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Abstract

The problem of constructing a semi-pullback in a category is intimately connected to the
problem of establishing the transitivity of bisimulations. Edalat shows that a semi-pullback
can be constructed in the category of Markov processes on Polish spaces, when the underlying
transition probability functions are universally measurable, and the morphisms are measure
preserving continuous maps. We demonstrate that the simpler assumption of Borel mea-
surability suffices. Markov processes are in fact a special case: we consider the category of
stochastic relations over Standard Borel spaces. At the core of the present solution lies a
selection argument from stochastic dynamic optimization. An example shows that (weak)
pullbacks do not exist in the category of Markov processes. We show that bisimilar labelled
Markov processes are characterized through a weak negation-free logic, which provides a
simplification and generalization of previous results by Desharnais, Edalat and Panangaden.
The construction of pullbacks provides a rather general answer to Panangaden’s question
regarding the transitivity of the bisimulation relation in categories of Markov processes.

Keywords: Bisimulation, semi-pullback, stochastic relations, labelled Markov processes,
Hennessy-Milner logic.
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1 Introduction

The existence of semi-pullbacks in a category makes sure that the bisimulation relation is tran-
sitive, provided bisimulation between objects is defined as a span of morphisms [13]. Edalat
investigates this question for categories of Markov processes and shows that semi-pullbacks
exist [8]. The category he focusses on has as objects universally measurable transition prob-
ability functions on Polish spaces, the morphisms are continuous, surjective, and probability
preserving maps. His proof is constructive and makes essentially use of techniques of analytic
spaces (which are continuous images of Polish spaces). The result implies that the semi-
pullback of those transition probabilities which are measurable with respect to the Borel sets
of the Polish spaces under consideration may in fact be universally measurable rather than
simply Borel measurable. This then demands some unpleasant technical machinery when
logically characterizing bisimulation for labelled Markov processes, cf. [3]. Quite apart from
that, it is somewhat annoying that forming the semi-pullback for Borel Markov processes
seems to require a change of categories. This is so because this Borel measurability comes
naturally with the Borel sets of a Polish space, whereas universal measurability requires a
somewhat elaborate completion process.

The distinction between measurability and universal measurability (both terms are defined
in Sect. 2) may seem negligible at first. Measurability is the natural concept in measurable
spaces (like continuity in topological spaces, or homomorphisms in groups), thus stochastic
concepts are usually formulated in terms of it. Universal measurability requires a completion
process using all (o)-finite measures on the measure space under consideration. In a Polish
space the Borel sets as the measurable sets are generated by the open (or by the closed) sets,
so the generators are well known, comparable generators for the universally measurable sets
are not that easy identified, let alone put to use. Thus it appears to be sensible to search for
solutions for the problem of constructing semi-pullbacks for stochastic relations or labelled
Markov processes first within the realm of Borel sets.

This short note shows among others that the semi-pullback of Borel Markov processes exists
within the category of these processes, when the underlying space is Polish (like the real
line). Edalat considers transition probability functions from one Polish space into itself, this
paper considers the slightly more general notion of a stochastic relation, cf. [15, 1, 5, 4],
i.e., transition sub-probability functions from one Polish space to another one. Rather than
constructing the function explicitly, as Edalat does, we rely chiefly on a selection argument:
we show that the problem can be formulated in terms of measurable set-valued maps for
which a measurable selector exists.

The paper’s contributions are as follows. First it is shown that one can in fact construct
semi-pullbacks in a category of stochastic relations between Polish spaces (and, by the way,
an example shows that weak pullbacks do not exist). The second contribution is the reduction
of an existential argument to a selection argument, a technique borrowed from dynamic
optimization. Third it is shown that the solution for characterizing bisimulations for labelled
Markov processes proposed by Desharnais, Edalat and Panagaden [3] can be carried over to
Standard Borel spaces with their simple Borel structure. This gives a conceptually simpler
result and widens its applicability.

This note is organized as follows: Sect. 2 collects some basic facts from topology, and from
measure theory. It is shown that assigning a Polish space its set of subprobability measures
is an endofunctor on this category, opening the road to discuss applications through monads,
cf.[9, 6]. Sect. 3 defines the category of stochastic relations, shows how to formulate the
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problem in terms of a set-valued function, and proves that a selector for that function exists.
This implies the existence of semi-pullbacks for some related categories, too. A counterex-
ample destroys the hope for strengthening this results to weak pullbacks. Finally, we show
in Sect. 4 that the bisimulation relation is transitive for the category of stochastic relations,
and that bisimilar labelled Markov processes are characterized through a weak negation free
logic. Sect. 5 wraps it all up by summarizing the results and indicating areas of further work.
It is clear that the topological assumptions should be weakened further.

Acknowledgements The author wants to thank Georgios Lajios for his helpful and con-
structive comments. Conversations with J. Elstrodt, D. Plachky and C. Pumpliin are grate-
fully acknowledged. The paper was typeset using Paul Taylor’s diagrams package.

2 A Small Dose Measure Theory

This Section collects some basic facts from topology and measure theory for the reader’s
convenience and for later reference.

A Polish space (X, T) is a topological space which has a countable dense subset, and which is
metrizable through a complete metric, a measurable space (X, .A) is a set X with a o-algebra
A. The Borel sets B(X,T) for the topology T is the smallest o-algebra on X which contains
T. A Standard Borel space (X,.A) is a measurable space such that the o-algebra A equals
B (X,T) for some Polish topology 7 on X. Although the Borel sets are determined uniquely
through the topology, the converse does not hold, as we will see in a short while. Given two
measurable spaces (X, A) and (Y, B), amap f: X —» Y is A — B-measurable whenever

ftBICA

holds, where
f71B) = {f~'[Bl|B € B}

is the set of inverse images
f7B] = {z € X|f(z) € B}

of elements of B. Note that f~![B] is in any case an o-algebra. If the o-algebras are the Borel
sets of some topologies on X and Y, resp., then a measurable map is called Borel measurable
or simply a Borel map. The real numbers R carry always the Borel structure induced by the
usual topology which will not be mentioned explicitly when talking about Borel maps.

A map f: X — Y between the topological spaces (X,7) and (Y,S) is continuous iff the
inverse image of an open set from S is an open set in 7. Thus a continuous map is also
measurable with respect to the Borel sets generated by the respective topologies.

When the context is clear, we will write down Polish spaces without their topologies, and the
Borel sets are always understood with respect to the topology. Measurable maps with respect
to the Borel sets of a Polish topology will simply be called Borel maps.

The following statement will be most helpful in the sequel. It states that, given a measurable
map between Polish spaces, we can find a finer Polish topology on the domain, which has the
same Borel sets, and which renders the map continuous, or makes a sequence of Borel sets
clopen (= closed and open); formally:

Proposition 1 Let (X,7) and (Y,S) be Polish spaces.
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1. If f : X = Y is a Borel measurable map, then there exists a Polish topology T' on X
such that T is finer than T (hence T CT'), T and T' have the same Borel sets, and

fis T' — 8 continuous.

2. If (Ap)nen 18 a sequence of Borel sets in X, then there exists a finer Polish topology
T' on X such that every A, is clopen with respect to T', and T and T' have the same
Borel sets.

Proof [18, Cor. 3.2.5, Cor. 3.2.6] O

Given two measurable spaces X and Y, a stochastic relation K : X ~ Y is a Borel map
from X to the set S (Y), the latter denoting the set of all subprobability measures on (the
Borel sets) of Y. The latter set carries the weak*-o-algebra. This is the smallest o-algebra
on S (Y) which renders all maps u +— u(B) measurable, where B C Y is measurable. Hence
K : X ~» Y is a stochastic relation iff

1. K(z) is a subprobability measure on (the Borel sets of) Y for all z € X,
2. £ +— K(z)(B) is a measurable map for each Borel set B C Y.

Let Y be a Polish space, then S (V") is usually equipped with the topology of weak convergence.
This is the smallest topology on S (Y') which makes the map u — fY f dp continuous for each
continuous and bounded f : ¥ — R. It is well known that this topology is Polish [16,
Thm. I1.6.5], and that its Borel sets is just the weak*-o-algebra [14, Thm. 17.24]. If X is a
Standard Borel space, then S (X) is also one: select a Polish topology 7 on X which induces
the measurable structure, then 7 will give rise to the Polish topology of weak convergence on
S (X) which in turn has the weak-*-o-algebra as its Borel sets.

A Borel map f : X — Y between the Polish spaces X and Y induces a Borel map

S(f):S(X)—>S(Y)
upon setting (u € S(X),B CY Borel)

S (f) (u)(B) := p(f7'[B)

It is easy to see that a continuous map f induces a continuous map S (f), and we will see in
a moment that S(f) : S(X) — S (Y) is onto, provided f : X — Y is. Denote by P (X) the
subspace of all probability measures on X.

Let F(X) be the set of all closed and non-empty subsets of the Polish space X, and call for
Polish Y a relation, i.e., a set-valued map F : X — F(Y) C-measurable iff the weak inverse

JF(C):={z € X|F(z) N C # 0}

for a compact set C C Y is measurable. A selector s for such a relation F is a single-valued
map s : X — Y such that Vo € X : s(z) € F(z) holds. C-measurable relations have Borel
selectors:

Proposition 2 Let X and Y be Polish spaces. Then each C-measurable relation F has a
measurable selector.
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Proof Since closed subsets of Polish spaces are complete, the assertion follows from [11,
Theorem 3]. O

Postulating measurability for 3F(C') for open or for closed sets C leads to the general notion
of a measurable relation. These relations are a valuable tool in such diverse fields as stochastic
dynamic programming [19] and descriptive set theory [14]. Overviews are provided in [18,
Chapter 5] and [10, 19].

As a first application it is shown that S actually constitutes an endofunctor on the category
of Standard Borel spaces with surjective measurable map as morphisms. This implies that
S is the functorial part of a monad (S, n, u) very similar to the one studied by Giry, cf. [9].
The crucial part is evidently to show that S(f) : S(X) — S(Y) is a surjection whenever
f X — Y is one. This is done through a measurable selection argument using Prop. 2.

Lemma 1 S is an endofunctor on the category &8 of Standard Borel spaces with surjective
Borel maps as morphisms.

Proof 1. Let X and Y be Standard Borel spaces, and endow these spaces with a Polish
topology the Borel sets of which form the respective o-algebras. Since S (X) is a Polish space
under the topology of weak convergence, and since a Borel map f : X — Y induces a Borel
map S (f): S(X) — S(Y) with all the compositional properties a functor should have, only
surjectivity of the induced map has to be shown.

2. In view of Prop. 1 it is no loss of generality to assume that f is continuous (otherwise
consider a finer Polish topology with the same Borel sets rendering f continuous). Continuity
and surjectivity together imply that y — f ![{y}] has closed and non-empty values in X, and
constitutes a C-measurable relation, which has a measurable selector g : Y — X by Prop. 2,
so that f(g(y)) = y always holds. Let v € S (Y'), and define ;1 € S (X)) upon setting

u(A) = v(g~'[A])
for A C X Borel. Since ¢! [f![B]] = B for B C Y, it is now easy to establish that
S(f)(u) =v holds. O
Finally, the concept of universal measurability is needed. Let u € S(X,.A) be a sub-
probability on the measurable space (X,.A), then A C X is called p-measurable iff there
exist My, My € A with My C A C My and pu(M;) = p(Ms). The py-measurable subsets of X
form a o-algebra M, (A). The o-algebra U (A) of universally measurable sets is defined by

U(A) = [ Mu(A)lp € S (X, A)}

(in fact, one considers usually all finite or o-finite measures, but it is easy to see that these
definitions lead to the same universally measurable sets). If f : X; — X5 is an A;-As-
measurable map between the measurable spaces (X1,.4;) and (X2, A2), then it is well known
that f is also U (A;)-U (Az)-measurable [12, Prop. 1.B.6]; the converse does not hold, and
one usually cannot conclude that a map g : X; — Xy which is U (A;)-Az-measurable is also
A1-As-measurable.

3 Semi-Pullbacks

The category GRel of stochastic relations has as objects triplets (X,Y, K), where X and Y
are Standard Borel spaces, and K : X ~~ Y is a stochastic relation. A morphism

{p,9) (X, Y,K) = (X" Y' K')
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is a pair of surjective Borel maps ¢ : X — X' and 9 : Y — Y’ such that
K'op=8())oK

holds, rendering the diagram

x—% . x
K K'
S(Y) S—(I,bi S (YI)

commutative. Thus we have for z € X, B’ C Y’ Borel the equality

K'(p())(B") = K(z)(4~'[B"),

so that morphisms are in particular measure preserving. Morphisms compose componentwise.
The category of Markov processes is a subcategory of GfRel: it has as objects pairs (X, K),
where X is a Standard Borel space, and K : X ~» X is a stochastic relation, i.e., a Borel
measurable transition probability function. Morphisms are surjective and measurable measure
preserving maps.

Edalat [8] investigates a similar category, called 9¥PBroc for easier reference: the objects are
pairs (X, K) such that X is a Polish space, and K is a universally measurable transition
sub-probability function. This requires that for each Borel set A C X the map =z — K (z)(A)
is U (B (X))-measurable, and that K(z) € S(X,B (X)) for each z € X. Morphisms in
NMProc are surjective and continuous maps which are measure preserving. Note that an
object (X, K) in MProc has the property that for each Borel set A C X and for each r € R
the set {z € X|K(z)(A) < r} is universally measurable; since each Borel set is measurable,
this is a weaker condition than the one we will be investigating.

Assume that (@, ¢;) : (X;,Y, K;) — (X,Y,K) (i = 1,2) are morphisms in GRel, then a
semi-pullback for this pair of morphisms is an object (A, B, N) together with morphisms
(i, Bi) : (A, B,N) — (X;,Y;, K;) (i =1,2) so that this diagram is commutative in GRel:

(A,B,N) M’ (X1,Y1, Ky)
(az, B2) {p1,91)
(X2,Ys, K») (P2 ) (X,Y, K)

This means in particular that

K10a1 = S(,Bl)ON,
KQOQQ = S(,BQ)ON

should hold, so that a bisimulation is to be constructed (cf. Def. 1). The condition that
(A, B, N) is the object underlying a semi-pullback may be formulated in terms of measurable
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maps as follows: N is a map from the Standard Borel space A to the Standard Borel space
S (B) so that N is also a measurable selector for the set-valued function

b= {u €8S (B)|(Kioa)(b) =8 (61) (n), (K20 a)(b) = 8 (B2) (w)}-

This translates the problem of finding the object (A, B, N) of a semi-pullback to a selection
problem for set-valued maps, provided the spaces A and B together with the morphisms are
identified.

It should be noted that the notion of a semi-pullback depends only on the measurable structure
of the Standard Borel spaces involved. The topological structure enters only through Borel
sets, and Borel measurability. From Prop. 1 we see that there are certain degrees of freedom
for selecting a Polish topology that generates the Borel sets. They will be capitalized upon
in the sequel.

Our goal is to establish:

Theorem 1 GRel has semi-pullbacks for each pair of morphisms

<X17Y15K1>

(01,%1)

<X2ayr2aK2> <X7Y7K>

(p2,v2)

with a common range.

We begin with a measure-theoretic and rather technical observation: in terms of probability
theory, it states that there exists under certain conditions a common distribution for two
random variables with values in a Polish space with preassigned marginal distributions. This
is a cornerstone for the construction leading to the proof of Theorem 1, it shows in particular
where Edalat’s work enters the present discussion.

Proposition 3 Let Z1,Zy, Z be Polish spaces,
Gi:Zi—>7Z (i=1,2)
continuous and surjective maps, define
S = {(z1,22) € Z1 X Zo|Ci(x1) = Ca(z2)},
and let v1 € P (Zy),v2 € P(Z3),v € P (S) such that
VE; € ¢ [B(2)]: P (m) (v)(Bi) = vi(E) (i =1,2)

holds, where w1 : S — Zy1,m9 : S — Zy are the projections; S carries the trace of the product
topology. Then there ezists p € P (S) such that

VE; € B(Zi) : P (mi)(u)(Bi) = vi(E7) (1 =1,2)

holds.



Page 7 Semi-Pullbacks in Categories of Stochastic Relations

Proof It is not difficult to see that {; : Z; — Z are morphisms in Edalat’s category of
probability measures on Polish spaces. The assertion then follows from the proof of [8, Cor.
5.4]. O

In important special cases, there are other ways of establishing the Proposition, as will be
discussed briefly.

Remark: 1. If {; : Z; — Z are bijections, then the Blackwell-Mackey Theorem [18, Thm.
4.5.7] shows that ;' [B(Z)] = B(Z;) . In this case the given measure v € P (S) is the desired
one.

2. If Z1,Z,,Z are not only Polish but also locally compact (like the real line R), then
a combination of the Riesz Representation Theorem and the equally famous Hahn-Banach
Theorem can be used to construct the desired measure directly. This is the line of attack
in [7]. Consequently, the somewhat heavy machinery of regular conditional distributions on
analytic spaces need not be used (on the other hand, the Hahn-Banach Theorem relies on the
Axiom of Choice which is not listed among the light weight tools either). —

The preparations for establishing that G9Rel has semi-pullbacks are complete.

Proof of Theorem 1

1. In view of Prop. 1 we may assume that the respective o-algebras on X; and X, are
obtained from Polish topologies which render ¢ and K; as well as @2 and Ky continuous.
These topologies are fixed for the proof. Put

A = {{z1,72) € X1 x Xo|pi(z1) = pa(z2)},
B = {{y1,y2) €Y1 x Ya|th1(y1) = v2(y2) },

then both A and B are closed, hence Polish. «; : A — X; and §; : B — Y; are the projections,
1 = 1,2. The diagrams

®1 ©2

D¢ - X « Xo

K K Ko

ST 5 3 Sy 5

are commutative by assumption, thus we know that for z; € X;

K(pi(z1)) = S(¢1) (Ki(z1))
K(pa(z2)) = S (¢h2) (Ka(z2))

both hold. The construction implies that
(11 0 B1)(y1,y2) = (2 © B2)(y1,72)

is true for (y1,y2) € B, and 91 0 8, : B = Y is surjective.
2. Fix (z1,29) € A. Lemma 1 shows that S is an endofunctor on &8, in particular that the
image of a surjective map under S is onto again, so that there exists y € S (S) with

S (1 0 B1) (1) = K(p1(21)),

consequently,

S (i 0 Bi) (1) = S (i) (Ki(z3)) (i =1,2).
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But this means
VE; € ;' [B(Y)]: S (6) (1) (Ei) = Ki(z:)(Ei) (i = 1,2).

Put
L(z1,22) := {u € S(B)[8 (b1) (k) = K1(z1) A8 (B2) () = Ka(z2)},

then Prop 3 shows that I'(z1,z2) # 0.
3. Since K7 and Ky are continuous,

I':A— F(S(B))

is easily established. The set II'(C) is closed in A for compact C C S(B). In fact, let
((zg"),xgn)))neN be a sequence in this set with a:z(n) — z;, as n — oo for 1 = 1,2, thus
(z1,z2) € A. There exists p, € C such that S (5;) (un) = Kz(wfn)) Because C' is compact,
there exists a converging subsequence i) and p € C with p = limy, 00 f5(,) in the topology

of weak convergence. Continuity of K; implies that

S (i) (1) = Ki(z;),

consequently (z1,zo) € 3T(C), thus this set is closed, hence measurable. From Prop. 2 it can
now be inferred that there exists a measurable map N : A — S (B) such that

N(.’El, 1172) € F(:El,.’liz)
holds for every (z1,z9) € A. Thus N : A ~ B is a stochastic relation with

Kioas = S(B1)oN,
KQOOéQ = S(,BQ)ON

Hence (A, B, N) is the desired semi-pullback. O
Specializing Theorem 1, we list some categories of stochastic relations which have semi-
pullbacks.

Corollary 1 The following categories have semi-pullbacks:

1. Objects are Standard Borel spaces with a sub-probability measure attached, morphisms
are measure preserving and surjective Borel maps (continuous maps, resp.).

2. Objects are Markov processes over Standard Borel spaces (Polish spaces), morphisms
are measure preserving and surjective Borel maps (continuous maps, resp.).

3. Objects are stochastic relations over Polish spaces, morphisms (p,v) are as in GRel
with 1 continuous. In the subcategory in which ¢ is also continuous semi-pullbacks
exists, too

Proof By specialization from Theorem 1. Whenever continuity enters the game, its proof
shows that the semi-pullback has the continuity property, too. O

Hence we know that the semi-pullback (X, K) for morphisms involving Markov processes is
a Markov process again (whereas Edalat’s main result [8, Cor. 5.2] permits only to conclude
that K is a universally measurable transition sub-probability function).
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Remark: One might be tempted now and ask for pullbacks or at least for weak pullbacks
in the categories involved, now that the upper left hand corner of a pullback diagram can be
filled. Recall that in a category the pair

(r1:¢c—> a1,72: c— ag)
is a weak pullback for the pair
pr:a1 —bpr:ias —b
of morphisms iff it is a semi-pullback (so that
P1OT1L = pP20T2

holds), and if
(r{: = a1, :d = a)

is another semi-pullback for that pair, then there exists a morphism 6 : ¢ — ¢ so that
=100 (i=1,2)

holds; 8 is the factor. It 8 is unique, then the weak pullback is called a pullback.

The following example shows that even the category of Standard Borel spaces with probability
measures where the morphisms are surjective and measure preserving measurable maps does
not have always weak pullbacks: Let p be the uniform distribution on A := {1,2,3}, put
B := {a, b} with

Let f: A — B with

Then
fi{A,p) = (B,v)

is a morphism. Now compute the semi-pullback (P,~) for the kernel pair represented by f.
Then

P = {(z,2)|f(z) = f(a")}
= {{1,1),(1,2),(2,1),(2,2),(3,3)},

and a suitable instance for v is determined easily (e.g., v((3,3)) = %, all other pairs in P can
be assigned %) The identity ¢ : (A,u) — (A, p) has the property for = fou If a weak
pullback exists, then we know about the factor p that p(a) = (a, a) holds for all a € A; since
f is not injective, p cannot be onto. This is a contradiction.

The reason for this is evidently that a weak pullback in e.g. &fRel would induce a weak
pullback in the category of sets with ordinary maps as morphisms, but that it cannot be
guaranteed there that the factor is onto, even if the morphisms for which the pullback is
computed are.

Consequently, semi-pullbacks are the best we can do in GRel.
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4 Bisimulation

This section demonstrates that the bisimulation relation on objects of GfRel is transitive,
and serves as an application for the result that semi-pullbacks exist in this category. A
final application is provided by proving the well known result due to Desharnais, Edalat
and Panagaden that bisimilarity of labelled Markov processes may be characterized through
a simple negation-free modal logic; the processes are based on Standard Borel spaces with
measurable — rather than universally measurable — transition sub-probability functions.
We define a bisimulation for two objects in GRel through a span of morphisms in that
category [13, 17]. This is similar to the notion of 1-bisimulation investigated in [5] for the
comma, category 1L | S, were M is the category of all measurable spaces with measurable
maps as morphisms.

Definition 1 An object P in GRel together with morphisms (o1,71) : P — Q1 and (02, 7T2) :
P — Q2 is called a bisimulation of objects ()1 and Qs.

Let P:=(X,Y,K) and Q; := (X;,Y;, K;), then we get the familiar commutative diagram

X x 2 .x,
K1 K K2
S(Yi) «—— S(V) — S (V:
() 57 SO) g SO

Thus we have effectively established Theorem 1 by constructing a bisimulation for the objects
serving as domains for the morphisms investigated in the semi-pullback.

We apply the semi-pullback for establishing the fact that the bisimulation relation is transitive
in GRel.

Proposition 4 The bisimulation relation between objects in the category GRel of stochastic
relations is transitive. The same is true for the subcategories of Markov processes introduced
in Cor. 1.

Proof Cousider as e.g. in the proof for [17, Theorem 5.4] the diagram in Fig. 1.
The lower triangles are given bisimulations, and the upper diamond with its dotted lines is
the semi-pullback for the pair

(02, m2) : (A1, B1,L1) — (Xa2,Y2, K2)
(03,73) : (A2, B2, Lo) — (X2,Ys, K>)

which exists by Thm. 1 for Gel, and by Cor. 1 for the subcategories. Then

<0°C1,7—°£1>:<A3,B35L3> - <X15Y15K1>
<<2 © 0'4562 OT4) : <A3’B35L3> — <X37Y35K3>

is the desired bisimulation. O
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<A3aB3aL3>
<<—17§1'>.‘.' (C27§2)
» A
AlaBlaLl A27B27L2
017 Tl 027 TZ 0'4, T4
03aT3
XI;YIaKl X2aY§aK2 X37Y37K3

Figure 1: Transitivity of Bisimulation Diagrams

Finally it will be shown that bisimulations for labelled Markov processes can be characterized
through a Hennessy-Milner logic. This follows the lines of [3], but we will capitalize on the
possibility to construct semi-pullbacks in categories of Markov processes over Polish spaces
with Borel (rather than universally) measurable transition sub-probabilities. Hence we can
characterize bisimulation in what seems to be a much more natural way from a probabilistic
point of view. Some work has to be done for keeping the argumentation within the realm of
Polish spaces.

Fix a countable set L of actions.

Definition 2 Let S be a Standard Borel space, and assume that kg : S ~ S is a stochastic
relation for each a € L. Then (S, (kg)acL) is called a labelled Markov process.

S serves as a state space for the process. If the process is in state s € S, and action a € L is
taken, then k,(s, B) is the probability for the next state to be a member of Borel set B C S.
Before proceeding, recall that a subset A C X of a Polish space X is called analytic iff there
exists a Polish space P and a continuous map f : P — X such that A = f [P] holds. If A is
equipped with the trace of the Borel sets of X, viz., {ANB|B € B(X)} then A together with
this o-algebra is called an analytic space. The definition of a labelled Markov process found
in [3] resembles the one given above, but assumes that the state space is analytic; generalized
labelled Markov processes are introduced in which the transition sub-probability is assumed
to be universally measurable.

Returning to Def. 2, let (S, (ka)qer) and (57, (k})qeL) be labelled Markov processes with the
same set L of actions. A morphism

.f : (Sa (ka)aGL) — (S,a (ké)aEL)
is a surjective Borel map f: S — S’ such that
Va€eL:klof=S8(f) ok,

holds, so that f is probability preserving for each action. Thus we have for each action a € L
a morphism between the objects (S, k,) and (S’,%.) in the category described in Cor. 1.(2).

Corollary 2 The category of labelled Markov processes with morphisms described above has
semi-pullbacks.
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Proof Apply Cor. 1 for each action separately and collect the results. O

From now on we omit the set L of actions when writing down labelled Markov processes.

In essentially the same way bisimulations are introduced through a span of morphisms: the
labelled Markov processes (5, (kg)) and (S, (k) are called bisimilar iff there exists a labelled
Markov process (T, (£,)) and morphisms (T, (£,)) — (S, (ka)) , (T, (4a)) — (S, (kL)) -

We follow [3] in introducing syntax and semantics of the Hennessy-Milner logic £. The syntax
is given by

T | 1 Ao | (a)gd

Here a € L is an action, and ¢ is a rational number. Fix a labelled Markov process (S, (k,)),
then satisfaction of a state s for a formula ¢ is defined inductively. This is trivial for T and
for formulas of the form ¢; A ¢2. The more complicated case is making an a-move: s |= (a)q¢
holds iff we can find a measurable set A C S such that Vs’ € A : §' |= ¢ and k,(s,4) > ¢
both hold. Intuitively, we can make an a-move in a state s to a state that satisfies ¢ with
probability greater than q.
Denote by ® the set of all formulas, and put [¢] g := [¢] := {s € S|s = ¢} as usual as the set
of states that satisfy formula ¢ (we omit the subscript S if the context is clear). Let (S, (k.))
be another labelled Markov process, then define for s € S,s’ € S’ the relation s ~ s’ iff s
and s’ satisfy all the same formulas. Formally, s ~ s’ holds iff 14(s) = 1p4(s) holds for
all ¢ € @, 14 denoting the indicator function for the set A. Now define for labelled Markov
processes

VseS3s'e S s~

(S, (ko)) ~ (S, (K})) > § and
Vs'e §'3se S: ¢ ~s.

Hence relation ~ indicates that two labelled Markov processes satisfy exactly the same for-
mulas for logic L.

We will establish for labelled Markov processes the equivalence of bisimilarity and satisfying
the same formulas, and we will follow essentially the line of attack pursued in [3]. But we want
to stay within the realm of Standard Borel spaces. Here comes the crucial trick. Working
as in [3] with the set of equivalence classes with the final Borel structure for the quotient
map for = would bring us into the realm of analytic spaces, or, as Arveson writes: “It often
happens that the quotient of a standard Borel space by a very regular equivalence relation
fails to be standard” [2, p. 71]. Instead we will work with a Borel set which intersects each
equivalence class in exactly one element (what is usually called a Borel cross section, cf. [18,
p. 186]). Now this is the plan: we investigate the relation ~ and show that it has a Borel
cross section 7T'. Because T is a Borel set in a Polish space, it is a Standard Borel space itself.
With T comes a surjection

fr:S—>T

which has all the necessary properties of the quotient map, so that we can construct from
(S, (kq)) another labelled Markov process (7', (hg)) with f7 now acting as morphism. This is
then applied to the case that (S, (kq)) ~ (S, (k})) by forming the sum of the processes and
constructing from this sum through relation =~ morphisms the semi-pullback of which will
yield the desired bisimulation. So the plan is very similar to that in [3], but the terrain will
be operated on in a slightly different manner.

Some important properties of relation = are collected now.
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Lemma 2 Let (S, (ky)) be a labelled Markov process, then
1. = C §x 85 is a Borel set.

2. There exists a Borel set T C S such that T intersects each equivalence class in exactly
one state.

3. There exists a Borel map fr : S — T such that for all s,s' € S : s = s’ implies
fr(s) = fr(s'"), and Vs € S : s = fr(s) holds.

Proof 0. From [3, Prop. 9.1] (or by structural induction) it is seen that [¢] is a measurable
subset of S. The set

F:={l¢ll¢ € 2}

is countable, so we can find by Prop. 1 a Polish topology 7 on S having the same Borel sets
as the given o-algebra such that every [¢] is closed. We assume throughout this proof that
S is equipped with 7.

1. The equivalence class [s]| for s € S can be represented as

[s] = ({[8] 14 € ® with s = ¢} N(V{S\ [¢] |¢ € ® with s [~ ¢}

Thus [s] is a G-set (i.e., a countable intersection of open sets), since in a Polish space each
closed set is a G. In particular, [s] is a Borel set.
2. Enumerate F as (Fy)nen, then

SxS\m= |J(S\Fy)x F,) U (Fp x(S\ F)).
neN

Since each Fj, is Borel, ®C S x S is Borel, too. This establishes the first claim.

3. Thus the relation = is a Borel subset of S x S, and each equivalence class is a G5. Hence the
second assertion follows from [18, Theorem 5.9.2], and from [18, Prop. 5.1.9] fr is constructed
with the desired properties, yielding the third assertion. O

By virtue of Prop. 1, T' is a Standard Borel space with the Borel sets of S that are contained
in T as the o-algebra. The Borel map fr that comes with 7" may be interpreted as a selection
map, since s = fr(s) always holds. Hence fp picks from each class a representative in a
measurable way; this will help bypassing the cumbersome construction of the factor space
in [3]. fr is plainly surjective. We will capitalize on these properties in the sequel.

Lemma 3 Let (S, (ky)),T, fr as above. The o-algebra on T is generated by
By == {fr[[4lll¢ € @},

and By is closed under finite intersections.

Proof 0. We need to show that fr[[¢]] is always a Borel set in T', that By contains the
intersection of two of its members, and that By separates points. Then the assertion will
follow from the Mackey’s Unique Structure Theorem [2, Theorem 3.3.5].

1. Fix ¢ € ®, and put A := fr[[#]], then A is the image of a Borel set by a Borel map, hence
is analytic. Similarly, B := f7[S\ [¢]] is an analytic set, and AU B = T. The construction
of T and f7 imply that AN B = (). Hence we have two non-empty analytic sets that partition
a Polish space, and Souslin’s Theorem [18, Theorem 4.4.3] implies that A is a Borel set.
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2. Now let t1,ty € T with t; # t3. There are s1,s9 € S with t; = fr(s1),t2 = fr(s2) and
s1 % s9. Consequently, there is a formula ¢ with, say, s; = ¢ and s2 = ¢. But this means

t1 € frlol] . t2 & fr(lo]]-
3. We need to show that

fr(lé1 A 2] = fr([oa]] N fr [[62]]

holds. The non-trivial inclusion follows from the construction of T: if t = fr(s1) = fr(s2)

with s1 = ¢1 and s9 = @9, then s1 & s9, and s1, 392 € [¢1 A ¢p2]. Hence t € fr[[é1 A ¢o]]. O
From these data a labelled Markov process can be constructed:

Corollary 3 Let S, T, fr be as above, and put for a € L,s € S and the measurable B C T

ha(f1())(B) = ka(s)(f7 ' [B])-
This defines a labelled Markov process (T, (hg)) such that

fr: (S, (ka)) = (T, (ha))
is a morphism.

Proof 0. For each formula ¢, the equality

[¢] = £ " Lfr [[¢11]

holds. For, if s € f..'[fr([¢]l], then fr(s) = ¢, since s = fr(s), s = ¢ also holds, thus
s € [¢]- This settles the non-obvious inclusion.
1. It is not difficult to see that for each ¢ € ® the equality

ka(s1)([8]) = Ea(s2)([¢])

holds, provided that s; = s2 (see [3, Lemma 9.6]). Thus h,(t)(B) is well-defined for each B €
By. Since By generates the Borel sets on T', and since By is closed under finite intersections,
ha(t) is well-defined on the Borel sets of T'.

2. For establishing measurability properties of h,, we put

C:={B CT|t hy(t)(B) is measurable and B is Borel}

Then C is a o-algebra by the familiar properties of measurable maps. We claim that By C C
holds. In fact, let ¢ € ® be a formula, then ¢ — ho(t)(fr [[¢]]) has shown to be measurable.
Since the half-closed intervals [g, +o0o[ with g rational generate the Borel sets on R, it suffices
to show that their inverse images are Borel sets in T'. Since

(ha()(fr [[¢1) ™ [[as ool = {t € TIha(t)(fr [[4]]) = a}
= frll{a)qoll,

and the latter set is indeed a Borel set in T' by Lemma 3, we see that By C C. Consequently,
C is just the Borel o-algebra on 7.
3. This establishes that (7, (h,)) is a labelled Markov process. By construction, fr is a
morphism (S, (kg)) = (T, (hg)) - O
We can now prove that satisfying the same formulas and bisimilarity are equivalent. The
proof follows the trail laid out in [3], but it makes use of the constructions developed so far.
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Theorem 2 Two labelled Markov processes are bisimilar iff they satisfy the same formulas.

Proof 1. The “only if”- part follows from [3, Cor. 9.3], so only the “if”-part needs to be
established. We proceed as in the proof of [3, Theorem 9.10] by constructing from the labelled
Markov processes (5, (kq)) and (S’, (k},)) a diagram of the form

(S, ()

(S, (ko)) —= (T, (ha))

From this, a semi-pullback (Cor. 2) will provide the desired bisimulation.
2. Let Sy be the sum of the Standard Borel spaces S and S’, hence Sy is a Standard Borel
space again. Put for a € L, s € Sy and the Borel set B C S

ko(s)(SNB), seS
Ly(8)(B) := 7 : .
kEL(s)(S'NB), se€S
Thus (Sy, (4,)) is a labelled Markov process.
Construct 7" and fr from Sy and from the equivalence relation =~ on Sy according to Lemma 2,
and define the labelled Markov process (T, (h,)) as in Lemma 3. Let

i:S—)So,i':SI—)So
be the embeddings of S resp. S’ into Sy. Then
froi:S8 =T, froi:8 =T

are surjective, since (5, (kq)) ~ (S', (k})) . Both are morphisms. O

The bisimulation type of a labelled Markov process is that subset of the formulas ® that the
process satisfies, so that each equivalence class of processes with respect to ~ is uniquely
characterized through a subset of ®. Since ® is countable, it turns out that there are at most
280 bisimulation types.

5 Conclusion

We show that one can construct a semi-pullback in the category of Markov processes over
Standard Borel spaces with continuous and measure preserving maps as morphisms. This is
actually a special case of a more general result which deals with stochastic relations over Stan-
dard Borel spaces in which the class of Polish spaces mentioned above serve as target spaces
for transition probability functions. It is shown that in the latter category the bisimulation
relation is transitive. It is finally shown that the characterization of bisimulation through
satisfiability in a simple logic may be derived in this conceptually simpler context, too.

Rather than constructing the object underlying a semi-pullback explicitly, we rely on selection
arguments from the theory of set-valued relations. This gives probably less technical insight
into the nature of the object one looks for, but is easier to apply, and it permits drawing
from the rich well of topology, in particular utilizing the weak topology on the space of all
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subprobability measures. Selection arguments may be a helpful way of constructing objects;
we illustrate this by showing that the map which assigns each Polish space its subprobabilities
and each surjective Borel measurable map the corresponding measure transform is actually a
functor which may be difficult to establish otherwise.

Further work will address the characterization of bisimilarity of stochastic relations through a
suitable logic. These relations may be viewed as the many-sorted cousins of Markov processes,
so that a similar characterization would be desirable.
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