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Abstract. We formulate the problem of reconstructing the shape and
radiance of a scene as the minimization of the information divergence
between blurred images, and propose an algorithm that is provably con-
vergent and guarantees that the solution is admissible, in the sense of
corresponding to a positive radiance and imaging kernel. The motivation
for the use of information divergence comes from the work of Csiszár [5],
while the fundamental elements of the proof of convergence come from
work by Snyder et al. [14], extended to handle unknown imaging kernels
(i.e. the shape of the scene).

1 Introduction

An imaging system, such as the eye or a video-camera, involves a map from
the three-dimensional environment onto a two-dimensional surface. In order to
retrieve the spatial information lost in the imaging process, one can rely on prior
assumptions on the scene and use pictorial information such as shading, texture,
cast shadows, edge blur etc. All pictorial cues are intrinsically ambiguous in that
prior assumptions cannot be validated using the data.

As an alternative to relying on prior assumptions, one can try to retrieve
spatial information by looking at different images of the same scene taken, for
instance, from different viewpoints (parallax), such as in stereo and motion (note
that we must still rely on prior assumptions in order to solve the correspondence
problem). In addition to changing the position of the imaging device, one could
change its geometry. For instance, one can take different photographs of the
same scene with a different lens aperture or focal length. Similarly, in the eye
one can change the shape of the lens by acting on the lens muscles. There is a
sizeable literature on algorithms to reconstruct shape from a number of images
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taken with different imaging geometry (shape from defocus) or from a controlled
search over geometric parameters (shape from focus) [4]. Recently the conditions
under which it is possible to obtain a unique reconstruction have been derived
[10].

Estimating shape from focus/defocus boils down to inverting certain integral
equations, a problem known by different names in different communities: in signal
processing it is “blind deconvolution” or “deblurring”, in communications and
information theory “source separation”, in image processing “restoration”, in
tomography “inverse scattering”. Since images depend both on the shape of the
scene and on its reflectance properties – neither of which is known – estimating
shape is tightly related to estimating reflectance1. In this paper, we consider
the two problems as one and the same, and discuss the simultaneous solution
of both. We choose as criterion the minimization of the information divergence
(I-divergence) between blurred images, motivated by the work of Csiszár [5]. The
algorithm we propose is iterative, and we give a proof of its convergence to a
(local) minimum. We present results on both real and simulated images.

1.1 Statement of the Problem

Consider a piecewise smooth surface represented symbolically by σ. For instance,
σ could be the parameters in a parametric class of surfaces, or it could be a
smooth function such that σ(x, y, z) = 0 (note that it may not necessarily be
finite-dimensional). Consider then an imaging system whose geometry can - to a
certain extent - be modified by acting on some parameters u ∈ U ⊂ IRk for some
k. For instance, u could be the aperture radius of the lens and the focal length.
The image at a point (x, y) in a compact subset of the plane D ⊂ IR2 is obtained
by integrating the energy radiated by the surface1, which we represent as a (non
necessarily continuous) positive-valued distribution R defined on σ, over a region
that depends upon u. Due to the additive nature of energy transport phenomena,
the image is obtained by integrating the energy distribution R against a kernel
h that depends upon σ and u. We therefore write

Iu(x, y) =
∫

hσ
u(x, y)dR (x, y) ∈ D. (1)

Notice that, in the equation above, all quantities are constrained to be positive2:
dR because it represents the radiant energy (which cannot be negative), hσ

because it specifies the region of space over which energy is integrated, and I
because it measures the photon count hitting the surface of the sensor.

We are interested in estimating the shape of the surface σ and the energy
distribution R to the extent possible, by measuring a number l of images obtained
with different camera settings u1, . . . , ul.
1 Since neither the light source nor the viewer move, we do not distinguish between

the radiance and reflectance of a surface.
2 We use the term “positive” for a quantity x to indicate x ≥ 0. When x > 0 we say

that x is “strictly positive”.
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In the literature of computational vision a number of algorithms have been
proposed to estimate depth from focus/defocus [1,6,7,9,11,12,13,16,18,19,20] just
to mention a few. Most of the papers formulate the problem as the minimization
of a least-squares norm or total variation.

The capability to reconstruct the scene’s shape depends upon the energy
distribution it radiates. The conditions on the radiance distribution that allow
a unique reconstruction of shape have been recently characterized in [10].

1.2 Formalization of the Problem

If we collect a number of different images Iu1 , . . . , Iul
and organize them into a

vector I (and so for the kernels h), we can write

I(x, y) =
∫

hσ(x, y)dR (x, y) ∈ D. (2)

The right-hand side of the above equation can be interpreted as the “virtual
image” of a given surface σ radiating energy with a given distribution R. We
call such virtual image b:

bσ(x, y, R) .=
∫

hσ(x, y, X, Y, Z)dR(X, Y, Z) (x, y) ∈ D. (3)

Note that, for images of opaque objects, the integral is restricted to their surface,
and therefore can be written in the Riemannian sense [2] as

bσ(x, y, R) .=
∫

hσ(x, y, x̃, ỹ)dR(x̃, ỹ) (x, y) ∈ D (4)

for a suitably chosen parameterization (x̃, ỹ) ∈ IR2. In either case, we write the
integral in short-hand notation as bσ(x, y, R) .=

∫
hσ(x, y)dR. Since the image

I is measured on the pixel grid, the domain D (i.e. a patch in the image) is
D = [x1, . . . , xN ] × [y1, . . . , yM ], so that we have

I(xi, yj) = bσ(xi, yj , R) i = 1 . . . N, j = 1 . . . M. (5)

We now want a “criterion” φ to measure the discrepancy between the measured
image I and the virtual one, so that we can formulate our problem as the mi-
nimization of the discrepancy between the measured image and the model (or
virtual) image. Common choices of criteria include the least-squares distance
between I and bσ, or the integral of the absolute value (“total variation”) of
their difference [3].

In order to get a “reasonable” result, the criterion φ should satisfy a num-
ber of requirements. Csiszár makes this notion rigorous through the axiomatic
derivation of cost functions that satisfy certain consistency conditions. He con-
cludes that, when the quantities involved are constrained to be positive3 (such
3 When there are no positivity constraints, Csiszár argues that the only consistent

choice of discrepancy criterion is the L2 norm, which we have addressed in [15].
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as in our case), the only consistent choice of criterion is the so-called information
divergence, or I-divergence, which generalizes the well-known Kullbach-Leibler
pseudo-metric and is defined as

φ(I, bσ(R)) .=
∑
i,j

{
I(xi, yj) log

I(xi, yj)
bσ(xi, yj , R)

− I(xi, yj) + bσ(xi, yj , R)
}

. (6)

In order to emphasize the dependency of the cost function φ on the unknowns
σ, R, we abuse the notation to write

φ = φ(σ, R). (7)

Therefore, we formulate the problem of simultaneously estimating the shape of a
surface and its radiance as that of finding σ and R that minimize the I-divergence:

σ, R = arg min
σ,R

φ (σ, R) . (8)

1.3 Alternating Minimization

In general, the problem in (8) is nonlinear and infinite-dimensional. Therefore,
we concentrate our attention from the outset to (local) iterative schemes that
approximate the optimal solution. To this end, suppose an initial estimate of R
is given: R0. Then iteratively solving the two following optimization problems{

σk+1
.= arg minσ φ(σ, Rk)

Rk+1
.= arg minR φ(σk+1, R)

(9)

leads to the minimization of φ, since

φk+1
.= φ(σk+1, Rk+1) ≤ φ(σk+1, Rk) ≤ φ(σk, Rk) .= φk (10)

and the sequence φk is bounded below by zero. However, solving the two opti-
mization problems in (9) may be an overkill. In order to have a sequence {φk}
that monotonically converges it is sufficient that - at each step - we choose σ
and R in such a way as to guarantee that equation (10) holds, that is

{
σk+1 | φ(σk+1, R) ≤ φ(σk, R) R = Rk

Rk+1 | φ(σ, Rk+1) ≤ φ(σ, Rk) σ = σk+1.
(11)

2 Minimizing I-Divergence

In this section we derive an algorithm to minimize the I-divergence and prove its
convergence. For simplicity, we restrict our analysis to an “equifocal imaging mo-
del”, that is a model where the kernel h is translation-invariant. This corresponds
to the scene being approximated, locally, by small patches of a plane parallel to
the lens. This can be done to an arbitrary degree anywhere on a smooth surface
away from discontinuities, which will therefore be resolvable only up to the size
of the patch.
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2.1 An Elementary Imaging Model

In order to obtain a simple instance of the problem, we assume that, locally for
(xi, yj) in a patch U ⊂ D away from discontinuities of σ, the kernel hσ(xi, yj , x̃, ỹ)
is shift-invariant, so that we can write it as

hσ(xi − x̃, yj − ỹ). (12)

Equivalently, we represent the surface as a collection of planar patches parallel to
the lens. We also introduce the density corresponding to the energy distribution
R and denote it with the function r defined by

r(x, y)dxdy
.= dR(x, y). (13)

Strictly speaking, r is the Radon-Nikodym derivative of R, and as such it may
not be an ordinary function but, rather, a distribution of measures. We neglect
such technicalities here, since they do not affect the derivation of our algorithm.
The imaging process can thus be modeled (locally) as a convolution integral:

I(x, y) = hσ ∗ r(x, y) (x, y) ∈ U ⊂ D. (14)

We will further assume that energy is conserved, and therefore∫
hσ(x, y)dxdy = 1 ∀ σ. (15)

In order to further simplify the problem, we restrict our attention to geometric
optics, and represent the kernel hσ by a Gaussian with standard deviation σ =
d
2 |1 − Z/ZF |, where Z is the depth of the scene, ZF is the depth of the point in
focus and d is the diameter of the lens (see figure 1). We choose a Gaussian kernel
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Fig. 1. A bare-bone model of the geometry of image formation.

not because it is a good model of the imaging process, but because it makes the
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analysis and the implementation of the algorithm straightforward. The algorithm
does not depend upon this choice, and indeed we are in the process of building
realistic models for the kernels of commercial cameras.

2.2 Steps of the Alternating Minimization

In the imaging model just described, the “shape” of the surface is trivial and
represented by a positive scalar σ that depends upon Z, the depth of the patch
U . Since the first step of the minimization depends only on this parameter,
we can choose any of the known descent methods (e.g. Newton-Raphson). The
choice is arbitrary and does not affect the considerations that follow. Therefore,
we indicate this step generically as:

σk+1 = arg min
σk>0

φ (σk, r) . (16)

The second step is obtained from the Kuhn-Tucker conditions [8] associated with
the problem of minimizing φ for fixed σ under positivity constraints for r:

∑
i,j

hσ(xi, yj , x̃, ỹ)I(xi, yj)∫
hσ(xi, yj , x̃, ỹ)r(x̃, ỹ)dx̃dỹ

=
{ ∑

i,j hσ(xi, yj , x̃, ỹ) ∀ (x̃, ỹ) | r(x̃, ỹ) > 0
≤ ∑

i,j hσ(xi, yj , x̃, ỹ) ∀ (x̃, ỹ) | r(x̃, ỹ)=0.

(17)
Since such conditions cannot be solved in closed form, we look for an iterative
procedure for rk that will converge to a fixed point. Following Snyder et al. [14],
we choose

F (σ, r) .=
1∑

i,j hσ(xi, yj , x̃, ỹ)

∑
i,j

hσ(xi, yj , x̃, ỹ)I(xi, yj)
bσ(xi, yj , r)

(18)

and define the following iteration:

rk+1 = rkF (σ, rk). (19)

It is important to point out that this iteration decreases the I-divergence φ not
only when we use the exact kernel hσ, as it is showed in Snyder et al. [14], but
also with any other kernel satisfying the positivity and smoothness constraint.
This fact is proven by the following claim.

Claim 1 Let r0 be a non-negative real-valued function defined on IR2, and let
the sequence rk be defined according to (19). Then φ(σ, rk+1) ≤ φ(σ, rk) ∀k >
0, ∀ σ > 0. Furthermore equality holds if and only if rk+1 = rk.

Proof: The proof follows Snyder et al. [14]. From the definition of φ in equation
(6) we get

φ(σ, rk+1) − φ(σ, rk) = −
∑
i,j

I(xi, yj) log
bσ(xi, yj , rk+1)
bσ(xi, yj , rk)

+
∑
i,j

b
σ(xi, yj , rk+1) − b

σ(xi, yj , rk).

(20)
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From the expression of rk+1 in (19) we have that the second sum in the above
expression is given by

∑
i,j

∫
hσ(xi, yj , x, y)rk+1(x, y)dxdy −

∑
i,j

∫
hσ(xi, yj , x, y)rk(x, y)dxdy =

=
∫

Hσ
0 (x, y)rk+1(x, y)dxdy −

∫
Hσ

0 (x, y)rk(x, y)dxdy

where we have defined Hσ
0 (x, y) =

∑
i,j hσ(xi, yj , x, y), while the ratio in the first

sum is
bσ(xi, yj , rk+1)
bσ(xi, yj , rk)

=
∫

F (σ, rk)
hσ(xi, yj , x, y)rk(x, y)

bσ(xi, yj , rk)
dxdy. (21)

We next note that, from Jensen’s inequality,

log

(∫
F (σ, rk)

hσ(xi, yj , x, y)rk(x, y)
bσ(xi, yj , rk)

dxdy

)
≥

∫
hσ(xi, yj , x, y)rk(x, y)

bσ(xi, yj , rk)
log(F (σ, rk))dxdy

(22)

since the ratio hσ(xi,yj ,x,y)rk(x,y)
bσ(xi,yj ,rk) can be interpreted as a probability distribution

dependent on the parameters σ and rk, and therefore the expression in (20) is

φ(σ, rk+1) − φ(σ, rk) ≤ −
∑
i,j

I(xi, yj)
∫

log(F (σ, rk))
hσ(xi, yj , x, y)rk(x, y)

bσ(x, y, rk)
dxdy +

∫
Hσ

0 (x, y)rk+1(x, y)dxdy −
∫

Hσ
0 (x, y)rk(x, y)dxdy.

The right-hand side of the above expression can be written as

φc(Hσ
0 (x, y)rk+1(x, y), Hσ

0 (x, y)rk(x, y)) (23)

where we define φc(f(x, y), g(x, y)) as
∫

f(x, y) log f(x,y)
g(x,y) −f(x, y)+g(x, y)dxdy,

which can be easily verified to be a positive function for any positive f , g. The-
refore, we have

φ(σ, rk+1) − φ(σ, rk) ≤ 0. (24)

Note that Jensen’s inequality holds with equality if and only if F (σ, rk) is a con-
stant; since the only admissible constant value is 1, then we have rk+1 = rk,
which concludes the proof.

Finally, we can conclude that the algorithm proposed generates a monotonically
decreasing sequence of values of the cost function φ. We say that the initial
conditions σ0, r0 are admissible if σ0 > 0 and r0 is a positive function defined on
IR2.
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Corollary 1 Let σ0, r0 be admissible initial conditions for the sequences σk

and rk defined from equations (16) and (19) respectively. Let φk be defined as
φ(σk, rk), then the sequence {φk} converges to a limit φ∗:

lim
k→∞

φk = φ∗. (25)

Proof: Follows directly from equation (16), (10) and claim 1, together with the
fact that the I-divergence is bounded from below by zero.

Even if φk converges to a limit, it is not necessarily the case that σk and rk

do. Whether this happens or not depends on the observability of the model (1),
which has been analyzed in [10].

3 Experiments

In this section we discuss some details that are important for implementing the
algorithm just described on a digital computer, and test its performance on a
set of experiments on real and simulated images.

3.1 Implementation

Since the algorithm we propose is iterative, we need to initialize it with a fea-
sible radiance. We choose r = Iu1 , that is we choose the initial estimate of the
radiance to be equal to the first image. This choice is guaranteed to be feasi-
ble since the image is positive. Since hσ(xi, yj , x, y) is discrete in the first two
variables, one needs to exercise caution when performing numerical integration
against kernels smaller than the unit step of the discretization (xi, yj). This case
cannot be discounted because it occurs whenever the patch on the image that
we are observing is close to be in focus. In our implementation, integrals are
computed with a first order (linear) approximation as a tradeoff between speed
and accuracy.

Another important detail to bear in mind is that it is necessary to choose the
appropriate integration domain. The fact that we use an equifocal imaging model
allows us to use the same reference frame for the image and for space, which is
represented locally by a plane parallel to it. However, the image in any given
patch receives contributions from a region of space possibly bigger than the patch
itself. Thus we write I(xi, yj) =

∫
hσ(xi, yj , x, y)(rI(x, y) + ro(x, y))dxdy, where

ro is the radiance outside the patch that contributes to the convolution with
the kernel hσ. In the real and synthetic experiments we always use two images,
with planes focused at 529 mm and 869 mm as in the data set provided to us by
Watanabe and Nayar [18]; the lens diameter is such that the maximum kernel
radius is around 2.3 pixels. With these values the kernel is well approximated
by a Gaussian since the radius is small compared to the image patch dimension.
Therefore, we define ro on a domain that is 3 pixels wider than the domain of
rI , which we choose to be 7 × 7, ending up integrating on patches of dimension
13 × 13.



Shape and Radiance Estimation from the Information Divergence 763

3.2 Experiments with Synthetic Images

In this set of experiments we investigate the robustness of the algorithm to
noise. Even though we have not derived the algorithm based upon a particular
noise model (all the discussion is strictly deterministic), it can be shown that
minimizing the I-divergence can be cast into a stochastic framework by modeling
the image noise as a Poisson process (the arrivals of photons on the sensor
surface).

We have generated 10 noisy image pairs and considered patches of size 7 × 7
pixels. Smaller patches result in greater sensitivity to noise, while larger ones
challenge the equifocal approximation. We have considered additive Gaussian
noise with a variance that ranges from the 1% to the 10% of the radiance ma-
gnitude, which guarantees that the positivity constraint is still satisfied with
high probability. The results of the computed depths are summarized in figure
2. We iterate the algorithm 5 times at each point.
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Fig. 2. Depth error as a function of image noise, mean and std.

As it can be seen, the algorithm is quite robust to the additive noise, even tough
if the radiance is not sufficiently exciting (in the sense defined in [10]) it will
not converge. All this will be seen in the experiments with real images described
below.
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3.3 Experiments with Real Images

We have tested the algorithm on the two images in figures 4 and 7 provided to
us by M. Watanabe and S. Nayar. These images were generated by a telecentric
optic (see [17] for more details) where there is no change in scale for different
focus settings. A side effect is that now the real lens diameter is not constant,
and therefore we need to correct our optical model according to figure 3. More
precisely, we substitute the diameter d with the new diameter D = 2aZF

ZF −f where
a and f are indicated in figure 3. For this experiment, in order to speed up the
computation, we chose to iterate the algorithm for 5 iterations and to compute
depth at every other pixel along both coordinate axes. At points where the ra-
diance is not rich enough, or where the local approximation with an equifocal
plane is not valid, the algorithm fails to converge. This explains why in figure 5
some points are visibly incorrect, and in figure 8 the depth of the white back-
ground is poorly retrieved. A convergence test could be employed, although it
would slow down the computation considerably.

D
-a

a

External
Aperture

y

Z fF

Fig. 3. The modified diameter in the telecentric lens model.

4 Conclusions

We have proposed a solution to the problem of reconstructing shape and radiance
of a scene using I-divergence as a criterion in an infinite-dimensional optimization
framework. The algorithm is iterative, and we give a proof of its convergence to
a (local) minimum which, by construction, is admissible in the sense of resulting
in a positive radiance and imaging kernel.
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Fig. 4. Original images: near focused (left); far focused (right). The difference between
the two images is barely perceivable since the two focal planes are only 340 mm apart.
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Fig. 6. Reconstructed depth for the scene in figure 4: smoothed mesh.

Fig. 7. Original images: near focused (left); far focused (right). As in figure 4 the
difference between the two is barely perceivable.
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Fig. 8. Reconstructed depth for the scene in figure 7, coded in grayscale. In the uniform
region of the background, the radiance is not sufficiently exciting, in the sense defined
in [10]. Therefore, the algorithm cannot converge and the quality of the estimates, as
it can be seen, is poor.

Fig. 9. Reconstructed depth for the scene in figure 7: smoothed mesh.
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