
Hierarchical and Recursive State Machines with
Context-Dependent Properties�

Salvatore La Torre, Margherita Napoli, Mimmo Parente, and
Gennaro Parlato

Dipartimento di Informatica e Applicazioni
Università degli Studi di Salerno

Abstract. Hierarchical and recursive state machines are suitable ab-
stract models for many software systems. In this paper we extend a
model recently introduced in literature, by allowing atomic propositions
to label all the kinds of vertices and not only basic nodes. We call the ob-
tained models context-dependent hierarchical/recursive state machines.
We study on such models cycle detection, reachability and Ltl model-
checking. Despite of a more succinct representation, we prove that Ltl
model-checking can be done in time linear in the size of the model and ex-
ponential in the size of the formula, as for standard Ltl model-checking.
Reachability and cycle detection become NP-complete, and if we place
some restrictions on the representation of the target states, we can
decide them in time linear in the size of the formula and the size of the
model.

Keywords: Model Checking, Automata, Temporal Logic.

1 Introduction

Due to their complexity, the verification of the correctness of many modern digi-
tal systems is infeasible without suitable automated techniques. Formal verifica-
tion has been very successful and recent results have led to the implementation of
powerful design tools (see [CK96]). In this area one of the most successful tech-
niques has been model checking [CE81]: a high-level specification is expressed
by a formula of a logic and this is checked for fulfillment on an abstract model
(state machine) of the system. Though model checking is linear in the size of
the model, it is computationally hard since the model generally grows expo-
nentially with the number of variables used to describe a state of the system
(state-space explosion). As a consequence, an important part of the research on
model checking has been concerned with handling this problem.

Complex systems are usually composed of relatively simple modules in a
hierarchical manner. Hierarchical structures are also typical of object-oriented
� This research was partially supported by the MIUR in the framework of the project
“Metodi Formali per la Sicurezza e il Tempo” (MEFISTO) and MIUR grant 60%
2002.

J.C.M. Baeten et al. (Eds.): ICALP 2003, LNCS 2719, pp. 776–789, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Hierarchical and Recursive State Machines 777

paradigms [BJR97,RBP+91,SGW94]. We consider systems modeled as hierar-
chical finite state machines, that is, finite state machines where a vertex can
either expand to another hierarchical state machine or be a basic vertex (in the
former case we call the vertex a supernode, in the latter simply a node).

The model we consider in this paper generalizes instead the model studied in
[AY01]. There the authors consider the model checking on Hierarchical State Ma-
chines (HSM) where only the nodes are labeled with atomic propositions (AP).
We relax this constraint and thus we allow to associate atomic propositions also
with vertices that expand to a machine. Expanding a supernode v to a machine
M , all vertices of M inherit the atomic propositions of v (context), so that differ-
ent vertices expanding to M can place M into different contexts. For this reason,
we call such a model a hierarchical state machine with context-dependent prop-
erties (in the following denoted by Context-dependent Hierarchical State
Machine). The semantics of a CHSM is given by the corresponding natural
flat model which is a Kripke structure.

By allowing this more general labeling, for a given system it is possible to
obtain very succinct abstract models. In the following example, we show that the
gain of succinctness can be exponential compared to the models used in [AY01].
Consider a digital clock with hours, minutes, and seconds. We can construct a
hierarchical finite state machine M composed of three machines M1, M2, and
M3 such that the supernodes of M3 expands to M2 and the supernodes of M2
expands to M1. Machine M1 is a chain of nodes. Machines M2 and M3 are chains
of supernodes except for the initial and the output vertices that are nodes. In
M3 each supernode corresponds to a hour and they are linked accordingly to
increasing time. Analogously, M2 models minutes and M1 seconds. A flat model
for the digital clock has at least 24 · 60 · 60 = 86, 400 vertices, while the above
hierarchical model has only 24 + 60 + 60 + 6 = 150 vertices (6 are simply initial
and output nodes). Assume that we are interested in checking properties that
refer to a precise time expressed in hours, minutes and seconds. Clearly, it is not
sufficient to label only the nodes (we would be able to capture only that an event
happens at a certain second, but we would have no clue of the actual hour and
minute). In the model defined in [AY01], at least 86, 400 nodes are needed, that
is, there would be no gain with respect to a minimal flat model. In our model,
we are able to label each supernode in M3 with atomic propositions encoding
the corresponding hour. Analogously we can use atomic propositions to encode
minutes and seconds on M2 and M1, respectively. This way, each state of the
corresponding flat model is labeled with the encoding of a hour, a minute and a
second in a day and vertices are linked by increasing time.

A simple way of analyzing hierarchical systems is first to flatten them into
equivalent non-hierarchical systems and then apply existing verification tech-
niques on finite state systems. The drawback of such an approach is that the size
of the flat system can be exponential in the hierarchical depth. In many recent
papers, it has been shown that it is possible to reduce the complexity growth
caused by handling large systems, by performing verification in a hierarchical
manner [AGM00,AG00,BLA+99,AY01]. We follow this approach and study on

778 S. La Torre et al.

CHSMs standard decision problems which are related to system verification,
such as reachability, cycle detection, and model checking. In this paper, we also
consider Context-dependent Recursive State Machines (CRSM) which
generalize CHSMs by allowing recursive expansions and we study on them the
verification-related problems listed above. Recursive generalizations of the hier-
archical model presented in [AY01] are studied in [AEY01,BGR01]. Recursive
machines can be used to model the control flow of programs with recursive calls
and thus are suitable for abstracting the behavior of reactive software systems.
Results. Given a transition system, a state s and a set of target states T ,
(usually expressed by a propositional boolean formula), the reachability problem
is the problem of determining whether a state of T can be reached from s on
a run of the system. In practice, this problem is relevant in the verification of
systems, for example it is related to the verification of safety requirements: we
want to check whether all the reachable states of the system belong to a given
“safe” region (invariant checking problem).

We prove that reachability onCRSMs is NP-complete, and NP-hardness still
holds if we restrict to CHSMs. We then give an algorithm to decide reachability
on CRSMs that runs in time linear in the size of the model and exponential in
the size of the formula. Finally, given a CHSM M, we show effective sufficient
conditions for solving reachability in time linear in both the size of the formula
and the size of the model. Let us remark that these conditions are satisfied when
we consider an instance of the reachability problem where the model is given by
a Hierarchical State Machine (HSM) as defined in [AY01].

The cycle detection problem is the problem of verifying whether a given state
can be reached repeatedly. Cycle detection is the basic problem for the verifica-
tion of liveness properties: “some good thing will eventually happen”.

We also consider the model checking of Ltl formulas onCRSMs. Given a set
of atomic propositions AP , a linear temporal logic (Ltl) formula is built up in
the usual way from atomic propositions, the boolean connectives, the temporal
operators next and until. An Ltl formula is interpreted over an infinite sequence
over 2AP . A CRSM satisfies a formula ϕ if every run in the corresponding flat
model satisfies ϕ. Given an Ltl formula ϕ and a CRSM M, the model checking
problem for M and ϕ is the problem to determine whether M satisfies ϕ. We
give a decision algorithm that runs in O(|M| · 8|ϕ|) time for CHSMs and an
algorithm in O(|M| · 16|ϕ|) time for CRSMs. Our algorithms do not need to
flatten the system and mainly consist of reducing the model checking problem
to the emptiness problem of recursive Büchi automata [AEY01].

The rest of the paper is organized as follows. In the next section definitions
and notation are given. The NP-completeness of the cycle detection and of the
reachability problems is shown in section 3 (actually the proofs for the cycle
detection problems are omitted in this version, due to the lack of space). In sec-
tion 4 we give the linear time algorithms for CHSMs and CRSMs. In Section 5,
we discuss the model checking of Ltl formulas. We conclude with few remarks
in Section 6.

Hierarchical and Recursive State Machines 779

2 Context-Dependent State Machines

In this section we introduce the definitions and the notation we will use in the
rest of the paper. We consider Kripke structures, that is, state-transition graphs
where each state is labeled by a subset of a finite set of atomic propositions
(AP). A Context-dependent Recursive State Machine (CRSM) over AP is a
tuple M = (M1, . . . , Mk) of Kripke structures with:

– a set of vertices N , split into disjoint sets N1, . . . , Nk; a set IN =
{in1, . . . , ink} of initial vertices, where ini ∈ Ni, and a set of output vertices
OUT split into OUT1, . . . , OUTk, with OUTi ⊆ Ni;

– a mapping expand : N −→ {0, 1, . . . , k} such that expand(u) = 0, for each
u ∈ IN ∪OUT . We define the closure of expand, expand+ : N −→ 2{0,1,...,k},
as: h ∈ expand+(u) if either h = expand(u) or u′ ∈ Nexpand(u) exists such
that h ∈ expand+(u′).

– the sets of edges Ei, for 1 ≤ i ≤ k, such that each edge in Ei is either a
pair (u, v), with u, v ∈ Ni and expand(u) = 0, or a triple ((u, z), v) with
z ∈ OUTexpand(u), and u, v ∈ Ni;

– a mapping true : N −→ 2AP , such that true(u) ∩ true(v) = ∅, for v ∈
Nh, u �∈ Nh and h ∈ expand+(u).

Informally, a CRSM is a collection of graphs which can call each other recur-
sively. Each graph has an initial vertex and some output vertices. The mapping
expand gives the recursive-call structure. If expand(u) = j > 0, then the vertex
u expands to the graph Mj and u is called a supernode; when expand(u) = 0
the vertex u is called a node. The mapping true labels each vertex with a set
of atomic propositions holding at that vertex. The starting node of a CRSM
M = (M1, . . . , Mk) is the initial node ink of Mk.
The Semantics of CRSMs. Every CRSM M corresponds to a flat model
MF which is a directed graph with (possibly infinite) vertices (states) labeled
with atomic propositions. Informally speaking, the flat machine MF is obtained
starting from Mk and iteratively replacing every supernode u in it with the graph
Mexpand(u). The flat machine MF is defined as follows. A state of MF is a tuple
X = [u1, . . . , um] where u1 ∈ Nk, uj+1 ∈ Nexpand(uj) for j = 1, . . . , m − 1, and
expand(um) = 0. State X is labeled by a set of atomic proposition true(X),
consisting of the union of true(uj), for j = 1, . . . , m. State [ink] is the initial
state of MF . The set of transitions E is defined as follows. Let X = [u1, . . . , um]
be a state with um ∈ Nh and um−1 ∈ Nj . Then, (X, X ′) ∈ E provided that one
of the following cases holds:

1. (um, u′) ∈ Eh, u′ ∈ Nh, and if expand(u′) = 0 then X ′ = [u1, . . . , um−1, u
′],

otherwise X ′ = [u1, . . . , um−1, u
′, inl] for l = expand(u′).

2. um ∈ OUTh, ((um−1, um), u′) ∈ Ej , u′ ∈ Nj , and if expand(u′) = 0
then X ′ = [u1, . . . , um−2, u

′], otherwise X ′ = [u1, . . . , um−2, u
′, inl] for

l = expand(u′).

Let [u1, . . . , un] be a state of MF , a prefix of [u1, . . . , un] is u1, . . . , ui for
i ≤ n.

780 S. La Torre et al.

A Context-dependent Hierarchic State Machine (CHSM) is a CRSM such
that expand(u) < i, for every u ∈ Ni. A CHSM is a collection of graphs which
are organized to form a hierarchy and expand gives the hierarchical structure.
The graph Mk is clearly the top-level graph of the hierarchy, i.e., no vertices
expand to it and, as for CRSMs, its initial node ink is the starting node of the
CHSM.

3 Reachability and Cycle Detection Problems:
Computational Complexity

In this section we discuss the computational complexity of the reachability and
cycle detection problems for CRSMs and CHSMs. Given a CRSM M =
(M1, . . . , Mk) and a propositional boolean formula ϕ, the reachability problem
is the problem of deciding if a path in MF exists from [ink] to a state X on
which ϕ is satisfied. Analogously, the cycle detection problem is the problem of
deciding if a cycle in MF exists containing a reachable state X on which ϕ is
satisfied.

We prove that for CRSMs and CHSMs these decision problems are NP-
complete by showing NP-hardness for CHSMs and giving nondeterministic
polynomial-time algorithms for CRSMs.

Lemma 1. Reachability and cycle detection for CHSMs are NP-hard.

Proof We give a reduction in linear time with respect to the size of the
formula from the satisfiability problem SAT. Given a boolean formula ϕ over
the variables x1, . . . , xm , we construct a CHSM M = (M1, M2, . . . , Mm)
over AP = {P1, P2, . . . , Pm}, as follows. Each graph Mi has four vertices
ini, pi, notpi, outi forming a chain. Each vertex pi is labeled by {Pi} whereas
the vertices notpi, ini and outi are labeled by the empty set. Since an atomic
proposition Pi does not label vertices in graphs other than Mi, this labeling
implicitly corresponds to assigning ¬Pi to notpi. Vertices pi and notpi, for i > 1,
are supernodes which expand into Mi−1, and p1 and notp1 are instead nodes.

Thus there are 2m states of MF of type [u1, . . . , um] such that um−i+1 ∈
{pi, notpi} for i = 1, . . . , m, and it is easy to verify that all these states are
reachable from [inm]. Clearly, given a truth assignment ν of x1, . . . , xm, a state
X of MF exists such that ν assigns True to xi if and only if pi occurs in X and,
in turns, if and only if Pi ∈ true(X). Thus a reachable state X of MF exists
whose labeling corresponds to a truth assignment fulfilling ϕ if and only if ϕ is
satisfiable.

By definition of the cycle detection problem, checking for the existence of a
cycle containing a state on which ϕ is satisfied requires to check for reachability
first. Thus, NP-hardness is inherited from reachability. ��

To prove membership to NP of the reachability on CRSMs, we need to
consider a notion of connectivity of vertices in a CRSM. We say that a vertex
u ∈ N is connected if a reachable state [u1, . . . , um] of MF exists, where u = ui

for some i = 1, . . . , m. Observe that the starting node ink is clearly connected

Hierarchical and Recursive State Machines 781

and a vertex u ∈ Nj is connected if and only if inj is connected and a path π in
Mj from inj to u exists, such that if π goes through an edge ((v, z), v′) ∈ Ej then
z is a connected vertex (recall that z ∈ OUTexpand(v)). From this the following
proposition holds.

Proposition 1. A state [u1, . . . , um] of MF is reachable if and only if all the
vertices ui, for i = 1, . . . , m, are connected.

The above observation suggests also an algorithm to determine in linear time
the connected vertices. We omit the proof of this result which is given by a rather
simple modification of a depth-first search on a graph (see also [AEY01]).

Proposition 2. Given a CRSM M, the set of connected vertices of M can be
determined in O(|M|).
To prove membership to NP of the reachability onCRSMs, we need to prove the
following technical lemma. Notice that this lemma is not needed for CHSMs,
where the number of supernodes that compose a state of MF is bounded from
above by the number of component graphs.

Lemma 2. Given a CRSM M, for each state X = [u1, . . . , um] such that
m > n2+1, where n is the number of supernodes ofM, a state X ′ = [u′

1, . . . , u
′
m′]

exists such that m′ < m and true(X) = true(X ′). Moreover, if X is reachable
then also X ′ is reachable.

Proof Consider a sequence v1, . . . , vh ∈ N . We say that a sub-sequence vi . . . vj ,
1 ≤ i < j, is a cycle if vi = vj . Moreover, we say that a cycle vi . . . vj , is erasable
if {vi+1, . . . , vj} ⊆ {v1, . . . , vi}. It is easy to verify that for a sequence u1 . . . um

such that X = [u1, . . . , um] is a state of MF and ui . . . uj is a cycle, we have that
X ′ = [u1, . . . , ui, uj+1, . . . , um] is a state of MF and if ui . . . uj is also erasable
then true(X) = true(X ′). Moreover, by Proposition 1, if X is reachable then
also X ′ is reachable.

To conclude the proof we only need to show that for each state X =
[u1, . . . , um] such that m > n2 + 1, where n is the number of supernodes in
M, u1 . . . um contains an erasable cycle. Notice that m > n2 + 1 implies that
a supernode u exists, occuring at least (n + 1) times in u1 . . . um. Suppose
u1 . . . um = α0uα1u . . . αnuβ, where each αi does not contain occurrences of
u. A cycle uαiu is not erasable only if it contains a supernode that is not in
α0u . . . αi−1u. By a simple count, if α0u . . . αn−1 does not contain erasable cy-
cles, then all supernodes occur in it. Thus, uαnu is erasable. ��

Now, we can prove membership to NP of the reachability and the cycle
detection problems on CRSMs.

Lemma 3. Reachability and cycle detection for CRSMs are decidable in non-
deterministic polynomial-time.

Proof Consider the instance of the reachability problem given by a CRSM M
and a propositional boolean formula ϕ. By Proposition 2 we can determine in

782 S. La Torre et al.

O(|M|) time the set of the connected vertices, and then, given a state X of MF ,
by Proposition 1 we can check if X is reachable in O(|M|+ |X|) time. Verifying
the fulfillment of ϕ on X takes O(|ϕ|+|X|) time. Moreover, by Lemma 2 we need
only to consider states X = [u1, . . . , um] for m ≤ n2 + 1, where n is the number
of supernodes of M. Thus, we can conclude that the reachability problem on
CHSMs is in NP. ��

By Lemmas 1 and 3 we have the following theorem.

Theorem 1. Reachability and cycle detection for CRSMs (CHSMs) are NP-
complete.

4 Efficient Solutions to Reachability and Cycle Detection
Problems

In this section, we give a linear time algorithm that solves reachability and cycle
detection problems for CHSMs which are related to target sets by a partic-
ular condition (specified later). As a corollary we get three consequences: first
the results regarding reachability and cycle detection for the model considered
in [AY01] are obtained as particular cases, second we characterize a class of for-
mulas guaranteeing that the algorithm works correctly and finally we show that
the algorithm works also for DNF formulas, thus obtaining a general solution
for any formula with a tight worst case running time of O(|M| · 2|ϕ|).

Finally, we give a linear time reduction from the reachability problem on
CRSMs for DNF formulas to the corresponding problem on CHSMs, thus the
above general solution still holds for CRSMs.

Consider now CHSMs. Clearly a propositional formula ϕ can be evalu-
ated in a state X of MF by instantiating to true the variables correspond-
ing to the atomic propositions in true(X) and to false all the others. Now
we wish to evaluate ϕ without constructing the graph MF , to this aim we use
a greedy approach in a top-down fashion on the hierarchy: at each supernode
we instantiate as many variables as possible. By traversing the hierarchy in a
top-down fashion, once a node is reached, ϕ can only partially evaluated. On
a supernode u of a CHSM all the variables instantiated to true correspond
to the atomic propositions in true(u). Determining the variables to instanti-
ate to false is not so immediate. We define AP (h) as the union of the sets
labeling either the vertices in Nh or those having an ancestor in Nh, that is,
AP (h) =

⋃
v∈Nh

(true(v) ∪ AP (expand(v))) where AP (0) = ∅. Moreover, for
u ∈ Nh, we define the set false(u) as AP (h) \ (true(u)∪ AP (expand(u))). This
set contains the atomic propositions that can be instantiated to false at u ,
since a proposition p ∈ false(u) if and only if p �∈ true(X), for every state
X of MF having the supernode u as a component. It is easy to see that the
sets false(u), u ∈ N , can be preprocessed in time O(|M|), by visiting M in a
bottom-up way.

For a propositional boolean formula ϕ we denote by Eval(ϕ, u) the for-
mula obtained by instantiating ϕ with true(u) and false(u). We gener-
alize this notation to sequences of vertices defining Eval(ϕ, u1, · · · , ui) as

Hierarchical and Recursive State Machines 783

Algorithm Reachability(M, ϕ)
return(Reach(Mk, ϕ)).

Function Reach(Mh, ϕ)

VISITED[h] ←MARK;
foreach u ∈ Nh do

ϕ′ = Eval(ϕ, u);
if (ϕ′ == TRUE) then return TRUE;
if (ϕ′ == FALSE) then continue;
if ((expand(u)>0) AND (V ISITED[expand(u)]! = MARK)) then

if Reach(Mexpand(u), ϕ
′) then return TRUE;

endfor
return FALSE;

Fig. 1. Algorithm Reachability.

Eval(Eval(ϕ, u1), u2, · · · , ui). Finally, we will denote by AP (ϕ) the set of atomic
propositions corresponding to ϕ variables.

We consider a condition relating a CHSM M and a target set specified by a
formula ϕ asserting that ”when two supernodes expand to the same graph, then
any partial evaluation of ϕ ending on them coincides”. Formally, the condition
is as follows:

Condition 1 Let x1, · · · , xi and y1, · · · , yj be two prefixes of MF states
such that expand(xi) = expand(yj). If neither Eval(ϕ, x1, · · · , xi) nor
Eval(ϕ, y1, · · · , yj) is one of the constants {TRUE, FALSE}, then
Eval(ϕ, x1, · · · , xi) = Eval(ϕ, y1, · · · , yj).

When reachability and cycle detection become tractable.

Theorem 2. The reachability and cycle detection problems on a CHSM M
and a formula ϕ satisfying Condition 1 are decidable in time O(|M| · |ϕ|).
Proof Consider a CHSM M = (M1, . . . , Mk) and without loss of generality
assume that all the vertices of M are connected (see Proposition2). Algorithm
Reachability(M, ϕ) (Figure 1), returns TRUE if and only if ϕ is evaluated
to true on a reachable state of MF . The function Reach uses a global array
VISITED (initially unmarked in all the positions) to mark the visited graphs
Mh. For each node u of Mh, ϕ is evaluated on it according to true(u) and
false(u), call ϕ′ the returned formula. If ϕ′ evaluates true on u, then Reach
stops returning TRUE. (and the main algorithm stops too returning TRUE).
If ϕ′ evaluates false, another vertex of Mh which has not yet been explored is
processed. In case u is a supernode and Mexpand(u) has never been visited, then
the function is called on the graph Mexpand(u) and ϕ′. Now note that Condition 1
assures that it is not necessary to visit a graph Mh more than once, thus the
overall complexity of the algorithm is linear in |M| and |ϕ| and clearly returns
TRUE if and only if a node X in MF exists on which ϕ is TRUE. ��

784 S. La Torre et al.

It is easy to see that given any formula ϕ and a Hierarchical State Machine
(HSM) introduced in [AY01] (where only nodes are labeled with the mapping
true, see the introduction), Condition 1 always holds, thus the linear time so-
lutions for the reachability and cycle detection problems for HSM given in that
paper are here obtained as particular cases.

Now we present a characterization of formulas for which Theorem 2 holds.
A propositional boolean formula ϕ is said to be in M-normal form if ϕ =
ϕ1 ∧ . . . ∧ ϕm and for every ϕi and for every vertex u of M it holds that either
AP (ϕi) ∩ (true(u) ∪ false(u)) = ∅ or AP (ϕi) ∩ (true(u) ∪ false(u)) = AP (ϕi).
It is easy to see that also in this case Condition 1 holds.

Theorem 2 can be generalized for a finite disjunction of formulas satisfying
Condition 1. Since a conjunction of literals is in M-normal form, for all possible
M, then this generalization can be applied to DNF formulas. Thus, as any
formula ϕ can always be transformed in a DNF formula, we have an algorithm
for reachability and cycle detection problems whose worst case running time
is O(|M| · DNF(ϕ)), where DNF(ϕ) is the cost of the transformation of ϕ in
Disjunctive Normal Form. All this yields a tight upper bound of O(|M| · 2|ϕ|).

Reachability and cycle detection are also tractable on CRSMs if we restrict
to formulas in disjunctive normal form as shown in the following theorem.

Theorem 3. Reachability and cycle detection problems for a CRSM M and a
formula ϕ in DNF are decidable in time O(|M| · |ϕ|).

Proof Consider a CRSM M and a DNF formula ϕ = ψ1∨ . . .∨ψm where each
ψi is a conjunction of literals. Our algorithm consists of reducing in O(|ϕ| · |M|)
time the reachability problem for M and ψi to the reachability problem for a
CHSM M̄ and ψi, where size of M̄ is O(|M|). Then the result follows from
Theorem 2.

Consider a disjunct clause ψ of ϕ. We simplify M using the following two
steps.

1. for each graph Mi, delete all the existing edges and insert an edge from ini

to any other connected vertex of Mi;
2. if u is not an initial node and true(u) contains an atomic proposition corre-

sponding to a variable which is negated in ψ, then delete u from Mi.

This transformation can be performed in O(|ψ| · |M|) time and preserves the
reachability of the states of MF satisfying ψ, thanks to Proposition 2.

Now, define a supernode u ∈ Ni as recursively expansible if i ∈ expand+(u)
and a graph Mi as recursively expansible if it contains at least a recursively
expansible supernode. We define the equivalence relation ≈ on the indices of
recursively expansible graphs: i ≈ j if and only if vertices u ∈ Ni and v ∈ Nj exist
such that i ∈ expand+(v) and j ∈ expand+(u). We want to define a CHSM M̄
= (M̄1, M̄2, . . . , M̄k′) such that M̄ has a component graph for each equivalence
class of the relation ≈. Let f : {1, . . . , k} −→ {1, . . . , k′} be the function that
maps each i to j such that i is in the equivalence class corresponding to M̄j .

Hierarchical and Recursive State Machines 785

For a graph Mi which is not recursively expansible (i.e., [i] = {i}), we
define M̄f(i) as Mi except for the mapping expand, since expandM̄(u) =
f(expandM(u)). For a recursively expansible graph Mi we define M̄f(i) as fol-
lows. All vertices u ∈ Nj which are not recursively expansible, with j ≈ i, are
vertices of M̄f(i), the edges between them in Mi are edges of M̄f(i) as well and
OUTf(i) =

⋃
j,j≈i OUTj . Moreover, we add a new initial node īnf(i) and in-

sert edges from īnf(i) to all vertices inj , j ≈ i. For each supernode u of M̄f(i)
we define expandM̄(u) = f(expandM(u)). Let SM(i) be the set of all recur-
sively expansible vertices belonging to all graphs Mj such that j ≈ i. We define
trueM̄(īnf(i)) as trueM̄(inj) for an arbitrary j ≈ i, and for each vertex u of
M̄f(i), trueM̄(u) as

⋃
v∈SM(i) trueM(v)∪ trueM(u) (note that no atomic propo-

sition added in this way to the label of u corresponds to a variable which is
negated in ψ).

Now observe that, by the above part 2 of the above simplification, if X is
a state of MF satisfying ψ and Y is a state of M̄F such that trueM(X) ⊆
trueM̄(Y) and trueM̄(Y) \ trueM(X) does not contain an atomic proposition
corresponding to a variable which is negated in ψ, then Y satisfies ψ as well. Since
the initial simplification also preserves reachability, we have that if a reachable
state of MF fulfilling ψ exists, then a state of M̄F fulfilling ψ also exists. Since
by construction, states of M̄F corresponds to states of MF , the vice-versa also
holds. ��

As a consequence of Theorem 3 and the arguments for CHSMs and DNF
formulas, the following theorem holds.

Theorem 4. The reachability and cycle detection problems on a CRSM M
and a propositional boolean formula ϕ are decidable in O(|M| · 2|ϕ|) time.

5 Ltl Model Checking

Here we consider the verification problem of linear-time requirements, expressed
by Ltl-formulas [Pnu77]. We follow the automata theoretic approach to solving
model checking [VW86]: given an Ltl formula ϕ and a Kripke structure M ,
it is possible to reduce model checking to the emptiness problem of Büchi au-
tomata. To use this approach, we extend the Cartesian product between Kripke
structures.

Given a transition graph with states labeled by subsets of atomic propositions
and a state s, a trace is an infinite sequence α1α2 . . . αi . . . of labels of states
occuring in a path starting from s. Moreover, given a CRSM M, we define the
language L(M) as the set of the traces of MF starting from its initial state. A
Büchi automaton A = (Q, q1, ∆, L, T) is a Kripke structure (Q, ∆, L) together
with a set of accepting states T and a starting state q1. The language L(A)
accepted by A is the set of the traces corresponding to paths visiting infinitely
often a state of T .

Let M = (M1, . . . , Mk) be a CRSM and A = (Q, q1, ∆, L, T), for Q =
{q1, . . . , qm}, be a Büchi automaton. Let 1 ≤ i ≤ k, 1 ≤ j ≤ m, and P be such

786 S. La Torre et al.

that P ⊆ AP and P ∪ trueM(ini) = L(qj), we define the graphs M(i,j,P) as
follows. Each M(i,j,P) contains vertices [u, q, j, P] such that (u, q) belongs to the
standard Cartesian product of Mi and A, and the labeling of q coincides with
the labeling of u augmented with the atomic propositions that u inherits from its
ancestors in a given context. The inherited set of atomic propositions is given by
P . The property P ∪ trueM(ini) = L(qj) assures that we consider only graphs
M(i,j,P) whose initial vertex is compatible with the automaton state. Formally,
we have:

– The set N(i,j,P) of the vertices of M(i,j,P) contains quadruples [u, q, j, P],
where u ∈ Ni, q ∈ Q, and

• either expandM(u) = 0 and L(q) = trueM(u) ∪ P
• or expandM(u) = h > 0 and L(q) = trueM(u) ∪ trueM(inh) ∪ P .

– The initial vertex of M(i,j,P) is [ini, qj , j, P] and the output nodes are
[u, q, j, P] for u ∈ OUTi and q ∈ Q;

– M(i,j,P) contains the following edges:
• ([u, q′, j, P], [v, q′′, j, P]), with (q′, q′′) ∈ ∆ and (u, v) ∈ Ei,
• (([u, qj′ , j, P], [z, q′, j′, P ∪ trueM(u)]), [v, q′′, j, P]), with (q′, q′′) ∈ ∆,
((u, z), v) ∈ Ei, and L(q) = trueM(u) ∪ trueM(inh) ∪ P for
expandM(u) = h.

From the above definition we observe that if u is a supernode then the la-
beling of q has to match also with the labeling of inexpandM(u) since [u, q, j, P]
is a supernode of M′ and one has to assure the correctness, with respect to
the labeling, of its expansion. Note that when only the value of j varies, we
have graphs which differ one each other only for the choice of the the initial
vertex [ini, qj , j, P]. Moreover, the edges in M(i,j,P) are given by coupling the
transitions (q′, q′′) of A with both kinds of edges (u, v) and ((u, z), v) in Ei. For
h = expandM(u), we have edges (([u, q, j, P], [z, q′, h, P ∪trueM(u)]), [v, q′′, j, P])
for every q ∈ Q such that L(q) = trueM(u)∪ trueM(inh)∪P . Thus, there might
be as many as |Q| edges, for every pair of edges ((u, z), v) and (q′, q′′).

We can now define M′ = M ⊗
A as a CRSM constituted by some of the

graphs M(i,j,P), and defined inductively as follows:

– M(k,1,∅) is the graph containing the starting node of M′;
– Let M(i,j,P) be a graph of M′, and [u, qt, j, P] be a vertex of M(i,j,P).

• If expandM(u) = 0 then expandM′([u, qt, j, P]) = 0;
• If expandM(u) = h > 0, and P ′ = P ∪trueM(u) then M(h,t,P ′) is a graph
of M′ and expandM′([u, qt, j, P]) = 〈h, t, P ′〉 where 〈h, t, P ′〉 denotes the
index of M(h,t,P ′);

– trueM′([u, q, j, P]) = trueM(u), for every [u, q, j, P].

Observe that M′ = M ⊗
A is a CRSM and if M is a CHSM, then M′

is a CHSM, as well. To determine the size of M′, first consider the size of
each graph M(i,j,P). The number of the edges is bounded by the product of the
number of edges in Mi and the number of transitions in A multiplied at most
by m, since we have at most |Q| edges for any (q′, q′′) ∈ ∆ and ((u, z), v) ∈ Ei.
Thus, an upper bound to the size of M(i,j,P) is given by (m · |Ei| · |A|). The size
of M′ can be obtained now by counting the number of its component graphs.

Hierarchical and Recursive State Machines 787

Lemma 4. Given a CRSM M, M′ = M ⊗
A is a CRSM that can be con-

structed in O(m2 · |M| · |A| · |2AP |) time. Moreover, if M is a CHSM, then M′

is a CHSM that can be constructed in O(m2 · |M| · |A|) time.
Proof First recall that a graph M(i,j,P) of M′ has the property that P ∪
trueM(ini) = L(qj). Therefore, P is the union of two disjoint sets P1 and P2,
such that P1 is the set of the atomic propositions of L(qj) that do not belong
to trueM(ini), and P2 = P ∩ trueM(ini) is a subset of trueM(ini). Thus, for
fixed values of i and j, P1 is fixed and the number of different graphs M(i,j,P)
is bounded above by the number of different subsets of trueM(ini). Therefore,
the size of M′ is bounded above by

∑m
j=1

∑k
i=1(2

|AP | · m · |Mi| · |A|).
Now, let M be a CHSM. Given a graph M(i,j,P) of M′, P is defined as the

set of the propositions that the vertices of Mi inherit. Thus, P ∩ trueM(u) = ∅,
for every vertex u of Mi and then P ∩ trueM(ini) = ∅. Hence, in this case, P2
is empty and then at most one graph M(i,j,P) exists for fixed values of i and j.
Therefore, the size of M′ is bounded above by

∑m
j=1

∑k
i=1(m · |Mi| · |A|). ��

The CRSM M ⊗
A can be used to check for the emptiness of the language

given by the intersection of L(M) and L(A), as shown in the following lemma.

Lemma 5. There exists an algorithm checking whether L(M) ∩ L(A) = ∅ in
time linear in the size of M′ = M ⊗

A.

Proof First, observe that if we consider as set of final states the vertices
[u, q, h, P] such that q ∈ T , the CRSM M′ is a recursive Büchi automaton.
Moreover, the set of the traces of M′F is the same as the set of traces of the
Cartesian product of MF and A. Thus L(M)∩L(A) �= ∅ if and only L(M′) �= ∅.
From [AEY01], for recursive Büchi automata with a single initial node for each
graph, non-emptiness can be checked in linear time. ��

As a consequence of the above lemmas, we obtain an algorithm to solving the
Ltl model checking for CRSMs. Following the automata theoretic approach,
one can construct a Büchi automaton A¬ϕ of size O(2|ϕ|) accepting the set
L(A¬ϕ) of the sequences which do not satisfy ϕ, and then ϕ is satisfied on all
paths of M if and only if L(M)∩L(A¬ϕ) is empty. From Lemma 4, one can now
construct M ⊗

A¬ϕ, whose size is O(m2 · |M| · |A¬ϕ| · 2|AP |) = O(|M| · 16|ϕ|)
(since m = |A¬ϕ| = O(2|ϕ|) and 2|AP | ≤ 2|ϕ|). Moreover, this size reduces to
O(m2 · |M| · |A¬ϕ|) = O(|M| · 8|ϕ|), when M is a CHSM. Hence, by Lemma 5
we obtain the main result of this section.

Theorem 5. The Ltl model checking on a CRSM M and a formula ϕ can be
solved in O(|M| · 16|ϕ|) time. Moreover, if M is a CHSM the problem can be
solved in O(|M| · 8|ϕ|) time.

6 Discussion

We have proposed new abstract models for sequential state machines: the
context-dependent hierarchical and recursive state machines. On these mod-
els we have studied reachability, cycle detection and the more general problem

788 S. La Torre et al.

of model checking with respect to linear-time specifications. An interesting fea-
ture of CHSMs is that they allow very succinct representations of systems, and
this comes substantially at no cost if compared to analogous hierarchical models
studied in the literature. Moreover, we prove that for some particular formulas
we improve the complexity of previous approaches.

Several extensions of the introduced models can be considered.
Our models are sequential. If we add concurrency to CHSMs, the computa-

tional complexity of the considered decision problems grows significantly (we re-
call that reachability in communicating hierarchical state machines is Expspace-
complete [AKY99]). While for CRSMs with concurrency, reachability becomes
undecidable since sequential CRSMs are as expressive as pushdown automata
[AEY01,BGR01].

We have only considered models where a single entry node is allowed for each
component machine. We can relax this limitation allowing multiple entry points.
The semantics of this extension naturally follows from the semantics given for
the single entry case. In the hierarchic setting, we can translate a multiple-entry
CHSM M into an equivalent single-entry CHSM M′ of size at most cubic
in the size of M. In fact, each component machine of M can be replaced in
M′ by multiple copies, each copy corresponding to an entry point and having
as unique entry point the entry point itself. Expansions are redirected to the
proper components in order to match the expansions in M. Thus, supernodes
may need to be replaced by multiple copies each pointing to the proper machine
in M′. If we apply this construction to a multiple-entry CRSM, the obtained
single-entry CRSM does not satisfy the property true(u) ∩ true(v) = ∅, for
v ∈ Nh, u �∈ Nh and h ∈ expand+(u) (see definition of CRSM). This is a
consequence of the fact that if a machine of the multiple-entry CRSM can
directly or indirectly call itself, then there are two copies of this machine that
may call each other recursively. We recall that the above property is sufficient
to ensure that Condition 1 holds for conjunctions of literals, and thus is crucial
to obtain the results given in Section 4. However, it is possible to prove that
Theorem 3 also holds for multiple-entry CRSMs. We leave the details of this
proof to the full paper.

For modeling purposes it is useful to have variables over a finite domain
that can be passed from a component to another. We can extend our models
to handle input, output and local variables. Consider a component machine M
with he entry nodes, hx exit nodes, and ht internal vertices. If M is equipped
also with ki input boolean variables, ko output boolean variables, and kl local
boolean variables, we can model by a machine having 2ki ·he entry nodes, 2ko ·hx

exit nodes, and 2ki+kl+ko · ht internal vertices.

References

[AEY01] R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state
machines. In Proc. of the 13th International Conference on Computer
Aided Verification, CAV’01, LNCS 2102, pages 207–220. Springer, 2001.

Hierarchical and Recursive State Machines 789

[AG00] R. Alur and R. Grosu. Modular refinement of hierarchic reactive machines.
In Proc. of the 27th Annual ACM Symposium on Principles of Program-
ming Languages, pages 390–402, 2000.

[AGM00] R. Alur, R. Grosu, and M. McDougall. Efficient reachability analysis of
hierarchical reactive machines. In Computer Aided Verification, 12th In-
ternational Conference, LNCS 1855, pages 280–295. Springer, 2000.

[AKY99] R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical
state machines. In Proc. of the 26-th International Colloquium on Au-
tomata, Languages and Programming, ICALP’99, LNCS 1644, pages 169–
178. Springer-Verlag, 1999.

[AY01] R. Alur and M. Yannakakis. Model checking of hierarchical state machines.
ACM Transactions on Programming Languages and Systems (TOPLAS),
23(3):273–303, 2001.

[BGR01] M. Benedikt, P. Godefroid, and T. W. Reps. Model checking of unrestricted
hierarchical state machines. In Proc. of the 28th International Colloquium
Automata, Languages and Programming, ICALP’01, LNCS 2076, pages
652–666. Springer, 2001.

[BJR97] G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling Language User
Guide. Addison Wesley, 1997.

[BLA+99] G. Behrmann, K.G. Larsen, H.R. Andersen, H. Hulgaard, and J. Lind-
Nielsen. Verification of hierarchical state/event systems using reusability
and compositonality. In Proc. of the Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS’99, LNCS 1579, pages 163–177.
Springer, 1999.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proc. of Workshop on
Logic of Programs, LNCS 131, pages 52–71. Springer-Verlag, 1981.

[CK96] E.M. Clarke and R.P. Kurshan. Computer-aided verification. IEEE Spec-
trum, 33(6):61–67, 1996.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. of the 18th IEEE
Symposium on Foundations of Computer Science, pages 46–77, 1977.

[RBP+91] J. Rumabaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-oriented Modeling and Design. Prentice-Hall, 1991.

[SGW94] B. Selic, G. Gullekson, and P.T. Ward. Real-time object oriented modeling
and design. J. Wiley, 1994.

[VW86] M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics
of programs. Journal of Computer and System Sciences, 32:182–211, 1986.

	Introduction
	Context-Dependent State Machines
	Reachability and Cycle Detection Problems: Computational Complexity
	Efficient Solutions to Reachability and Cycle Detection Problems
	unhbox voidb @x hbox {{sc Ltl}} Model Checking
	Discussion

