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Abstract. A novel approach to colour-based object recognition and
image retrieval -the multimodal neighbourhood signature- is proposed.
Object appearance is represented by colour-based features computed
from image neighbourhoods with multi-modal colour density function.
Stable invariants are derived from modes of the density function that
are robustly located by the mean shift algorithm. The problem of ex-
tracting local invariant colour features is addressed directly, without a
need for prior segmentation or edge detection. The signature is concise –
an image is typically represented by a few hundred bytes, a few thousands
for very complex scenes.
The algorithm’s performance is first tested on a region-based image re-
trieval task achieving a good (92%) hit rate at a speed of 600 image
comparisons per second. The method is shown to operate successfully
under changing illumination, viewpoint and object pose, as well as non-
rigid object deformation, partial occlusion and the presence of backgro-
und clutter dominating the scene. The performance of the multimodal
neighbourhood signature method is also evaluated on a standard colour
object recognition task using a publicly available dataset. Very good re-
cognition performance (average match percentile 99.5%) was achieved
in real time (average 0.28 seconds for recognising a single image) which
compares favourably with results reported in the literature.

1 Introduction

Colour-based image and video retrieval has many applications and acceptable re-
sults have been demonstrated by many research and commercial systems during
the last decade [22]. Very often, applications require retrieval of images where the
query object or region cover only a fractional part of the database image, a task
essentially identical to appearance-based object recognition with unconstrained
background. Retrieval and recognition based on object colours must take into
account the factors that influence formation of colour images: viewing geometry,
illumination conditions, sensor spectral sensitivities and surface reflectances. In
many applications, illumination colour, intensity as well as view point and back-
ground may change. Moreover, partial occlusion and deformation of non-rigid
objects must also be taken into consideration. Consequently, invariance or at
least robustness to these diverse factors is highly desirable.
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Most current colour based retrieval systems utilise various versions of the
colour histogram [24] which has proven useful for describing the colour content
of the whole image. However, histogram matching cannot be directly applied to
the problem of recognising objects that cover only a fraction of the scene. Moreo-
ver, histograms are not invariant to varying illumination and not generally robust
to background changes. Applying colour constancy methods to achieve illumi-
nation invariance for histogram methods is possible but colour constancy itself
poses a number of challenging problems [8]. Other methods addressing image (as
opposed to object) similarity are those using wavelets [12] and moments of the
colour distribution [11,18]. Finally, graph representations of colour content (like
the colour adjacency graph [15] and its extension to a hybrid graph [21]) have
provided good recognition for scenes with fairly simple colour structure.

Departing from global methods, localised invariant features have been pro-
posed in order to gain robustness to background changes, partial occlusion and
varying illumination conditions. Histograms of colour ratios computed locally
from pairs of neighbouring pixels for every image pixel [9] or across detected
edges [10] have been used. However, both methods are limited due to the global
nature of histogram representation. In the same spirit, invariant ratio features
have been extracted from nearby pixels across boundaries of segmented regions
for object recognition [20,19]. Absolute colour features have been extracted from
segmented regions in [23,17]. However, reliable image segmentation is arguably a
notoriously difficult task [22,19]. Other methods split the image into regions from
where local colour features are computed. For example, the FOCUS system [5]
constructs a graph of the modes of the colour distribution from every image
block. However, not only extracting features from every image neighbourhood is
inefficient, but also the features used do not account for illumination change. In
addition, use of graph matching for image retrieval has often been criticised due
to its relatively high complexity.

We propose a method to address the colour indexing task by computing
colour features from local image neighbourhoods with multimodal colour pro-
bability density function. First, we detect multimodal neighbourhoods in the
image using a robust mode estimator, the mean shift algorithm [7]. From the
mode colours we are then able to compute a number of local invariant features
depending on the adopted model of colour change. Under different assumptions,
the resulting multimodal neighbourhood signatures (MNS) consist of colour ra-
tios, chromaticities, raw colour values or combinations of the above. Our method
improves on previous ones by

– creating a signature which concisely represents the colour content of the
image by stable measurements computed from neighbourhoods with infor-
mative colour structure. Neither prior segmentation nor edge detection is
needed.

– computing invariant features from robustly filtered colour values representing
local colour content

– effectively using the constraints about the illumination change model thus
resulting in a flexible colour signature

– applying signature instead of histogram matching to identify and localise the
query object in the database images
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The advantages of computing features from detected multimodal neighbour-
hoods are discussed in the next section. The algorithmic details of the approach
and the implemented algorithm is described in section 3. Section 4 presents de-
tails about the experimental setup and the results obtained are presented in
section 5. Section 6 concludes the paper.

2 The MNS Approach

Consider an image region consisting of a small compact set of pixels. The shape
of the region is not critical for our application. For convenience, we use regions
defined as neighbourhoods around a central point. Depending on the number of
modes of the probability distribution of the colour values, we characterise such
regions as unimodal or, for more than one mode, multimodal neighbourhoods.
Clearly, for unimodal neighbourhoods no illumination invariant features can be
computed. We therefore focus on detected multimodal neighbourhoods. In par-
ticular, multimodal neighbourhoods with more than two modes provide good
characterisation of objects like the ball in Fig 1(d) and can result in efficient
recognition on the basis of only few features.

(a) (b) (c) (d)

Fig. 1. Multimodal neighbourhood detection: (a) original image (b) randomised grid
(c) detected bimodal neighbourhoods (d) detected trimodal neighbourhoods

The advantages of extracting colour information from multimodal neighbour-
hoods are many-fold. Local processing is robust to partial occlusion and defor-
mation of non-rigid objects. Data reduction is achieved by extracting features
only from a subset of all image neighbourhoods. Moreover, a rich description
of colour content is obtained since a single colour patch can contribute to more
than one neighbourhood feature computation. The computation time needed
to create the colour signature is small since the most common neighbourhood
type - unimodal neighbourhoods - are ignored after being detected very effi-
ciently. Furthermore, illumination invariant features can be computed from the
mode values to account for varying illumination conditions even within the same
image. Regarding retrieval, region-based queries are efficiently handled and lo-
calisation of the query instance in the database images is possible. Finally, the
proposed representation allows the users to select exactly the local features they
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are interested in from the set of the detected multimodal neighbourhoods of the
query image.

Computing colour invariants from detected multimodal neighbourhoods has
certain advantages with respect to extracting features across detected edges.
Most edge detection methods require an intensity gradient and a locally linear
boundary. They often perform poorly at corners, junctions and regions with
colour texture - exactly in those regions, where colour information can be highly
discriminative. In addition, the multimodal neighbourhood approach directly
formulates the problem of extracting colour features.

3 The Algorithm

3.1 Computing the MNS Signature

The image plane is covered by a set of overlapping small compact regions. In the
current implementation, rectangular neighbourhoods with dimensions (bx, by)
were chosen. Compact regions of arbitrary shape - or even non-contiguous com-
pact sets of pixels - could have been used. Rectangular neighbourhoods were
selected since they facilitate simple and fast processing of the data. To avoid
aliasing each rectangle is perturbed with a displacement with uniform distri-
bution in the range [0, bx/2) , [0, by/2), Fig. 1(b). To improve coverage of an
image (or image region), more than one randomised grids can be used, slightly
perturbed from each other.

For every neighbourhood defined by such randomised grids, the modes of the
colour distribution are computed with the mean shift algorithm described below.
Modes with relatively small support are discarded as they usually represent
noisy information. The neighbourhoods are then categorised according to their
modality as unimodal, bimodal, trimodal etc. (e.g. see Fig. 1)

For the computation of the colour signature only multimodal neighbourhoods
are considered. For every pair of mode colours mi and mj in each neighbourhood,
we construct a vector v = (mi, mj) in a joint 6-dimensional domain denoted
RGB2. In order to create an efficient image descriptor, we cluster the computed
colour pairs in the RGB2 space and a representative vector for each cluster is
stored. The colour signature we propose consists of the modes of the distribution
in the RGB2 space. For the clustering, the mean shift algorithm is applied once
more to establish the local maxima. The computed signature consists of a number
of RGB2 vectors depending on the colour complexity of the scene. The resulting
structure is, generally, very concise and flexible.

Note that for the computation of the signature no assumption about the
colour change model was needed. The parameters controlling mode seeking, that
is the kernel width and the neighbourhood size are dependent on the database
images; the former being related to the amount of filtering (smoothing) associa-
ted with the mean shift and the latter depending on the scale of the scene. A
multiscale extension of the algorithm, though relatively straightforward to im-
plement (e.g. by applying the MNS computation to an image pyramid), has not
yet been tested.
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3.2 Computation of Neighbourhood Modality with the Mean Shift
Algorithm

To establish the location of a mode of the colour density function the mean shift
algorithm is applied in the RGB domain. The general kernel-based estimate of
a true multivariate density function f(x̄) at a point x̄0 in a d-dimensional data
space is given by

f̂(x̄0) =
1

nhd

n∑
i=1

K

(
x̄i − x̄0

h

)
(1)

where x̄i, i = 1..n are the sample data points and K is the kernel function with
kernel width h. In this work, we are not interested in the value of the density
function at the point x̄0 but rather in the location of its maxima locations in the
data space. A simple and efficient algorithm for locating the maximum density
points was proposed by Fukunaga [7] when the kernel function in (1) is the
Epanechnikov kernel

KE(x̄) =
{ 1

2c−1
d (d + 2)(1− x̄T x̄) if x̄T x̄ < 1

0 otherwise (2)

where cd is the volume of the unit d-dimensional sphere and x̄ are the data
points. The kernel has been shown to be robust to outliers and optimum in
the sense of having minimum integrated square error in comparison with other
kernels [3].

The mechanism of the mean shift algorithm consists of iteratively shifting
the kernel to the average of the data points within by the mean difference vector

Mh(x̄) =
1
nx̄

∑
x̄i∈Sh(x̄)

(x̄i − x̄) =
h2

d + 2
∇̂f(x̄)

f̂(x̄)
(3)

where nx̄ is the number of data points inside the hypersphere S of radius h
centred at x̄. Equation 3 is an estimate of the normalised gradient of the density
function f(x̄) in the d-dimensional spac. As shown in [7], translation of the
kernel centre towards the direction of the mean difference vector is equivalent
to a gradient ascent to the local mode of the distribution. Convergence to the
closest mode is guaranteed [4].

Due to the non-linearity of the kernel, the filtering preserves discontinuities,
details and retains local image structure. This is particularly important for ima-
ges containing small objects like the swimmer’s cap in Fig. 2. The speed of the
algorithm was tested experimentally, and convergence was very fast (typically
4-5 iterations for complex data). Due to its advantageous properties the mean
shift algorithm has been used in the past for image segmentation [4] and face
tracking. For the MNS method, a computationally simple algorithm was imple-
mented (see [16] for an efficient implementation).

Replacing each pixel in the neighbourhood with the mode it converged to
results in a filtered image like the one in Fig. 2(b). The filtered image is produced
by replacing the value of each pixel pj , j = 1..n of a neighbourhood with the
closest mode mj of the 3-dimensional colour density function using an iterative
procedure:
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(a) (b)

Fig. 2. Robust filtering using the mean shift algorithm: (a) original image (b) filtered
image (every neighbourhood pixel replaced by the mode of the density function it
converged to)

For each j = 1..n
1. Initialise i = 0 and set the current mode estimate m0

j to the value
of the pixel pj

2. Update the mode estimate mi+1 = 1
ni

∑
x̄k∈S3(mi) x̄k, i← i + 1

until convergence i.e. until mi+1 −mi < ε

3. Replace the value of pixel pj with the value of the local mode mj

it converged to.

3.3 Computing Invariant Features from Multimodal
Neighbourhoods

From the multimodal neighbourhood signature, a number of invariant features
can be computed. For the ease of exposition we will describe feature extraction
from bimodal neighbourhoods which are the simplest multimodal ones.

Consider a local image patch with two adjacent surfaces i and j. According to
the monochromatic model of surface reflectance [15,10] the two estimated mode
colours will be given by

ri = (Ri, Gi, Bi) = sk
i gic

k
i

rj = (Rj , Gj , Bj) = sk
j gjc

k
j , k = R, G, B

where sk
i is the illumination factor, gi is the geometric factor and ck

i s the k-th
sensor response to the surface reflectance of patch i under white light(surface
colour). Besides modelling the effects of change in viewpoint and object pose,
the geometric factor g of the monochromatic model encompasses all factors that
have the same effect on each colour channel, e.g. change of aperture or camera
gain and change in illumination intensity. Coefficients sk

i represent factors that
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effect individual colour channels, e.g. the change of illumination colour in the
diagonal colour constancy model described below.

A different image of the same surface colour pair under different light and
object pose would change recorded colours to

r′
i = (R′

i, G
′
i, B

′
i) = s′k

i g′
ic

k
i

r′
j = (R′

j , G
′
j , B

′
j) = s′k

j g′
jc

k
j , k = R, G, B

respectively.
Assuming constant illumination for both the database and the query scenes

the colour change model for s′k
c = sk

c , g′
c = gc , c = i, j and gi = gj becomes

r′
i = ri and r′

j = rj and the simplest invariant colour features appear to be the
mode colour values in the RGB2 space

fsg = (Ri, Gi, Bi, Rj , Gj , Bj)

When s′k
c = sk

c , c = i, j , gi

g′
i

= gj

g′
j

but gi 6= gj , orientation change is assumed
to be same for both surfaces under constant light. Colour change is modelled by

r′
i =

g′
i

gi
ri and r′

j =
g′

j

gj
rj

In this case, various 5-dimensional features can be constructed from the mode
chromaticities

xk =
Rk

Rk + Gk + Bk
, yk =

Gk

Rk + Gk + Bk
k = i, j

and rational features. For example the 2 mode chromaticities and an intensity
ratio produce the 5D feature vector

fg = (xi, yi, Iij , xj , yj) where Iij = (
Ri + Gi + Bi

Rj + Gj + Bj
)

proposed in [15].
When s′k

c = sk
c , c = i, j but gi 6= gj and gi

g′
i
6= gj

g′
j
, varying illumination inten-

sity is assumed due to surface discontinuities and orientation changes. Colour
change is modelled as before and the chromaticities of the estimated mode
colours are simple invariant 4-dimensional features

fgd = (xi, yi, xj , yj)

The assumption of constant illumination within the same scene is viola-
ted in most natural scenes. However, it is realistic to assume constant illu-
mination colour in local image neighbourhoods. The diagonal model of illumi-
nation change has been shown plausible when camera sensors are sufficiently
narrow-band filters [6]. According to this model, illumination change is model-
led by an independent scaling of the colour channels by a different constant i.e.
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s′k
c = dksk

c , c = i, j , dk ∈ IR. It is easy to show that (assuming diagonal illu-
mination change) the ratio of colours between two neighbouring surfaces with
different colours is invariant to lighting changes [14,9]. Nevertheless, for the as-
sumption to hold, the two neighbouring surfaces must have the same orientation
i.e. gi = gj . Invariant features can be computed from the 3 colour channel ratios
of the mode RGB values

fc =
(

Ri

Rj
,
Gi

Gj
,
Bi

Bj

)

In the most general situation, where orientation is different for the two sur-
faces gi 6= gj and gi

g′
i
6= gj

g′
j
, the 2-dimensional cross-ratio vectors

fcgd =
(

RiGj

GiRj
,
GiBj

GjBi

)

are invariant under the diagonal model as shown in [10].
Different invariants, but not necessarily independent, may be computed from

a pair of RGB values (e.g. based on the hue-saturation colour model). We have
not explored this issue. Invariants that could be obtained by exploiting higher
order information from neighbourhoods with more than 2 modes have not been
studied either.

3.4 Matching Multimodal Neighbourhood Signatures

A simple signature matching technique was applied to compute the dissimilarity
between two MNS image signatures. The algorithm attempts to find a match
for all model features assuming that the model signature contains only infor-
mation about the object of interest. This assumption is realistic, since in object
recognition applications a model database is typically built off-line in controlled
conditions (e.g. with background allowing easy segmentation). In image retrie-
val applications, the query region is delineated by the user. Sometimes the full
image is the object of interest and its MNS description is an appropriate model.
However, if only part of the image is covered by the object of interest and the
full image descriptor is stored as a model, a loss in recognition performance is
likely.

On the other hand, test images may originate from scenes containing the
model (query) object only as a fraction of the picture. The matching procedure
is therefore asymmetric. A mismatch of a model feature is penalised whereas a
mismatch of a test image feature is not. In other words the matching algorithm
attempts to interpret the model signature as a distorted subset of the test image
signature.

Let I = 1..n and J = 1..m be the indices of the model and test features
respectively. We define a match association function u(i) : I → 0

⋃
J , i ∈ I,

mapping each model feature i to the test feature it matched or to 0 if it did not
match. Similarly, a test association function v(j) : J → 0

⋃
I , j ∈ J , maps a

test feature to a model feature or to 0 in case of no match. A single threshold
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Th defines the maximum allowed distance between two matching features. The
matching problem, i.e the problem of uniquely associating each feature sM

i , i =
1..n of the model signature with a test feature sT

j , j = 1..m and the computation
of a match score is resolved in the following 4 steps:

1. Set u(i) = 0 and v(j) = 0 ∀ i, j. From each signature s compute
the invariant features fM

i , fT
j according to the colour change model

dictated by the application.
2. Compute all pairwise distances dij = d(fM

i , fT
j ) between the model

and test features.
3. Set u(i) = j, v(j) = i if dij < dkl and dij < Th ∀ k, l with

u(k) = 0 and v(l) = 0.
4. Compute signature dissimilarity as

D(sM , sT ) =
∑

(∀ i :u(i) 6=0)

dij +
∑

(∀ i :u(i)=0)

Th (4)

Computing overall image similarity, the quality of the model features that
matched is taken into account and the score is penalised for any unmatched
model features. Note that features are allowed to match only once. In general,
the more model features matched, the lower the D(sM , sT ) value and the more
similar the compared images.

3.5 Computing Feature Distances

Let v = (va, vb) and u = (ua, ub) be two vectors in the RGB2 space. The
adopted distance function is the sum of the square norms of the pairwise vector
component differences

dRGB2(v, u) = min {‖va − ua‖+ ‖vb − ub‖, ‖va − ub‖+ ‖vb − ua‖} (5)

Taking the minimum distance between the original and component-wise inverted
vectors is necessary because the order of the mode values in the joint vectors is
not fixed.

Various distance functions can be defined for the chromaticity and ratio-
nal features. We chose the same function (5) for measuring distance in the 4D
joint chromaticity domain. A distance for 5D features was proposed in [15]. For
matching relative features, a simple formula was devised

dfrac(p, q) =
|a ∗ d− b ∗ c|√
a + b + c + d

(6)

where p = a
b and q = c

d are 1-dimensional fractions. The distance between the
colour ratio between two RGB values pi, pj defined as

r1 =
(
r1
R, r1

G, r1
B

)
=

(
R1

i

R1
j

,
G1

i

G1
j

,
B1

i

B1
j

)
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and another ratio r2 =
(
r2
R, r2

G, r2
B

)
between two other colours qi and qj is then

drat(r1, r2) =
1
3
(
dfrac(r1

R, r2
R) + dfrac(r1

G, r2
G) + dfrac(r1

B , r2
B)
)

(7)

The modification of drat to measure the distance between 2-dimensional cross-
ratios is trivial, ignoring one colour channel in (7).

Fig. 3. Query selection and representative multimodal neighbourhoods

(a) (b) (c) (d)

Fig. 4. Sample target images demonstrating possible cases of: (a) background clutter,
(b) non-rigid deformation, (c) illumination change and (d) object size

4 Data and Experimental Setup

4.1 Image Retrieval Experiment

We tested the suitability of the multimodal neighbourhood signature method
for region-based image retrieval using a 30 minute video sequence of a BBC
summary of the Atlanta Olympic games. The objective of the experiment was
to retrieve frames that involved Irish events or athletes, therefore we searched
for the presence of the Irish national colours in the image database.

In total, 145 frames were randomly chosen from the sequence yielding a
database of very different images, taken both indoors and outdoors. Object pose,
scale as well as illumination was arbitrary (Fig. 5). No image was removed from
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the original selection and no image preprocessing was applied. The size of each
frame was 176 × 144 pixels. The query image was a rectangular region, a part
of an Irish flag (Fig. 3). The MNS signatures were constructed very fast using a
more efficient implementation described in [16]. The multimodal signatures for
the database images were computed in 0.1 seconds on average and the query
signature was computed in less than 0.1 seconds on a SUN Ultra Enterprise 450
with quad 400MHz UltraSPARC-II CPUs. The average signature size for the
database images was 900 bytes.

In order to evaluate performance 13 “target” images containing the Irish
colours were included in the database. The target images were manually sel-
ected from the same sequence as the database images and represented scenes
of very different content. Objects containing the sought colours in the target
images were often Irish flags sometimes occluded, non-rigidly deformed and/or
of various sizes (Fig. 4). Sometimes, the frames were taken at shot transitions
where video editing effects were apparent. Finally, illumination conditions chan-
ged dramatically between some of the frames resulting in completely different
recorded colours. For example compare image 3 with image 4(c) taken in the
evening under very different light. Images 4 and 3 can be viewed in colour
in [13].

Fig. 5. Sample database images

The parameters involved in the computation of the signature and matching
were not especially tuned for the task. Two consecutive randomised grid searches
were performed with the same neighbourhood size (8×8 pixels) and the resulting
multimodal neighbourhoods were merged into a larger set before clustering and
computing the signature. Informative higher order features that are available
at multimodal neighbourhoods with more than 2 modes were not exploited in
the reported experiments. For the mean shift algorithm, a fixed kernel width of
25 units was used for the detection in the RGB space and 20 for the joint 6D
space. Modes with support less than 10% of the neighbourhood were considered
insignificant and therefore ignored. Low intensity modes (less than 5 percent
of the luminance scale) were also not taken into account to improve stability
especially in the case of relative colour feature matching. Although ratios from
pixels with saturated (clipped) colours are not expected to be stable, we did not
remove saturated colours for the reported experiments. The matching threshold
was also fixed and was dependent only on the nature of the features used. For
example, for RGB2 feature matching, matching threshold was fixed to 100 for
the proposed distance function (5).
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4.2 Object Recognition Experiment

To compare MNS performance with results reported in the literature, we perfor-
med a well known colour object recognition experiment using a dataset collected
by M. Swain. The database is publicly available [1] and has been used in a number
of colour recognition experiments (e.g. [24,9,21]). The model image set consisted
of 66 household objects imaged on black background under the same light (for a
full colour image of the database see [24]) . The test set consisted of 32 images,
a subset of model objects rotated, displaced or deformed (e.g. clothes). The test
database and the corresponding model objects are shown in Fig. 6.

MNS performance evaluation was identical to Funt and Finlayson’s [9] where
ratio histogram matching was used for recognition. However, for that experiment,
11 model and 8 test images were removed from the database due to saturated
pixels whereas we used all images. The same experiment was repeated by Park et
al. [21] using a colour adjacency graph representation of image colour structure.

Computation of each MNS signature took 0.1 seconds on average. Image size
was 128×90 pixels for both the model and test image sets. The average signature
size was 150 bytes [16]. No image preprocessing, subsampling or smoothing was
applied before signature computation. All internal parameters (mean shift kernel
width, neighbourhood size etc) were exactly the same as those used for the image
retrieval experiment.

5 Results

5.1 Image Retrieval

We first report results on the retrieval task from a database of sport images
described in section 4. Database images were matched to the query image (Fig. 3)
and sorted by their similarity to the query. Performance was evaluated according
to the percentage of relevant images that were retrieved in the top 20 ranks of
the retrieved list. In general, retrieval was very fast. A single signature match
score was computed in approximately 1.5 ms i.e. the retrieval proceeds at 600
matches/sec on average. The results are presented in Fig. 8 as plots of percentage
of relevant images as a function of the the number of retrieved images.

Retrieval results varied depending on the feature representation used. Assu-
ming constant illumination for all images, 6-dimensional feature matching was
applied which resulted in 12 out of 13 Irish images being in the top 20 ranks, a
hit rate of 92.3%. However, the remaining image was ranked 83. The same retrie-
val experiment was repeated using the 4-dimensional chromaticity vectors. Hit
rate was 61.5% but the worst rank was 53. We repeated the retrieval experiment
for 3-dimensional ratio feature matching using only simple ratios as described in
section 3.3. The worst match was 46 but hit rate was only 30.7%.

When matching based on absolute colour values, the colour constancy pro-
blem is apparent. An image with the query object of similar size (Fig. 4(c))
had a very low similarity score due to the significant change in the colour of
illumination. Matching illumination invariant features, like the chromaticities or
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(a) Test objects used for the recognition experiment

(b) Model objects corresponding to the tests in (a)

Fig. 6. Sample test and model images from Swain’s database

the ratios mentioned above, improved performance assigning a high rank to the
previously missed image. Although the hit rate was not so good as in the first
case, all relevant images were retrieved within a smaller subset of the retrieved
image set. Clearly, there is a trade-off between the hit rate as defined above and
the invariance to the illumination change. In the case where illumination colour
was indeed constant, the higher dimensionality features benefited from their
higher discriminative power. However, in changing illumination conditions, only
relative invariant features were able to correctly rank the images even though
discrimination was not as good.
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(a) (b) (c) (d)

Fig. 7. Examples of Swain’s model images with very similar red-white regions: (a) clam
chowder can, (b) chicken soup can, (c) mickey underwear and (d) red-white jumper
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Fig. 8. Retrieval results for different colour invariant features using : (a) 6D RGB2

features (b) 4D chromaticity features (c) 3D ratio features

(a) (b) (c) (d)

Fig. 9. Neighbourhoods that matched with the Irish flag query : (a) stripes on jumper
(b) deformed flag in crowd (c) small flag on cap (I) (d) small flag on cap (II)

5.2 Colour Object Recognition

Assuming that illumination was kept approximately constant for all images in
Swain’s database the multimodal neighbourhood signature was tested using 6D
RGB2 feature matching. For each test object, signature dissimilarity from 66
model signatures (of the models described in section 4) was computed and the
rank of the correct pair stored. For a single test object the recognition process
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Table 1. Comparative colour object recognition results for Swain’s database

Method Rank Average Match Number of test/model
1 2 3 >3 Percentile images

MNS 27 2 2 1 0.995 32 / 66
CC Colour Indexing 22 2 0 0 0.998 24 / 55

Colour Indexing 29 3 0 0 0.999 32 / 66
Hybrid graph 32 0 0 0 1.000 32 / 66

took 0.28 seconds, i.e. 4 msec per image match. Speed was still real-time alt-
hough slower than retrieval since the models were more complex than the Irish
flag query image. To allow comparison with previous experiments, recognition
performance of the algorithm was assessed in terms of the average match per-
centile. The match percentile for each image matched is defined as N−r

N−1 where N
is the number of model images and r is the rank of the model image containing
the test object.

Results are presented in Table 1. Recognition performance is compared with
reported results for the colour indexing [24], colour constant (CC) colour inde-
xing [9] and hybrid graph [21] representations respectively. Recognition using
the MNS compared favourably to the other three algorithms with an average
match percentile of 99.5% using the default MNS parameters.

The objects that were not classified as rank 1 include mainly objects with
red-white colour boundaries (e.g. Fig. 7). Such object are common in Swain’s
database and their MNS signature is similar.

Histograms record areas (or relative areas if normalised) and have no pro-
blems discriminating between objects with almost identical colours but with
different sizes of colour region. For Swain’s database this property is beneficial,
since most objects undergo only rotations and translations and have approxima-
tely the same scale. Consequently, MNS is outperformed, although the difference
seems insignificant. In the presence of occlusion, object deformation or general
view point change (e.g. as in the image retrieval experiment above) reliance on
non-invariant and/or global property like area or relative area will negatively af-
fect performance. The best reported result for this dataset was achieved by the
hybrid colour adjacency graph which incorporates information about the spatial
arrangement of colours in the image. Although the MNS representation allows
for localisation of matching regions, we did not demonstrate this feature in the
reported experiments.

6 Conclusions

In this paper, a novel approach to colour-based object recognition and image re-
trieval, the Multimodal Neighbourhood Signature (MNS) , was presented. The
proposed method directly formulates the problem of representing object colour
appearance by computing signatures of colour features derived from robust esti-
mates of the modes of a local colour density function. From a multimodal neig-
hbourhood signature, a number of invariants were computed to address changes
in the imaging conditions within the application environment. In addition, by
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computing features from image neighbourhoods, the MNS method facilitates
region-based query specification and image retrieval.

We demonstrated our algorithm’s performance on a region-based image re-
trieval task and a good (92%) hit rate was achieved in real time (600 image
matches/sec on a SUN Ultra Enterprise 450 with quad 400MHz UltraSPARC-
II CPUs). Relevant images were successfully retrieved regardless of background
clutter, partial occlusion or non-rigid object deformation. In particular, very
small regions were successfully matched like the small Irish flags on the swim-
mer’s caps (Fig. 9). In addition, the trade-off between hit rate and illumination
invariance was apparent in the reported experiments. Regarding colour object
recognition, the MNS representation was tested on a standard dataset and com-
pared favourably with three well known recognition algorithms. Very good per-
formance (average match percentile 99.5%) was achieved with default settings,
identical to those used in the image retrieval experiment. In general, the MNS
signatures were concise and thus significant data reduction was achieved. An
image was typically represented by a few hundred bytes, a few thousands for
very complex scenes.

Future improvements to the algorithm include introducing a training/lear-
ning stage to efficiently exploit discriminative colour characteristics inherent
to the database at hand, and a multiscale approach to compensate for scale
changes. Selection of an appropriate distance for colour invariants, especially
those taking the form of a ratio, should be investigated. Finally, we intend to
study the potential of multimodal neighbourhoods with more than two modes
for recognition and retrieval.
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