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Abstract. Perceptual experiments indicate that corners and curvature
are very important features in the process of recognition. This paper
presents a new method to efficiently detect rotational symmetries, which
describe complex curvature such as corners, circles, star- and spiral pat-
terns. The method is designed to give selective and sparse responses. It
works in three steps; first extract local orientation from a gray-scale or
color image, second correlate the orientation image with rotational sym-
metry filters and third let the filter responses inhibit each other in order
to get more selective responses. The correlations can be made efficient
by separating the 2D-filters into a small number of 1D-filters.
These symmetries can serve as feature points at a high abstraction le-
vel for use in hierarchical matching structures for 3D-estimation, object
recognition, etc.

1 Introduction

Human vision seems to work in a hierarchical way in that we first extract low
level features such as local orientation and color and then higher level features
[7]. There also seem to exist lateral interactions between cells, perhaps to make
them more selective. No one knows for sure what these high level features are
but there are some indications that curvature, circles, spiral- and star patters are
among them [10], [18]. And indeed, perceptual experiments indicate that corners
and curvature are very important features in the process of recognition and one
can often recognize an object from its curvature alone [19], [16]. They have a
high degree of specificity and sparsity. As they are point features, they do not
suffer from the aperture problem usually encountered for line and edge structures
[8]. This paper describes a procedure to detect the features mentioned above.
First a local orientation image is calculated. Second this image is correlated with
a set of filters to detect complex curvature features. Finally a lateral inhibition
procedure is used to make these filter responses more selective and sparse. These
symmetries can serve as feature points at a high abstraction level for use in
hierarchical matching structure for object recognition and estimation of 3D-
structure. One examples is detection of traffic circles, crossroads (star shapes)
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and bends of the road (high curvature points) in aerial images which is useful
in navigation of autonomous aircrafts. Another example concerning autonomous
trucks is mentioned in the end of this paper.

2 Notations

x = (x1, x2), y = (y1, y2) denote Cartesian coordinate values, r and ϕ denote
polar coordinate values and u denote Cartesian coordinates in the frequency do-
main. Remaining boldface letters, z, a, b etc., denote real or complex functions.
z(x) means the value at pixel x and z means the matrix containing the function
values at all pixels.
Products d = ab and divisions e = a/b between matrices are exclusively defined
to be pointwise operators, i.e. d(x) = a(x)b(x), e(x) = a(x)/b(x).

Inner scalar product: 〈b, f〉 =
∑

y∈ZZ2

b∗(y)f(y) (1)

Correlation: (b ? f)(x) =
∑

y∈ZZ2

b∗(y)f(y − x) (2)

where ∗ denote complex conjugate. b ? f is then also an image (assumed cut to
the same size as f). (Do not confuse this with convolution, b ∗ f , where the filter
b is mirrored instead of conjugated.)

3 Local Orientation

The classical representation of local orientation is simply a 2D-vector pointing in
the dominant direction with a magnitude that reflects the orientation dominance
(e.g. the energy in the dominant direction). An example of this is the image
gradient.
A better representation is the double angle representation, where we have a vector
pointing in the double angle direction, i.e. if the orientation has the direction θ
we represent it with a vector pointing in the 2θ-direction. Figure1 illustrates the
idea. The magnitude still represents our confidence in the dominant orientation

ei0

eip
eip/2

ei3p/2

Fig. 1. Local orientations (left) and corresponding double angle descriptors as vectors
(middle) and as complex numbers (right)
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and that is sometimes referred to as a certainty measure (often denoted c). The
concept double angle representation was first mentioned in [17]. It has at least
two advantages:

• We avoid ambiguities in the representation: It does not matter if we choose
to say that the orientation has the direction θ or, equivalently, θ + π. In the
double angle representation both choices get the same descriptor angle 2θ
(modulo 2π).

• Averaging the double angle orientation description field makes sense. One
can argue that two orthogonal orientations should have maximally diffe-
rent representations, e.g. vectors that point in opposite directions. This is
for instance useful in color images and vector fields when we want to fuse
descriptors from several channels into one description.

This descriptor will in this paper be denoted by a complex number z where
ẑ = z/|z| points out the dominant orientation and c = |z| indicates the certainty
or confidence in the orientation identified.
A definition before we continue:

Definition 1. A simple signal I : IRn → IR is defined as I(x) = f(x · m̂) where
f : IR → IR and m̂ is a fix vector ∈ IRn.

Figure 2 shows some examples of simple and non-simple signals. The magnitude

m̂

Fig. 2. Examples of a simple signal (left) and non-simple signals (middle and right)

of the double angle descriptor is usually chosen to be proportional to the dif-
ference between the signal energy in the dominant direction and the energy in
the orthogonal direction. In this case the double angle descriptor cannot distin-
guish between a weak (low energy) simple signal and a strong non-simple signal
(e.g. noise with a slightly dominant orientation). We will get a low magnitude
c = |z| (indicating no dominant orientation) in both cases which sometimes may
be undesirable.
Another, more comprehensive, representation of local orientation is the concept
of tensors [8]. A 2D tensor is a 2 × 2 tensor (matrix) T = λ1ê1êT

1 + λ2ê2êT
2

where λ1 denote the energy in the dominant orientation direction ê1 and λ2 the
energy in the orthogonal direction ê2 (by this definition we get λ1 ≥ λ2 and
for a simple signal λ2 = 0). From this tensor we can calculate a double angle
descriptor e.g. by

z =
(

λ1 − λ2

λ1

) (
1 − e−‖T‖/T0

)
ei2 6 ê1 (3)
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This detour (gray-level image ⇒ tensor ⇒ double angle descriptor) seems unne-
cessary, but in this way we can control the selectivity for simple/non-simple
signals and the energy sensitivity separately (for instance a weak simple signal
can now get a higher magnitude |z| than a strong non-simple signal). We can
also note that the magnitude lies in the interval [0, 1], with |z| = 1 indicating
high confidence and |z| = 0 low confidence in the dominant orientation.
There are different ways to compute the tensor in practice. One way is to look
at the local energy in different directions using a set of quadrature filters and
weigh them together in a proper way [8]. The filtering can be efficiently com-
puted by use of sequential filter trees [4]. Another way to compute a tensor is
to approximate (by weighted least square) the local neighborhood f(x) with a
polynomial of e.g. second degree

f(x) ∼ xT Ax + bT x + c (4)

and from the coefficients create a tensor description

T = AAT + γbbT (5)

(where γ is a non-negative weight factor between the linear and quadratic terms).
This local polynomial approximation can be done by means of convolutions
which in turn can be made separable leading to a very efficient algorithm, see
[2]. The second method is at present a little faster and is the one used in this
paper. To compute all local orientations in 9 × 9 neighborhoods in a 256 × 256
gray-level image takes in MATLAB a couple of seconds on a 299MHz SUN Ultra
10.

It is assumed from now on that we have access to orientation transform
images in the double angle representation, denoted z.

4 Rotational Symmetries

4.1 Basics of Rotational Symmetries

Figure 3 contain two image patterns together with their corresponding orienta-
tion descriptions in double angle representation (the orientation description is
only a sketch - the certainty c is high in all areas where we have an approxima-
tely simple signal and fairly high signal energy). The circle can be described in
the orientation transform as z = ccirclee

i2ϕ where ccircle = |z|. Thus if we want
to detect circles we could simply correlate the orientation image with the filter

w(r, ϕ) = a(r)ei2ϕ where a(r), e.g., =
{

1 if r < R
0 otherwise (6)

The correlation at x = 0 becomes

(w ? zcircle)(0) = 〈w, zcircle〉 = 〈aei2ϕ, ccirclee
i2ϕ〉 = 〈a, ccircle〉 (7)
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Original image Orientation transform

z = cei2ϕ

Original image Orientation transform

z = cei2ϕ · eiπ

Fig. 3. Two patterns, a circle and a star, together with their corresponding orientation
description in double angle representation

The correlation at x 6= 0 will be complex but give magnitudes less than 〈a,
ccircle〉. It is interesting to note that the same filter also can be used to detect
star patterns. The phase of the double angle description of a circle and a star
only differs by a constant π (see Fig. 3). Therefore if we correlate the circle filter
with an orientation image describing a star pattern we get

(w ? zstar)(0) = 〈w, zstar〉 = 〈aei2ϕ, cstare
i2ϕeiπ〉 = eiπ〈a, cstar〉 (8)

(ccircle and cstar does not have to be equal).
Consequently the filter can detect, and distinguish, between a whole class of
patterns. The phase of 〈w, z〉 represents the class membership and the magnitude
indicates the confidence in this membership.

The filter described above is only one of many in a family of filters called
rotational symmetry filters:

n:th order rotational symmetry filter

wn(r, ϕ) = a(r)bn(ϕ) where bn(ϕ) = einϕ (9)

a(r) is called the applicability function and can be thought of as a window for
the basis function bn which is called circular harmonic function. The n:th order
filter detects the class of patterns that can be described by cei(nϕ+α) (they are
said to have the angular modulation speed n). Each class member is represented
by a certain phase α. One can also think of the filter responses as components
in a polar Fourier series of local areas in the orientation image.
The curious reader might wonder what these patterns look like. To answer this
one has to start with the orientation image cei(nϕ+α) and go backwards to the
original image, I, from which the orientation image was calculated. This ’inverse’
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is of course not unambiguous, but we get a hint by making the assumption that
the image gradient is parallel to the dominant orientation:

∇I = ±|∇I|ei(nϕ+α)/2 (10)

(We have to divide the phase by two to get rid of the double angle representation.
The price is the direction unambiguity.) This will give a differential equation
that can be solved assuming polar separability. The solution (not derived here)
becomes:

I(r, ϕ) =

{
Cr1−n/2 cos((n

2 − 1)ϕ + α
2 ) n 6= 2

Cr1−n/2e(1−n/2) tan(α/2)ϕ n = 2
(11)

One way to visualize this is to plot level curves (1 + cos(ωI))/2 (idea from
[13]). These are also a solution to the differential equation. Figure 4 contains
a sample of these psychedelic patterns. The most useful rotational symmetry

n = −3

a 
=

 0
a 

=
 p

/2
a 

=
 p

a 
=

 3
p/

2

n = −2 n = −1 n = 0 n = 1 n = 2 n = 3 n = 4

Fig. 4. Corresponding gray-level patterns to some rotational symmetries ei(nϕ+α)

filters (i.e. most common visual patterns in our daily lives) are the

– zeroth order, n = 0: Detects lines (simply an averaging of the orientation
image).

– first order, n = 1 (also called parabolic symmetries, referring to the gray-
level patterns the filter are matched to): Detects curvature, corners and
line-endings. This is not an optimal corner detector but it is rather robust
and will give a high response to a variety of corner angles. The direction of
the corner equals the filter output phase.

– second order, n = 2 (also called circular symmetries): Detects stars, spiral
and circular-like patterns.

The three basis functions b0, b1 and b2 are shown in Fig. 5 below.
The rotational symmetry filters were invented around 1981 by Granlund and
Knutsson and have been mentioned previously in literature [8], [12], [15], [13],
[6].
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b0 b1 b2

Fig. 5. The three most useful circular harmonic functions, bn = einϕ, plotted in vector
representation

4.2 Choice of Applicability Function

The choice of applicability function a depends on the application. We can for
instance choose a Gaussian function or a table like the one in (6) above. These
have one drawback though. In a general image we usually have more than one
event (pattern) and we only want to detect one at a time in order to avoid inter-
ferences. In the case of rotational symmetries we measure the angular variation.
This can differ from one radius to another. One could therefore argue that we
should look at one fix radius at a time.
As an example look at the bicycle wheel in Fig. 6. It consists of two events; a

Fig. 6. Bicycle wheel Fig. 7. Three applicabilities a(r)

star pattern at a small radius and a circle pattern at a larger radius. If we cal-
culate an orientation image of the wheel and apply the circular symmetry filter
w2 = a(r)ei2ϕ with the leftmost applicability in Fig. 7 we will get a high filter
output at the center of the wheel with the phase π, representing a star shaped
pattern. If we instead take the rightmost ring-shaped applicability which mainly
’sees’ the circle, we get a high filter output with phase 0. If we on the other
hand use the middle applicability which ’sees’ both events they will probably
cancel each other out somewhat giving a low filter output with random phase.
Differently argued one can also say that we are measuring the change in the
ϕ-dimension and should therefore hold the other dimensions (the radius) fairly
constant.1 From this we can conclude that the descriptor is dependent upon
scale, like in the description of most other properties. Thus an applicability fun-
ction localized around a certain radius seems to be a better choice in the case of
1 Also compare with derivation: If you e.g. want to calculate ∂I/∂x with a filter it is

probably a good idea to make the filter fairly narrow in the y-direction.



878 B. Johansson and G. Granlund

multi-events (multi-scales).
What is the best shape of the applicability? We can for instance choose the right-
most ring-shaped applicability in Fig. 7. However, a more fuzzy applicability like
the one in Fig. 8, giving smoother and better controlled responses, will probably
be a better choice. The applicability in this figure is a simple difference of Gaus-

Fig. 8. Cross-section of an smooth applicability localized around a center radius

sians. This applicability has a further advantage in that it can be separated into
a few 1D-filters, see Sec. 7.

5 Normalization

Look at the two star patterns in Fig. 9. If we make orientation images for these

|〈w2, zstar1〉| < |〈w2, zstar2〉|

Fig. 9. Two star patterns

two stars and correlate with the circular symmetry filter w2 = a(r)ei2ϕ we will
in both cases get a high filter response with phase π. The response for the left
star will however be lower than the response for the right star simply because
we have less orientation information in the first case, i.e. 〈a, cstar1〉 < 〈a, cstar2〉.
This may not be desirable. If we want to detect star shapes we do not care if
the star has eight or twenty points, if it is composed of thick or thin lines and
so on. Similar problems occur for other patterns.
This problem can be solved by normalization. We normalize the filter response
with the amount of information we have available, weighted with the applicability
(remember that the division is a pointwise operator): 2

2 Normalization can also be seen as a projection of ẑ onto the basis function bn in a Hil-
bert space with the (weighted) inner product 〈b, ẑ〉ac =

∑
ckakẑkb∗

n,k = 〈abn, cẑ〉
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Normalization of filter responses

sn =
(cẑ) ? (abn)

c ? a
(12)

sn(x) has the useful property |sn(x)| ≤ 1. If the orientation ẑ is consistent with
the filter basis function bn we will get |sn| = 1 independently of the amount
of orientation information (except in the degenerated case c ≡ 0). If the total
orientation information is too low we cannot rely on the result sn. In the ori-
entation image we had a certainty measure c indicating how well we can rely
on the orientation information ẑ. We can use the same formalism for rotational
symmetry images, call it symmetry certainty cs, indicating how well we can rely
on sn. For example we can use

Symmetry certainty

cs = m
(c ? a
1 ? a

)
(13)

where 1 should be interpreted as an image with the constant value one, i.e. 1?a
equals the sum of all coefficients in a except near the image border, and m is a
mapping function serving as a fuzzy threshold, e.g.

mα,β(x) =
((1 − α)x)β

((1 − α)x)β + (α(1 − x))β
(14)

α determines the threshold level and β the ’fuzziness’. Figure 10 illustrates the
mapping function for some different values α, β. In this paper however we will

0 0.5 1
0

0.5

1
a = 0.3, b = 1

0 0.5 1
0

0.5

1
a = 0.3, b = 2

0 0.5 1
0

0.5

1
a = 0.3, b = 5

0 0.5 1
0

0.5

1
a = 0.7, b = 1

0 0.5 1
0

0.5

1
a = 0.7, b = 2

0 0.5 1
0

0.5

1
a = 0.7, b = 5

Fig. 10. The mapping function mα,β for some values α, β

use the simple case α = 0.5 and β = 1 giving mα,β(x) = x and cs = c?a
1?a , i.e. cs

is a weighted averaged input certainty.

because 〈bn,bn〉ac = 〈a, c〉, where 〈., .〉 is the normal scalar product defined in Sec. 2
above.

This is actually a special case of normalized convolution [2], [11], [9] where you
project ẑ on a subspace spanned by several basis functions (this require knowledge
about dual basis theory).
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6 Normalized Mutual Inhibition

Figure 11, 12 and 13 illustrates the procedure gray level image ⇒ orientation
image ⇒ rotational symmetry images (the choice of applicability is not critical
in this case, the scale is about the same size as the circle). Figure 11 shows the

Image
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| z|= c

20 40 60

20

40
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Fig. 11. Left: Gray-level test image; a rectangle and a circle. Right: Magnitude of
the orientation image (white indicates high magnitude)
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Fig. 12. Magnitude of normalized filter responses sn, n = 0, 1, 2. Rightmost: Symme-
try certainty cs = c?a
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Fig. 13. Magnitude of normalized filter responses sn, n = 0, 1, 2 weighted with the
certainty cs (equivalent to wn ? z)

test image and corresponding orientation image. Figure 12 shows the normalized
responses sn, n = 0, 1, 2 and their certainty cs = c?a

1?a . In Fig. 13 the normalized
responses are weighted with the certainty. With this simple choice of cs we get

sncs =
(cẑ) ? (abn)

c ? a
· c ? a
1 ? a

=
(cẑ) ? (abn)

1 ? a
= (cẑ) ?

( a
1 ? a

bn

)
= (cẑ) ? (âbn)

(15)
where â = a

1?a is a normalized applicability. This is the same as if we had filtered
without normalization (except for â instead of a). As we soon will see it is still
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useful to divide the result into the terms sn and cs.
Take one more look at Fig. 13. As you can see the first order symmetry filter
s1 detect corners and the second order filter s2 detect circles but they also give
some response to other patterns than we might wish them to do. This is because
we do not have orientation information in the whole applicability window. For
instance a line in the outer field of the applicability window might as well be a
piece of a circle if you do not have contradictory orientation information in the
rest of the window, a corner is almost the same as half a circle etc.
We can make the filters more selective by letting the normalized responses inhibit
(or punish) each other (it is much easier to inhibit with the normalized responses
compared to the unnormalized because we know that |sn| ≤ 1):

Normalized inhibition

šn = sn

∏
k 6=n

(1 − mk(|sk|)) (16)

where mk can be some fuzzy threshold function controlling the power in the
inhibition, e.g. the one in (14). If one filter output is high the others will get low.
This idea is inspired from lateral inhibition in biological systems and is a well
known concept but has never before been used to make rotational symmetries
more selective.
Figure 14 illustrates the result after inhibition (mk is ignored here). The inhibited
responses are weighted with the certainty cs. The inhibited first and second

š1cs š2cs

20 40 60

20

40

60
20 40 60

20

40

60

Fig. 14. Inhibited rotational symmetry responses

symmetry responses, š1 and š2, are the most interesting ones (but we still need
to calculate s0 for use in the inhibition procedure).

6.1 Comparison to Previous Methods

A previous solution to achieve better selectivity is described in a patent from 1986
[14] and is used in a commercial image processing program by ContextVision3.
The patent describes a method termed consistency operation. The name refers
3 http://www.contextvision.se/
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to that the operator should only respond to signals that are consistent with the
signal model. The method is based on a combination of four correlations:

h1 = wn ? z , h2 = wn ? c , h3 = a ? z , h4 = a ? c (17)

The filter results are combined into

h =
h4h1 − h2h3

hγ
4

(18)

where the denominator is an energy normalization controlling the model versus
energy dependence of the algorithm. With γ = 1 the output magnitude varies
linearly with the magnitude of the input signal. Decreasing the value increases
the selectivity. The result from this operation is called divcons when n = 1 and
rotcons when n = 2.
The result when applying this method (with γ = 1) on the orientation image
in Fig. 11 is shown in Fig. 15. The divcons result can be fairly comparable

Divcons

20 40 60

20

40

60

Rotcons

20 40 60

20

40

60

Fig. 15. Increase of selectivity using the consistency operation

to š1cs in this case but the rotcons result is much less selective than š1cs. The
consistency operation has fairly the same behavior as an inhibition with only the
zeroth order symmetry response (line patterns). This means for instance that
the corners are not inhibited from the second order response but are instead
detected as ’half circles’. In general, using normalized inhibition instead of the
consistency operation produces more selective and sparse responses.

7 Separable Filters

On the subject of computational complexity we can note that we have to compute
four correlations in the normalized inhibition procedure:

(w0 ? z) , (w1 ? z) , (w2 ? z) and (a ? |z|) = (w0 ? |z|) (19)

The filters have to be large if the want to find large patterns and the correlations
becomes computationally demanding. However there are much redundancy in
the filters and they can be separated into a few 1D-filters using SVD (Singular
Value Decomposition). A filter kernel w of size N × N can be composed into
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three N × N matrices, w = UΣVT =
∑N

k=1 σkukvT
k where uk and vk are the

k:th column in U resp. V, UUT = VVT = I and Σ = diag(σ1, σ2, ...) (where
σ1 ≥ σ2 ≥ ...). If only a few σk, say M values, is high we can approximate the
filter kernel by M terms in the sum, w ≈ w̃ =

∑M
k=1 σ1ukvT

k , which corresponds
to 2M 1D-filters.

Example 1. Let N = 21 and use a difference of Gaussians as applicability (as in
Fig. 8):

a(r) = e− r2

σ2 − e− r2

σ2δ2 , σ = r0

√
1 − 1/δ2

ln δ2 (20)

where r0 is the center radius and 0 < δ < 1 is a user parameter controlling the
thickness of the applicability. If we choose r0 = 3 and δ = 0.5 and compute the
SVD for w0 = a(r), w1 = a(r)eiϕ and w2 = a(r)e2iϕ respectively we get

diag(S0) = (3.6124, 0.8469, 0.0000, 0.0000, 0.0000, ...)
diag(S1) = (2.6191, 2.6191, 0.1535, 0.1535, 0.0177, ...) (21)
diag(S2) = (2.6199, 1.8552, 1.8552, 0.1402, 0.0056, ...)

It is thus sufficient to approximate w0 with two terms (four 1D-filters), w1 with
two terms (four 1D-filters) and w2 with three terms (six 1D-filters) and the rela-
tive error ‖wn−w̃n‖

‖wn‖ is about 5% for both w1 and w2. The reader can verify that
if we had chosen a Gaussian applicability instead of a difference of Gaussians, we
would have to use more terms than above to get a good approximation (except
for w0 which can be separated into only two 1D-filters).

8 Experiments

This section illustrates how the symmetry filters can be use with two examples.
Space limitations do not allow any detailed explanations.

8.1 Experiment 1: Autonomous Truck

Figure 16 shows an image of a pallet together with the magnitude (orientation
certainty) of its orientation image. This is one type of image used in a robotics
project, where the goal is to have an autonomous truck locate the pallet and
pick it up. The orientation image was down-sampled before correlation with the
symmetry filters (using a Gaussian filter with std = 1.2). The inhibited first and
second order symmetries are shown in Fig. 17. The size of the filter kernel is
50 × 50 with a center radius 6 (the separable filter technique described above
was used). The intensity represents the magnitude and the vectors represent the
value at the largest maxima points. There are a large number of responses and
the output looks complex, which is due to the fact that the input images are
indeed complex.
The second order symmetry filter gives characteristic blobs with zero phase on
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the pallet indicating circular-like patterns (in this case squares). The circle pat-
terns can be extracted from the second order response by e.g. taking the real
part and ignoring negative values, see Fig. 18. The pallet has a characteristic
signature of three large blobs and some smaller in between, see Fig. 19. The
whole procedure from the gray-level image to the circle image took about 6 se-
conds on a 299MHz SUN Ultra 10. The circle image can be further processed
using Hough transform to find ’lines’ formed by the blobs and the correct line
(the one in Fig. 18) can be found by testing against the characteristic signature
hypothesis. In spite of the complexity of the image, the linear set of circular
structures turns out to be quite unique. When the pallet is found in the image
it is possible to calculate pallet direction, distance and orientation in the real
world using the information in the symmetry image and the local orientation
image.
This technique has been tested on 28 images containing pallets. The distance
between the camera and the pallet varied in the range of 1 to 16 meters (the
symmetries was detected in several scales) and the orientation of the pallet re-
lative to the camera varied between 0 to 40 degrees. The result was promising
but the number of test images is too small to reach a final conclusion. Details
about this project can be found in [3].

8.2 Experiment 2: Aerial Image

Another example is generation of features for use in navigation of autonomous
aircrafts. The features can be used in template matching or local histogram mat-
ching to help the aircraft find landmark pbjects to establish its position. Figure
20 contains an aerial image and its orientaton magnitude. The inhibited first
order symmetry is shown in Fig. 21 (as before, the magnitude represents the
intensity and the vectors represent the complex value at the largest maxima
points). The first order symmetry detects the corners in the crossroad and cur-
vature in general. The second order symmetry can be used to find traffic circles,
crossroads, houses, and other circular-like patterns. Detected circular-like pat-
terns (c.f. Fig. 18) in two different scales is shown in Fig. 22. The rotational
symmetry features is more robust to illumination and seasonal variations than
the original gray-level image which makes them suitable in a matching process.
In spite of the apparent complexity, the particular pattern of such features turns
out to be quite specific. Such a higher level matching is likely to take place in
human vision as well. This experiment is part of the WITAS-project, see [1], [5].
Future work includes multiscale detection and testing of robustness and invari-
ance to viewpoint, seasonal variances, illumination etc.
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Fig. 16. An image of a pallet (left) and its local orientation magnitude (right)
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Fig. 17. Inhibited rotational symmetry responses. Left : first order, Right : second order
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Fig. 19. Characteristics along a
line in Fig. 18 fullfilling structural
hypothesis for the desired object
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Fig. 20. An aerial image (left) and its local orientation magnitude (right)
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Fig. 21. Inhibited first order symmetry respons with center radius r0 = 15
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Fig. 22. Circular-like patterns extracted from second order symmetry using center
radius r0 = 5 (left) and r0 = 15 (right)
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TAS project at Computer Vision Laboratory - A status report (Jan 98). In SSAB
98 Symposium on image analysis, 113–116, Uppsala, Sweden, March 1998.

[6] Bigün, J.: Pattern Recognition in Images by Symmetries and Coordinate Trans-
formations. Computer Vision and Image Understanding, 68(3):290–307, 1997

[7] Bear, M. F., Connors, B. W., Paradiso, M. A.: Neuroscience: Exploring the Brain.
Williams & Wilkins, 1996, ISBN 0-683-00488-3.

[8] Granlund, G. H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer
Academic Publishers, 1995. ISBN 0-7923-9530-1.

[9] Westin, C-F.: A Tensor Framework for Multidimensional Signal Processing. PhD
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