Skip to main content

Efficient Locally Linear Embeddings of Imperfect Manifolds

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2734))

Abstract

In this paper, we explore the capabilities of a recently proposed method for non-linear dimensionality reduction and visualization called Locally Linear Embedding (LLE). LLE is proposed as an alternative to the traditional approaches. Its ability to deal with large sizes of high dimensional data and non-iterative way to find the embeddings make it more and more attractive to several researchers. All the studies which investigated and experimented this approach have concluded that LLE is a robust and efficient algorithm when the data lie on a smooth and well-sampled single manifold. None explored the behavior of the algorithm when the data include some noise (or outliers). Here, we show theoretically and empirically that LLE is significantly sensitive to the presence of a few outliers. Then we propose a robust extension to tackle this problem. Further, we investigate the behavior of the LLE algorithm in cases of disjoint manifolds, demonstrate the lack of single global coordinate system and discuss some alternatives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roweis, S., Saul, L.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science v. (2000) 290, No. 5500, 2323–2326.

    Google Scholar 

  2. Saul, L., Roweis, S.: Think Globally, Fit Locally: Unsupervised Learning of Nonlinear Manifolds. Technical Report MS CIS-02-18, University of Pennsylvania. (2002).

    Google Scholar 

  3. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science v. (2000) 290, No. 5500, 2319–2323.

    Google Scholar 

  4. Jolliffe, I.T.: Principal Component Analysis. Springer-Verlag, New York (1986).

    Google Scholar 

  5. Cox, T., Cox, M.: Multidimensional Scaling. Chapman & Hall, 2nd edition (2000).

    Google Scholar 

  6. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, 3rd edition (2000).

    Google Scholar 

  7. Hastie, T.J., Stuetzle, W.: Principal Curves and Surfaces. Journal of the American Statistical Association (1689), 84(406), 502–516.

    Article  MathSciNet  Google Scholar 

  8. Verbeek, J.J., Vlassis, N., Kröse, B.: A K-segments Algorithm for Finding Principal Curves. Pattern Recognition Letters (2002b), 23(8), 1009–1017.

    Article  MATH  Google Scholar 

  9. DeMers, D., Cottrell, G.W.: Nonlinear Dimensionality Reduction. Advances in Neural Information Processing Systems, San Mateo, CA (1993) volume 5, 580–587.

    Google Scholar 

  10. Bishop, C., Svensen, M., Williams, C.: GTM: The Generative Topographic Mapping. Neural Computation (1998), 10(1), 215–234.

    Article  Google Scholar 

  11. De Backer, S., Naud, A., Scheunders, P.: Non-Linear Dimensionality Reduction Techniques for Unsupervised Feature Extraction. Pattern Recognition Letters (1998) 19, 711–720.

    Article  MATH  Google Scholar 

  12. Li, S., De Vel, O., Coomans, D.: Comparative Performance Analysis of Non-Linear Dimensionality Reduction Methods. Technical Report, James Cook University (1995).

    Google Scholar 

  13. Hadid, A., Kouropteva, O., Pietikäinen, M.: Unsupervised Learning Using Locally Linear Embedding: Experiments in Face Pose Analysis. Proc. 16th International Conference on Pattern Recognition, Quebec, Canada (2002), 1, 111–114.

    Google Scholar 

  14. DeCoste. D.: Visualizing Mercel Kernel Feature Spaces via Kernelized Locally Linear Embedding. 8th International Conference on Neural Information Processing. (2001).

    Google Scholar 

  15. Vlachos, M., Domeniconi, C., Gunopulos, D., Kollios, G., Koudas, N.: Non-Linear Dimensionality Reduction Techniques for Classification and Visualization. Knowledge Discovery and Data Mining. Edmonton, Canada (2002).

    Google Scholar 

  16. Perona, P., Polito, M.: Grouping and Dimensionality Reduction by Locally Linear Embedding. Neural Information Processing Systems NIPS (2001).

    Google Scholar 

  17. Pless, R., Simon, I.: Embedding Images in Non-Flat Spaces. Technical Report WU-CS-01-43, Washington University, December (2001).

    Google Scholar 

  18. Ghahramani, Z., Hinton, G.E.: The EM Algorithm for Mixtures of Factor Analyzers. Technical Report CRG-TR-96-1, Department of Computer Science, University of Toronto (May 1996).

    Google Scholar 

  19. Kambhatla, N., Leen, T. K.: Dimension Reduction by Local Principal Component Analysis. Neural Computation (1997) 9, 1493–1516.

    Article  Google Scholar 

  20. Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., Huovinen, S.: Outex — New Framework for Empirical Evaluation of Texture Analysis Algorithms. Proc. 16th International Conference on Pattern Recognition, Quebec, Canada (2002), 1, 701–706. (http://www.outex.oulu.fi/outex.php).

    Google Scholar 

  21. Ojala, T., Pietikäinen, M., Harwood, D.: A Comparative Study of Texture Measures with Classification Based on Feature Distributions. Pattern Recognition (1996) 29, 51–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hadid, A., Pietikäinen, M. (2003). Efficient Locally Linear Embeddings of Imperfect Manifolds. In: Perner, P., Rosenfeld, A. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2003. Lecture Notes in Computer Science, vol 2734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45065-3_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-45065-3_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40504-7

  • Online ISBN: 978-3-540-45065-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics