
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of IAPR International Conference on Machine Learning and Data
Mining (MLDM 2003), 2003

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=87de02eb-c1d7-47f9-90cb-3e40e29e92fe

https://publications-cnrc.canada.ca/fra/voir/objet/?id=87de02eb-c1d7-47f9-90cb-3e40e29e92fe

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Authoring cases from Free-Text Maintenance Data
Yang, Chunsheng; Orchard, Robert; Farley, Benoît; Zaluski, Marvin

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l’information

Authoring cases from Free-Text Maintenance Data *

Yang, C., Orchard, R., Farley, B., Zaluski, M.
July 2003

* published in Proceeding of IAPR International Conference on Machine Learning and
Data Mining (MLDM 2003). Leipzig, Germany. July 5-7, 2003. NRC 45813.

Copyright 2003 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

Authoring Cases from Free-Text Maintenance Data
Chunsheng Yang1, Robert Orchard1, Benoit Farley1, and Maivin Zaluski1

1 National Research Council, Ottawa, Ontario, Canada

{Chunsheng.Yang, Bob.Orchard, Benoit.Farley, Marvin.Zaluski}@nrc.ca

Abstract

Automatically authoring or acquiring cases in the case-based reasoning
(CBR) systems is recognized as a bottleneck issue that can determine
whether a CBR system will be successful or not. In order to reduce human
effort required for authoring the cases, we propose a framework for
authoring the case from the unstructured, free-text, historic maintenance
data by applying natural language processing technology. This paper
provides an overview of the proposed framework, and outlines its
implementation, an automated case creation system for the Integrated
Diagnostic System. Some experimental results for testing the framework
are also presented.

Keywords: cased-based reasoning, case creation, case base management,
natural language processing.

1. Introduction

The Integrated Diagnostic System (IDS), which was developed at the National
Research Council of Canada, is an applied artificial intelligent system [2] that
supports the decision-making process in aircraft fleet maintenance. IDS integrates
two kinds of the reasoning techniques: rule-based reasoning and case-based
reasoning. The rule-based reasoner monitors the messages transmitted from the
aircraft to the information monitoring system on the ground. The messages are
either malfunction reports from the sensors of an aircraft (failure [FLR] or warning
[WRN] messages) or digital messages typed on the keyboard by the pilot (SNAG1
or MSG messages). IDS clusters these messages into different Fault Event Objects
(FEOs), which are regarded as potential problem symptoms. These symptoms
trigger the firing of rules that alert maintenance technicians to situation that could
have a significant impact on the aircraft’s airworthiness. IDS also helps identify
the appropriate parts of troubleshooting manual that are related to the symptoms.
CBR [1] is then needed to help refine these solves by retrieving similar situations
from the mechanic’s experiences, which have been stored in a case base.

The case bases are different from the rule bases in principle. The rules reflect the
relationship between condition and consequence in real-world problems; they can

1 A snag is a common term for an equipment problem in the aviition area. It is a record of the
problem and the repair action.

be designed based on system requirements and domain knowledge, or extracted
from the technical documents such as the troubleshooting manual. The cases
document the relation between problem symptoms and the fix applied by domain
experts, and they accumulate the past experience for solving similar problems. The
cases can’t be created from technical documentation. They have to be authored
from historic maintenance experience or by experienced domain experts.

One important piece of data is the snag message. A snag is a transcript of the hand-
written notes describing a problem (reported by pilots, other crew or maintenance
technicians) and the repair actions carried out to fix the problem. It is composed of
well defined, fixed fields describing the date, the location, a unique snag identifier,
etc. as well as unstructured free-text describing the problem symptoms, the pieces
of equipment involved in the repair and the actions performed on them. It is
possible for someone to create a potential case by combining the information in the
snag message with information in the FEO database. To help the user to create
cases from the historic snag database, we developed an off-line tool, SROV (Snag
Ratification Object Validation)[1]. This tool allows the user to browse the snag
database, clean up the contents of the snag message and convert the snag message
into a potential case. However, it was still difficult for the user to create cases
using the tool, because the problem description and repair action in the snag
messages are described with unstructured free text. To extract useful information
from such free-text messages requires significant human effort and domain
knowledge.

In order to reduce the human effort, we propose a framework for authoring cases
automatically from the unstructured free-text maintenance data by applying natural
language processing (NLP) techniques [3][14]. In this paper, the proposed
framework is presented in detail along with its implementation, an automated case
creation system (ACCS) for IDS. Some experimental results for testing the
effectiveness of the framework are also discussed.

The paper is organized as follows. Following this introduction is Section 2,
Related Work; Section 3 is the proposed framework; Section 4 describes the
technical implementation of ACCS; Section 5 presents some experimental results;
and the final section discusses the conclusions.

2. Related Work

To date a great deal of research effort has been devoted to case base maintenance
[4,5,6,7,9,10,12] in CBR systems. This research has focused on a number of
crucial issues such as the case life cycle [5], the optimization of the case indices
[12] and so on. Some of the earliest case base maintenance works [9,10] look at the
development of maintenance strategies for deleting/adding cases from/to existing
case bases. For example, in [9], a class of competence-guided deletion policies for
estimating the competence of an individual case and deleting an incompetent case
from a case base is presented. This technique has been further developed for
adding a case to an existing case base [10]. Redundancy and inconsistency
detection for case base management in CBR systems has also attracted a lot of
attention from researchers [11]. In recent years, some new approaches based on
automatic case base management strategies have been published. M.A. Ferrario

and B. Smyth [6], introduced a distributed maintenance strategy, called
collaborative maintenance, which provides an intelligent framework to support
long-term case collection and authoring. To automatically maintain the case base,
L. Portinale et al [4] proposed a strategy, called LEF (Learning by Failure with
Forgetting [13]), for automatic case base maintenance.

It is perhaps surprising that these works almost exclusively focus on maintaining
case bases for runtime CBR systems and collecting cases from the on-line
problem-solving procedures. Relatively little work has focused on automatically
authoring cases at an earlier stage, using existing historic maintenance experience
that can be collected from past maintenance operational data. In fact, a useful CBR
system should provide the ability for a user to automatically author case bases
from the recorded historic experience database at the initial stage and to
automatically collect or author the cases at the on-line runtime stage. Therefore,
the main contribution of this paper is to propose a useful framework for
automatically authoring cases from the historic maintenance experience data by
applying NLP techniques.

3. A Framework for Authomatically Authoring Cases

To describe the proposed framework, we use the following notations. Let c denote
a case and CB denote a case base, then).,...,......,,(21 ni ccccCB ⊇ A case c is
defined as))(),(),((mspc = where (p), (s) and (m) denote problem attributes
(called symptoms), solution attributes to the problem and information for case base
management respectively. (m) contains all attributes related to case base
maintenance including redundancy, inconsistency, positive actions, and negative
actions. (p) could be a single symptom or multiple symptoms, and (s) could be a
single action or multiple actions for fixing the problem (p). If SB and FB denote
the historic snag maintenance database and the FEO database respectively, then

),...,(21 ksnagsnagsnagSB ⊇ and),...,(21 lfffFB ⊇ . Our task is to create
CB from SB and FB . Therefore, the framework can automate this task by
following five main processes:

• Preprocessing snag messages (SB),
• Identifying the symptoms((p)) for the problems,
• Identifying the solution ((s)) for the problems,
• Creating a potential case (c),
• Maintaining the case base ((m)).

3.1 Preprocessing snag messages
The task of this process is to obtain clean snag messages SBsnagi ⊆ from the
raw snag messages. The raw snag messages like the one shown in Table 1, are
processed to give messages in italics as shown in Table 2. The parse is simple
since the various fields of the raw message are in a predetermined order and of the
fixed size. We extract the date, the place where the fix was done, a unique snag
identifier, etc, as well as unstructured free-text describing the problem symptoms
and the repair actions. The free-text contains many unnecessary symbols or words.
To deal with this, we filter the unnecessary characters (such as ‘#’, ‘.’, ‘*’ and so
on) and using a list of “poor single” words, we remove some words as well. The
list of poor single words are constructed by analyzing a large set of snag messages

to see which ones were not helpful in matching the unstructured text FLR and
WRN messages. For example, the free-text of the problem description obtained
from the raw snag message, RMA 27-93-2127 AVAIL. REPEAT E/W "F/CTL ELAC
1 FAULT” "ELAC 1 OR INPUT OF CAPT ROLL CTL SSTU 4CE1". R 7. after
processing, results in RMA 27-93-2127 AVAIL REPEAT F/CTL ELAC 1 FAULT
ELAC 1 INPUT CAPT ROLL CTL SSTU 4CE1, as shown in Table 2.

Table 1: An example of the raw maintenance data record
ACFT_MI_SEC:UNNNNNNNNNNNNNNNNNNNNNYYYYYYYYYYYYYNYNNNNNNNYYNN6615
437820001NM1003286 2312 2312ACA01058P28Q0CL6YUL ACA0646RT RMA 27-93-2127 AVAIL.
REPEAT E/W "F/CTL ELAC 1 FAU LT” "ELAC 1 OR INPUT OF CAPT ROLL CTL SSTU
4CE1". R 7. I2000-09-23NNDEFN 0000000000000 0000000000000 0000000000000
00000000000000 40227AC 74577LNNS ORDER AC74577 1998-01-22 14:07:006650
ACFT_MI_ACTN_SEC : INNNNNNNNNNNNNNNNNNNNYYYYYYNN 615437820002000
6889450001Y REPLACED CAPTAINS SIDE STICK AND TESTED AS PER AMM 27-92-41-501
42000-09-2506.36.00FIXYWG 26525AC 26525NNNNNN 000000000000 AC26525 1998-01-30
16:00:00.898990
ACFT_PART_RMVL_SEC:NNNNNNNNNNNNNNNNNNNNNNN6615437820002000688945000100010
001Y0000000010000NNNAC002FD 9W19XFEA 150000000042983622-9852-003 4V792
111AC26525 1998-01-30 16:00:00.89916023-80-0100 Y
ACFT_PART_INST_SEC:NNNNNNNNNNNNNYNYYNYNN6615437820002000 688945000 100010001
Y0000000010000NN AC002EA 150000000042983 1467 AC26525 1998-01-30 16:00:00.89921023-
80-0100 Y

Table 2: A clean snag message obtained from the Table 1
Event Date & Time 1998-01-22 14:07:00

Report Station YUL

Snag Number M1003286

Problem Description

RMA 27-93-2127 AVAIL REPEAT F/CTL ELAC 1
FAULT ELAC 1 INPUT CAPT ROLL CTL SSTU
4CE1

Fin Number 222

Repar Station YWG

Repair Date 1998-01-30 16:00:00

Repair Action REPLACED CAPTAINS SIDE STICK AND
TESTED AS PER AMM 27-92-41-501

3.2 Identifying the symptoms
The task of the process, symptom identification, is to find (P) from the SB and FB.
Identifying the symptoms for the problem is done using a free-text matching
approach because the content of the diagnostic FLR and WRN messages is
described in formal (predetermined) text while the problem description in the snag
message is unstructured free text. To match such free text to the formal text of the
diagnostic messages, we use an N-gram algorithm. N-gram matching refers to a
fragment of N consecutive letters of a text phrase. For a given text phrase of length
L, there are 1+− NL N-grams. Such a matching algorithm helps to reduce the
impact of misspelling, abbreviations and acronyms. After considering the trade-off
between the algorithm performance and matching accuracy, we selected N to be 3

(tri-gram matching). For example, in the tri-gram matching algorithm, the text
word “diagnose” could be disassembled into 6 tri-grams:

},,,,,{ osenosgnoagniagdia . If a text phrase, “diagnose” is matched to the
misspelled one, “diagnoes”, the tri-gram will identify them as two similar text
phases. As a result, the problem, RMA 27-93-2127 AVAIL REPEAT F/CTL
ELAC 1 FAULT ELAC 1 INPUT CAPT ROLL CTL SSTU 4CE1, is linked to
symptoms: WRN321, FLR1188, WRN320, WRN340, after matching the
description to the FB.

3.3 Identifying the solutions
Gavin a snag message, SBsnagi ⊆ , we also need to determine the solution (S).
In other words, the task of the solution identification is to extract repair action and
equipment information from the snag message using NLP techniques [3] [14]. In
general, the free text of the repair action description in the snag message contains
one or more “sentences” with extensive use of acronyms and abbreviations,
omission of certain types of words (such as the definite article), and numerous
misspellings and typographic errors. Extracting the required specific information,
namely the pieces of equipment involved in the repair and the actions performed
on the equipment (replace, reset, repair, etc.), from the free text is a typical natural
language understanding procedure as shown as Figure 1.

isnag

In the natural language understanding procedure, the unstructured free text that
describes the repair action is first preprocessed to determine the nature and
properties of each word and token against the lexicon which contains the words,
the acronyms and the abbreviations. Then the sequence of morphologically
analyzed items is syntactically analyzed with a parser and checked against a
grammar that describes the patterns of valid propositions. Finally the result of the
syntactic parsing is semantically interpreted to generate the class of repair action
and the equipment on which the action is performed. For example, the free-text
that describes the repair action in the snag message, “ #1 EIU replaced”, is
analyzed as shown as Table 3.

Lexicon

Words

Acronyms
Abbreviations

Morpho-lexical
Analysis

Syntactical
Analysis

Semantic
Interpretation Output

Knowledge Bases
for interpretation
Evaluation

Documents

Figure 1. Main function diagram of NLP

Parser/grammar

Table 3. The result of NLP for snag example
Attribute Name of Solution (S) Value
Part name EIU
Part number 3957900612
Repair action REPLACE
Part series number 3-25-8-2-40D

3.4 Creating a potential case
Having (p) and (S) obtained from the previous steps, this process creates a
temporary case,))(),(),((mspCtmp = . We have to check this potential case to
determine if the symptoms related to the problem have disappeared or not during a
period of time (window size) after the repair actions were taken. The window size
is set by aircraft fleet maintenance requirements. We assume that if the symptoms
of the problem disappear for the specified period (window size) that the repair was
successful and the case is labeled as a positive case, otherwise it is labeled as a
negative one. For example, a potential case shown as Table 4 is created from Table
2 by identifying the symptoms and solutions for the problem.

Table 4: A potential case created from Table 2 and FEO database
Case ID Case-1
Case creation date 2002-04-05
Event date time 1998-01-22 14:07:00
Snag number M1003286
Case quality Success
Success times 1
Failure times 0
Symptoms WRN321 FLR1188 WRN320 WRN340

Problem description

RMA 27-93-2127 AVAIL REPEAT F/CTL
ELAC 1 FAULT ELAC 1 INPUT CAPT ROLL
CTL SSTU 4CE1

Fin number 222
Repair station YWG
Repair date 1998-01-30 16:00:00
Repair actions Remove/Install (replace)
Equipment (No) 27-92-41-501

3.5 Maintaining the case base
The case base maintenance process implements the basic functions for case base
management to determine the attributes of)(m . The first set of functionality
includes detecting any redundancy or inconsistency for the potential case against
the existing case base. In effect we determine whether this case is similar to cases
within the existing case base or not. The second set of functionality involves
adding a new case to the case base, updating an existing case in the case base,
deleting a case and merging multiple cases into a new case. If a potential case is
new, it will be added to the case base and the case base management information

will be refreshed. If it is similar to an existing case, we have to modify the existing
case by updating the case management information (m) or merge them into a new
case. For example, if we detected a similar case (ic) in the existing case base
against the potential case tmpc , i.e. tmpi pp)()(≅ 2 and tmpi ss)()(≅ , then im)(
will is updated to reflect the effect of the repair action applied to the problem. If

tmpc is a positive case, then we increase the count of successful repair actions of
im)(otherwise we increase the count of unsuccessful repair actions of im)(.

4. Implementation

The proposed framework has been applied to the IDS project for authoring the
cases from the aircraft fleet maintenance historic data (snag database) and the FEO
database. We developed a Java-based CBR engine, and an automated case creation
system, which incorporates the CBR engine, natural language processing, free-text
matching, and database technologies. The goal of the ACCS tool is to demonstrate
that we can author an set of cases in an automated way that will enhance the
decision making process of the maintenance technicians.

2 tmpi pp)()(≅ means that the problem description in case Ci is similar to one in the
potential case tmpc .

Ctmp

snagi

Cpos or Cneg

Update

New
Case

SNAG Message Preprocessing
Raw Snag
database

Symptom
Identification

Repair Action
Identification

Case Quality Identification

Case Base Maintenance

Java-based
CBR Engine

Created

Case Bases

Redundancy
Detection

FEO
database

(P) (S)

Figure 2: ACCS system implementation

Case Template Creation

The ACCS, as shown in Figure 2, identifies the five main components: snag
message preprocessing, symptom identification, repair action identification,
potential case creation, and case base maintenance. The potential case creation
component contains two modules: case template creation and case quality
identification. The repair action identification component contains three NLP
modules: the lexicon, the parser/grammar, and a knowledge base for interpretation
evaluation. The component of case base maintenance is supported by the Java-
based CBR engine and the redundancy and inconsistency detection modules. We
have used JDK2.0, JDBC, Oracle7.0, and Prolog as development environment.

5. Experimental Results

To test the effectiveness of the proposed framework, the experiments were carried
out using the developed ACCS. First we asked a domain expert to manually author
the cases using the SROV. The domain expert created cases from 352 historic snag
messages that were generated in IDS from Jan. 1, 1998 to Jan. 31, 1998. The cases
were created in several sessions in order to reduce the influence of fatigue. The
times from the different sessions were summed. Then we used ACCS to
automatically author the cases from the same snag messages. Figure 3 shows the
results of experiments for creating the cases manually and automatically. From the
results, we found that ACCS creates almost the same cases from the same snag
messages with much less time, suggesting that ACCS can create the cases quickly
and correctly. It is interesting that not each clean snag message contains the
completely useful information for creating a potential case because either the
symptoms are not found from the FEO database, or the fix does not exist in the
snag message. In the 35 constructed cases, 21 cases are created from a single snag
message and consist of a positive case or a negative case; 14 cases are linked to
multiple snag messages, which recorded similar resolutions for similar problems or
the same problem, and they contain information on the successful or failed repair
action by the attributes of case base management)(m . From the statistical results,
45 snag messages from 359 snag messages were linked to those 14 cases. In total,
66 clean snag messages among 359 snag messages were useful for creating the
cases.

35 37
2

230

0

50

100

150

200

250

Cases Time (Min)

A uto Manual

Figure 3, the experimental result comparison

6. Conclusions

In this paper, we first presented the proposed framework for automatically
authoring cases from the historic maintenance data in CBR applications, and then
we described its implementation, an automated case creation system for the IDS,
and discussed the experiment results. From the experimental results, it can be
pointed out that the proposed framework is feasible and effective for automatically
authoring cases in CBR systems and it can significantly reduce the effort required.
From the experimented result, we also found that it is necessary to provide an
interactive environment for the domain expert to evaluate any authored cases
before they are incorporated into CBR systems such as IDS. How to evaluate the
cases is a very difficult task. We will work on this issue in our future work.

Acknowledgements

Many people at NRC have been involved this project. Special thanks go to the
following for their support, discussion and valuable suggestions: M. Halasz, R.
Wylie, and F. Dube. We are also grateful to Air Canada for providing us the
aircraft fleet maintenance data.

References
1. Lehane, M., Dubé, F., Halasz, M., Orchard, R., Wylie, R. and Zaluski, M. (1998)

Integrated Diagnositic system (IDS) for Aircraft Fleet maintenance, In Proceedings of the
AAAI’98 Workshop: Case-Bases Reasoning Integrations, Madison, WI.

2. Wylie, R., Orchard, R., Halasz, M. and Dubé, F. (1997) IDS: Improving Aircraft fleet
Maintenance, In Proceeding of the 14th National Conference on Artificial Intelligence,
Calif, USA, pp.1078-1085

3. Farley, B. (1999) From free-text repair action messages to automated case generation,
Proceedings of AAAI 1999 Spring Symposium: AI in Equipment Maintenance Service &
Support, Technical Reprot SS-99-02, Menlo Park, CA, AAAI Press, pp.109-118

4. Portinale, L. and Torasso, P. (2000) Automated Case Base Management in a Multi-model
Reasoning System, In Proceedings of Advances in case-based Reasoning: 5th European
Workshop, EWCBR 2000, Trento, Italy, pp.234-246

5. Minor, M. and Hanft, A. (2000) The Life Cycle of Test cases in a CBR System, In
Proceedings of Advances in case-based Reasoning: 5th European Workshop, EWCBR
2000, Trento, Italy, pp.455-466

6. Ferrario, M. A. and Smyth, (2000) Collaborative Maintenance—A Distributed, Interactive
Case-based Maintenance Strategy, In Proceedings of Advances in case-based Reasoning:
5th European Workshop, EWCBR 2000, Trento, Italy, pp.393—405

7. Shiu, S.C.K. , Sun, C.H., Wang, X.Z. and Yeung, D. S.(2000) Maintaining Case-Based
Reasoning Systems Using Fuzzy Decision Trees, In Proceedings of Advances in case-based
Reasoning: 5th European Workshop, EWCBR 2000, Trento, Italy, pp.258—296

8. Smyth, B. (1998) Case-Based Maintenance, In Proceedings of the 11th Intl. Conference on
Industry and Engineering Applications of AI and Expert Systems, Castellon, Spain

9. Smyth, B. (1995) Remembering to Forget: A Competence Persevering Deletion Policy for
Case-Based Reasoning Systems, In Proceedings of the 14th Intl. Joint Conference on AI,
Morgan-Kaufmann, pp.377-382

10. Zhu, J. and Yang, Q. (1999) Remembering to Add: Competence Persevering Case-Addition
Policy for Case-Base Maintenance, In Proceedings of the 16th Intl. Joint Conference on AI,
Stockholm, Sweden, pp.234-239

11. Racine, K. and Yang, Q. (1996) On the Consistency Management for Large Case Bases:
The Case for Validation, In Proceedings of AAAI-96 Workshop on Knowledge Base
Validation

12. Aha, D.W. and Breslow, L.A. (1997) Refining Conversational Case Libraies, In
Proceedings of Int’l Conference of Case-based Reasoning, RI, USA, pp.267-278

13. Portinale, L., Torasso, P. and Tavano, P. (1999) Speed-up, Quality and Competence in
Multi-modal Case-based Reasoning, In Proceedings of 3rd ICCBR, LNAI 1650, Springer
Verlag, pp. 303-317

14. Ferlay, B. (2001), Extracting information from free-text aircraft repair notes, Artificial
Intelligence for Engineering Design, Analysis and Manufacture, Cambridge University
Press 0890-0604/01, p.p.295-305

