field of the Euclidean distance function to
the object’s boundary with a thinning process that preserves topology. The cha-
racterization of simple (or removable) points is adopted from [I7], but we have
also introduced a notion of an endpoint of a 6-connected structure, in order that
the algorithm may converge to a thin set. We have illustrated the advantages of
the approach on synthetic and real binary volumes of varying complexity.

We note that in related work, Malandain and Fernandez-Vidal obtain two
sets based on thresholding a function of two measures, ¢ and d, to characterize
the singularities of the Euclidean distance function [I8]. The first set preserves
topology but captures many unwanted details and is not thin, while the second
set provides a better approximation to the skeleton or medial surface, but of-
ten alters the object’s topology. The two sets are combined using a topological
reconstruction process. Whereas empirical results have been good, the choice of
appropriate thresholds are context dependent. More seriously, ¢ and d, as well
as their combination, are all based on heuristics.
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Fig. 8. Tor Row: Medial surfaces of the sulcii of a brain, segmented from an MR
image. The three columns represent X, Y and Z slices through the volume. The cross
section through the medial surface in each slice is shown in black, and the object is
shown in grey. BorTOM ROW: A zoom-in on a selected region of the corresponding
slice in the top row, to show detail.

In contrast, our method is rooted in a physics-based analysis of the gradient
vector field of the Euclidean distance function, which shows that a conservation
of energy principle is violated at medial surface points. This justifies the use of
the divergence theorem to compute the total outward flux of the vector field, and
to locate points where energy is absorbed. It should be clear that whereas we have
focussed on the interior of an object, the medial surface of the background can be
similarly obtained by locating points that act as sources, and have positive total
outward flux. Furthermore, both medial surfaces can be located with sub-voxel
accuracy by using the local gradient vector field to shift the final set of digital
points. In related work we have demonstrated this idea for 2D shapes, where
a similar framework was used to compute sub-pixel 2D skeletons and skeletal
graphs [10].

In future work we plan to incorporate the topological classification of [17] to
parse the medial surface and obtain a more abstract representation of it, e.g.,
as a graph. We shall also explore the possibility of finding necessary as well as
sufficient conditions for defining endpoints in a cubic lattice.
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