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Abstract

A new definition of affine invariant skeletons of planar curves is introduced. A point belongs
to the affine skeleton if and only if it is equidistant from at least two points of the curve, with
the distance being a minima and given by the areas between the curve and its corresponding
chords. The skeleton is robust, eliminating the need for curve denoising. We propose a simple
method to compute the skeleton and give examples with real images. We also demonstrate how

to use this method to detect affine skew symmetry.

Index terms: Planar skeleton, affine invariant, symmetry, area, shape, pattern recognition.

1 Introduction

Object recognition is an essential task in image processing and computer vision, being the skeleton
or medial azis a shape descriptor often used for this task. Thus, the computation of skeletons
and symmetry sets of planar shapes is a subject that received a great deal of attention from the

mathematical (see [6, 5] and references therein), computational geometry [20], biological vision
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[14, 16], and computer vision communities (see for example [18, 21] and references therein). All
this activity follows from the original work by Blum [2].

In the classical Euclidean case, the symmetry set of a planar curve (or the boundary of a planar
shape) is defined as the set of points equidistant from at least two different points on the given
curve, providing the distances are local extrema (a number of equivalent definitions exist). The
skeleton is a subset of this set.

Inspired by [9, 10] and [17], we define in this paper an analogous symmetry set, the affine area
symmetry set (AASS). Instead of using Euclidean distances to the curve, we define a new distance
based on the areas enclosed between the curve and its chords. We define the symmetry set as
the closure of the locus of points equidistant from at least two different points on the given curve,
provided that the distances are local minima.

As we will demonstrate, this definition based on areas makes the symmetry set remarkably
noise-resistant, because the area between the curve and a chord “averages out” the noise. This
property makes the method very useful to compute symmetry sets of real images without the need
of denoising. In addition, being an area-based computation, the result is affine invariant. That
implies that if we process the image of a planar object, the skeleton will be independent of the angle
between the camera that captures the image and the scene, provided the camera is far enough from
the (flat) object. For these reasons, we believe this symmetry set, in addition to having theoretical

interest, has the strong potential of becoming a very useful tool in invariant object recognition.

2 Affine area symmetry set and affine invariant skeletons

In this section, we formally introduce the key concepts of affine distance, affine area symmetry set
and affine skeleton. We begin with the following definition:

Definition 1: A special affine transformation in the plane (R2) is defined as
X = AX + B, (1)

where X € R? is a vector, A € SLy(R?) (the group of invertible real 2 x 2 matrices with determinant

equal to 1) is the affine matrix, and B € R? is a translation vector.

In this work we deal with symmetry sets which are affine invariant, in the sense that if a curve



C is affine transformed with Eq. (1), then its symmetry set is also transformed according Eq. (1).
Affine invariant symmetry sets are not new. Giblin and Sapiro [9, 10] introduced them and pro-
posed the definition of the affine distance symmetry set (ADSS) for a planar curve C(s). In their
definition, they used affine geometry, and defined distances in terms of the affine invariant tangent
of C(s), which involves second order derivatives of the curve respect to an arbitrary parameter.
Later they defined the ADSS analogously to the Euclidean case. In [1] an efficient implementa-
tion for the computation of these sets was discussed. However, there is a fundamental technical
problem with this definition: in curves extracted from real images, noise is always present, and the
second derivatives needed to compute the ADSS oscillate in a very wild fashion unless a consider-
able smoothing is performed. Giblin and Sapiro proposed a second definition, the affine envelope
symmetry set [9, 10], which still requires derivatives, and thus suffers from the same computational
problem. As we will show with the new definition presented below, we do not compute deriva-
tives at all. Consequently, the robustness of the computation is considerably higher, and shape
smoothing is not required.

For simplicity, here we shall always deal with simple closed curves C(s) : [0,1] — R? with a
countable number of discontinuities on the derivative C'(s). We start by defining the building block
of our affine area symmetry set (AASS), the affine distance (inspired by [17]):

Definition 2: The affine distance between a generic point X and a point of the curve C(s) is

defined by the area between the curve and the chord that joins C(s) and X:
1 66N
d(X, s) :—/ (C - X) x dC )
2 Jos)

where X is the z component of the cross product of two vectors,' the points C(s) and C(s') define
the chord that contain X and that has exactly two contact points with the curve, as shown in
Fig. 1-A. This distance is invariant under the affine transformation Eq. (1), and it is independent
on the parametrization of the curve.

For a simple convex curve, the function d(X,s) is always defined for interior points, but for
concave curves the function d(X,s) may be undefined for some values of s in [0, 1] as sketched in
Fig. (1-B). When the point is exterior to the curve (as the point Y in Fig. (1-A)), the distance

may be undefined as well.

!We should note that our distance is the integral of the distance used in [9, 10].



We can now define our affine symmetry set:
Definition 3: X € R? is a point in the affine area symmetry set of C(s) (AASS) if and only if
there exist two different points s1, se which define two different chords that contain X and have

equal area,

d(X,s1) = d(X, s2), (3)

provided that d(X, s1) and d(X, s2) are defined and that they are local minima respect to s.

This definition is analogous to the Euclidean case and the ADSS in [9, 10].

Commonly in shape analysis, a subset of the symmetry set is used, and it is denoted as skeleton
or medial azis. In the Euclidean case, one possible way to simplify the symmetry set into a skeleton,
inspired by original work of Giblin and colleagues, is to require that the distance to the curve is a
global minimum. The affine definition is analogous:

Definition 4: The affine skeleton or affine medial azis is the subset of the AASS where d(X, s1)

and d(X, s9) are global (not just local) minima.

There are curves for which the skeleton may be computed exactly. For example, it is easy
to verify that the skeleton of a circle is its center. We can make an affine transformation to the
circle and transform it into an ellipse, and by virtue of the affine invariance of our definitions, we
conclude that the skeleton of an ellipse is its center too. Another important example is the triangle.
In affine geometry, all triangles may be generated by affine-transforming an equilateral triangle.
The skeleton of an equilateral triangle are the segments connecting the middle of the bases and
the center of the figure (as can be verified by simple area computations). As a consequence, the
skeleton of an arbitrary triangle are the segments connecting the middle of the sides with the center
of gravity (where all medians cross).

An important property concerns convex curves with straight sections. If the curve contains two
equal straight parallel non-collinear segments, then the AASS will contain an identical segment
parallel and equidistant to the former two. For instance, the AASS of a rhombus will contain its

medians.



2.1 Dynamical interpretation and affine erosion

We now define a notion of affine erosion of a curve, which is analogous (but different) to that used
by Moisan [17]. Let C(s) : [0,1] — R2 be a simple closed curve. Let (C(s),C(s')) be a chord of
C(s), as shown in Fig. 1-A. As before, this chord intersects the curve exactly twice The difference
of this definition with respect to the definition given in [17], is that in Moisan’s set-up the chord is
allowed to cross the curve outside the interval (s,s’). For our purposes, we opted for a definition
which gives a unique chord for a given parameter s, when this chord exists, and which also separates
the curve into two disjoint parts. The connected closed set enclosed by the chord and the curve is
the chord set, and its area is denoted by A.

Definition 5: The minimum distance from a point X to the curve C is defined by
f(X) =inf(d(X,s),s € D) (4)

where D is the domain of d(X, s) for a fixed value of X (see below for conditions for this for convex
curves).

For interior points X, the minimum distance f(X) is always defined because in a simple closed

curve, we can always draw at least one chord that contains X. For exterior points it may be
undefined, as for instance, in a circle.

Moisan defines the affine erosion of the curve C as the set of the points of the interior of C
which do not belong to any positive chord set with area less than A. Here we define the affine
erosion in terms of our affine distance:

Definition 6: The affine erosion E(C,A) of the shape enclosed by a curve C, by the area A, is
the set of the points X of the interior of C that satisfy
E(C,4) = {X €R?: f(X) > 4> 0} (5)

Roughly speaking, it is the area bounded by the envolvent of all the possible chords of area A > 0.

We also define the eroded curve C(A) as the “boundary” of the affine erosion
C(A) :={X e R?: f(X) = A}. (6)

Note that if we consider the area to be a time parameter, t = A, the distance f(X) represents the



time that the eroded curve C(A) takes to reach the point X. Initially, when A = 0, we have the
initial curve. At later times (A4 > 0), the curve C'(A) will be contained inside the original curve.

There is a fundamental relationship between the affine erosion of a curve and the skeleton,
namely, a shock point X is an skeleton point.

Definition 7: A shock point X is a point of the eroded curve C(A) where two different chords

(C(s1),C(s})) and (C(s2),C(sh)) of equal area A intersect.

Clearly, the distance from X to these two points are equal, d(X,s1) = d(X,s2), and on the other

hand, the distance is a global minimum at s; because as X belongs to C(A) (see definitions 5 and

6), f(X) = inf(d(X,s),s € D) = A. Thus, a shock point X is an skeleton point.

2.2 Basic properties of the affine area distance and symmetry set

In this section we shall present some theoretical results concerning the AASS, mostly without proof.
Further results and details will appear elsewhere.? We shall show that the AASS has connections
with our previously defined affine envelope symmetry set or AESS [10], as well as with the affine
distance symmetry set (ADSS) mentioned before. As mentioned above, it is not clear to us how
far the area definition can be extended. That is, it is not yet clear whether we can define a smooth
family of functions

d: CxU >R,

associating to (s, X)) the ‘area d(s, X) of the sector of C determined by C(s) and X, for all points
X inside some reasonably large set U in the plane R?. We have seen that when C is convex then

the function is well-defined and smooth for all X inside the curve C. We shall assume this below.

We have
ts) ts)
2d(s, X) = / (C(s) = X,C'(s)|ds = [ F(s,X)ds,

S

for any regular parametrization of C, where [ , | means the determinant of the two vectors inside

!

the square brackets, ' means % and t(s) is the parameter value of the other point of intersection

of the chord through X and C(s) with the curve. Using standard formulae for differentiation of

*Some of the results below have also been obtained by Paul Holtom [12].
3This set is basically defined as the closure of the center of conics having three-point contact with at least two

points on the curve.



integrals,

2d; = 2% = F(t(s), X)t'(s) — F(s).

We evaluate t'(s) by using the fact that C(s), X and C(¢(s)) are collinear:
C(t(s)) — X = MC(s) — X) for a scalar A, ie. [C(s) — X, C(t(s)) — X] =0.
Differentiating the last equation with respect to s we obtain
t'(s) =[C(t(s)) — X, C"(s)]/[C(s) — X, C'(t(s))],

and from this it follows quickly that, provided the chord is not tangent to C at C(s) or C(t(s)),
ds = 0 if and only if A = +1. But A = 1 means C(s) and C(t(s)) coincide so for us the interesting
solution is A = —1, which means that X is the mid-point of the segment (this result has also been
obtained in [17]): The area function d has a stationary point at (s,X), i.e. dd/0s =0, if and only
X is the midpoint of the segment from C(s) to C(t(s)).

One immediate consequence of this is: The envelope of the chords cutting off a fized area from
C (the affine eroded set) is also the locus of the midpoints of these chords.

Further calculations on the same lines show that: The first two derivatives of d with respect to
s vanish at (s, X) if and only if X is the midpoint of the chord and also the tangents to C at the
endpoints of the chord are parallel.

In mathematical language this means that the ‘bifurcation set’ of the family d is the set of points
X which are the midpoints of chords of C at the ends of which the tangents to C' are parallel. This
set is also the envelope of lines parallel to such parallel tangent pairs and halfway between them,
and has been called the midpoint parallel tangent locus (MPTL) by Holtom [12]. Various facts are
known about the MPTL, for example it has an odd number of cusps, and these cusps coincide in
position with certain cusps of the AESS [11]. The cusps in question occur precisely when the point
X is the center of a conic having 3-point contact with C' at two points where the tangents to C are
parallel: The first three derivatives of d with respect to s vanish at (s, X) if and only if X is the
midpoint of the chord, the tangents to C at the endpoints are parallel, and there exists a conic with
center X having 3-point contact with C at these points.

The full bifurcation set of the family d consists of those points X for which (i) d has a degenerate

stationary point (ds = dgs = 0) for some s or else (ii) there are two distinct s1,$2 and d has an



ordinary stationary point (d; = 0) at each one, and the same value there: d(si,X) = d(s2,X).
The latter is precisely the AASS as defined 2 above. Mathematically the AASS and the MPTL ‘go
together’ in the same way that the classical symmetry set and evolute go together, or the ADSS and
the affine evolute go together: in each case the pair makes up a single mathematical entity called a
full bifurcation set. A good deal is known about the structure of such sets, including the structure
of full bifurcation sets arising from families of curves. See [7]. For instance, the symmetry set has
endpoints in the cusps of the evolute, and in the same way the AASS has endpoints in cusps of the
MPTL.4

When X lies on the AASS there are two chords through X, with X the midpoint of each chord,
and the areas defined by d are equal. From the midpoint conditions alone it follows that the four
endpoints of the chords form a parallelogram. The tangent to the AASS at X is in fact parallel to
two sides of this parallelogram.

Consider the AASS of for example a triangle, as in Section 2, where it was noted that the affine
medial axis comes from the center of a side and stops at the centroid of the triangle. The ‘full’
AASS, allowing for non-absolute minima of d, stops at the point halfway up the median, as can be
verified by an elementary calculation with areas. Presumably this is a highly degenerate version of
a cusp on the AASS. With the triangle, the two branches of the cusp are overlaid on each other.

We mention finally one curious phenomenon connected with the AASS. Given a point C(s1)
there will generally be an area-bisecting chord through this point. That is, the two areas on either
side of the chord and within C' are equal. In that case let X be the midpoint of the chord, and
let C(t(s1)) be the other end of the chord. Let so = ¢(s1): then #(s2) = s1 by construction and
X satisfies the conditions to be a point of the AASS. That is, the midpoints of all area-bisecting
chords automatically appear in the AASS. These points are in some sense anomalous: the ‘genuine’

AASS consists of the other points satisfying the defining condition.

4The ADSS as defined in [10] also has endpoints and these are in the cusps of the affine evolute. The endpoints

of the AASS are by contrast in the cusps of the midpoint parallel tangent locus.



3 Robust numerical implementation for discrete curves

Inspired by [1], we propose the following algorithm to compute the affine skeleton:
1) Discretization of the curve: Discretize C(s) = (z(s),y(s)) with two vectors for the points
Cr = (zk,yx) with 1 <k < M (see Fig. 1-C).
2) Discretization of the rectangular domain: Discretize the domain that contains the curve,
of dimensions L, X Ly, with a uniform grid of N, x N, points. Each point X;; of the grid will have
coordinates X;; = (iAz,jAy), where Az = Ly/N,, Ay = L,/N, (See Fig. 1-C) and 0 < i < N,
0<j <N,
Now, for each point Xj;; of the grid we perform the following steps:

3a) Compute the chord areas: With Eq. 2, compute the areas between X;; and each point in
the curve Cj:

A%, = 3 [ (€= Xy x de (7)

Ck

for Kk = 1,...,M. The integral is computed by approximating the curve with a polygon that
interpolates the points C}, and computing the point C} as the intersection between the curve and
the line joining C} and X;;. As mentioned before, the distance is not defined if the chord does
not touch exactly two points on the curve. The points have to be labeled with a logical vector Ej
indicating whether or not the distance is defined at Cj. Here we detect these singular points just
by scanning around the curve and counting the crossings between the line that contains C} and
Xij. Then we store the areas in a vector dy = d(X;;,Cy), withk=1,..., M.
3b) Search for local minima of the chord areas, approximated by the local minima of the
set di, with k = 1,..., M. When d;_1, dy and di; are defined, the local minimum condition is
dy—1 > dy < djy1. When dj, and dj+ are defined but dj, is not defined, the condition is simply
dr < dgz1. Now, for each point of the grid X;; we shall have after this step the set of [ local
minima distances (di,d5, ...,d}) corresponding to the points (C},C5,...,C}). All these quantities
are functions of Xj;.

3c) Approximate AASS computation: Compute the differences
D(XZ]):d;_d; pzla"'ala q:]-a""la ’1"7£q, (8)

p and g represent the indexes of the local minimum distances of different chords. If this difference



is smaller in magnitude than a given tolerance ¢, we can consider X;; to be an approximate point
of the area symmetry set (see Fig. (1-C)). Then, as a first approximation, add to the AASS all the
points X;; that satisfy

& —di| <e 9)

The tolerance € has to be of the order of the variation of the distance difference along a cell in the

discretized domain, i.e.

€ & max (‘B—D‘ Az,
ox

o] Av) (10)
The partial derivatives are taken respect to the components of X;;.

There is not a simple general formula for this expression. However, by using the distance
definition Eq. (2) and by restricting ourselves to regular local minima which satisfy dg(s*) = 0,
we can demonstrate that Vd;(X;;) = (—Ayy, Azy;), where (Az,, Ayy) are the components of the
chords C’;' — O, corresponding to local minimum area. This formula is not general, since we may
have non-regular minima, as for example, points where d(X,s) has a discontinuity respect to s.
However we still use this expression because we only need one order of magnitude for the tolerance.
Then, we define € = max (\Ay; — Ay;|Az, |Azy — Am;|Ay) .
3d) Focusing of the AASS: At this point, the skeleton is quite crude, and the branches have
an spatial error of the order of the discretization of the domain (Az, Ay). We can compute with
negligible computational cost the (small) correction vector AX;; = (u,v) to the position X;; that

makes the difference of distances exactly equal to zero at X;; + AX;;:
d(Xij + AXi5, Cp) = d(Xij + AXi5,CF)
(see Fig 1-C). At first order, we must solve
D(X;;) + AX;; - VD(X;5) =0 (11)
with AX;; parallel to the gradient of D. We get
(Ay, — Ay;)D (Azj, — Azy)D

’U,:T ’U:_ G2 (12)

G? = (Ay; — Ayp)® + (Az) — Ax))? (13)

After this step, the AASS for a discrete image was computed.

3e) Pruning: If one of the distances dj, or dj is not a positive global minimum, then discard the

10



corresponding point. In this way we obtain the affine skeleton. We also have to discard points
which are originated very close each other at the curve in such a way that they are effectively
undistinguishable. Here we discard points such that the area of the triangles A(C), X;j,Cq) are
smaller than the areas of the triangles defined by the discretization of the curve A(Cp, X;j, Cpt1) +
A(CI',, Xij, CI', +1) and the area defined by the discretization of the domain Az L,+AyL,, as indicated
in Fig. 1-D.

4 Examples

In the following examples, we compute the skeleton in a domain discretized with N, = Ny = 200
points.

Skeletons may be used to detect symmetries, topic that has been the subject of extensive
research in the computer vision community, e.g., [3, 4, 19, 22]. In particular, affine skeletons may
be used to detect skew symmetries. Numerical experiments show that if the skeleton contains a
straight branch then a portion of the curve has skew symmetry respect to this line. ® This is

illustrated now. In Fig. 2-A we show the original figure with its corresponding skeleton, while in

1 -1
Fig. 2-B we show the figure affine transformed by the matrix A = . In Fig. 2-C we
0 1

corrupted the shape by adding to each point of the discrete curve a random number of amplitude
0.025. The corresponding skeleton remains almost unchanged.

We now show how to compute skeletons from real data. First we need to obtain the points of
the curve C' which define the shape. If the points are to be extracted from a digital image with a
good contrast, they may be extracted by thresholding the image in binary values and then getting
the boundary with a boundary-following algorithm [13]. This procedure was performed with the
shape of the right in Fig. 2-D and with the tennis racket of Fig. 2-E. When the border of the shape
is more complex or fuzzier, as in the shape of the left in Fig. 2-D , more sophisticated techniques
can be used. Here we extracted the contour with the “snakes” algorithm as formulated in [8, 15].
The resulting skeletons are shown in Fig. 2-D. In Fig. 2-E, the image has an approximate skew

symmetry, and note that the skeleton contains a short straight branch.

SNote that although the Euclidean skeleton of a symmetric shape contains a straight line, this is not true anymore

after the shape is affine transformed, obtaining skew symmetry.
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5 Conclusions and open questions

In this paper, we introduced a new definition of affine skeleton and a robust method to compute
it. The definition is based on areas, making the skeleton remarkably insensitive to noise, and thus,
useful for processing real images. There are still theoretical problems that have to be solved in
order to build a consistent theory to support our definition:

(a) The skeleton in the Euclidean case may be found by detecting the shocks in the solutions of
the Hamilton-Jacobi equation (this is equivalent to the Huygens principle in Blum’s method). We
do not know at this point whether there is a differential equation which would allow us to compute
our affine skeleton in an analogous way.

(b) Additional properties of the area-distances d(X, s) and AASS, analogous to those for the ADSS
and AESS, are to be further investigated.

(¢) The extension of the definition to multiply connected curves would be of paramount importance

in practical applications.
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B
d(X,s) ,

Ay

Figure 1: A) We define the affine distance from X to the curve as the area between the curve C
and the chord (C(s),C(s')). The chord touches the curve exactly twice. For example, there is no
“legal” chord which contains the pair of points (C(s”), X). As a consequence, the function d(X, s)
may have discontinuities as shown in B. C) Discretization of the curve and the domain. D) We
consider two points p,q “undistinguishable” if the area of the triangle A(Cp, X,C,) (dashed) is
smaller than the area defined by the discretization of the curve A(Cy, X, Cp11) + A(Cy, X, Cpq),

and the discretization of the domain (shaded regions).



Figure 2: (First row, from left to righ: A, B, and C; Second row, from left to right: D and E)
A) A concave curve and its skeleton. B) After an affine transformation, the skeleton keeps the
information about the original symmetry. C) When noise corrupts the curve, the main branches
of the skeleton may still be recognized (in this computation, M = 115 and N = 200). D) Affine

skeletons of shapes extracted from digital images. E) A figure with approximate skew symmetry.



