Skip to main content

Cellular Automata and Combinatoric Tilings in Hyperbolic Spaces. A Survey

  • Conference paper
  • First Online:
Book cover Discrete Mathematics and Theoretical Computer Science (DMTCS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2731))

Abstract

The first paper on cellular automata in the hyperbolic plane appeared in [37], based on the technical report [35]. Later, several papers appeared in order to explore this new branch of computer science. Although applications are not yet seen, they may appear, especially in physics, in the theory of relativity or for cosmological researches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Carathéodory, Theory of Functions of a Complex Variable, vol.II, 177–184, Chelsea, New-York, 1954.

    Google Scholar 

  2. H. S. M. Coxeter, Regular Polytopes, second ed., The Macmillan Company, New York, 1963.

    MATH  Google Scholar 

  3. H. S. M. Coxeter, World-structure and non-Euclidean honeycombs. Proceedings of the Royal Mathematical Society of London, 201, 417–437, (1950).

    MATH  MathSciNet  Google Scholar 

  4. H. S. M. Coxeter, Regular honeycombs in hyperbolic space, Proceedings of the International Congress of Mathematicians, 155–169, Sept. 2–Sept. 9, Amsterdam, (1954).

    Google Scholar 

  5. H.S.M. Coxeter, W.O.J. Moser, Generators and Relations for Discrete Groups, II Ed., Springer, Berlin, (1965).

    MATH  Google Scholar 

  6. M. Delorme and J. Mazoyer (eds.), Cellular Automata, a Parallel Model, Kluwer Academic Publishers, 460, 373pp, 1999.

    Google Scholar 

  7. Sur les groupes hyperboliques d’après Michael Gromov, E. Ghys, P. de la Harpe (ed.), Progress in Mathematics, 83, Birkhäuser, (1990).

    Google Scholar 

  8. A.S. Fraenkel, Systems of numerations, Amer. Math. Monthly, 92 (1985), 105–114.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Goodman-Strauss, A strongly aperiodic set of tiles in the hyperbolic plane, submitted.

    Google Scholar 

  10. S. Grigorieff, M. Margenstern, Register cellular automata in the hyperbolic plane, invited talk at SCI 2002, Orlando, July, 14–18, (2002).

    Google Scholar 

  11. J. Gruska, Foundations of Computing, International Thomson Computer Press, 716pp, 1997.

    Google Scholar 

  12. F. Herrmann, M. Margenstern, A universal cellular automaton in the hyperbolic plane, MCU2001, Chisinau, May, 23–27, (2001), invited talk.

    Google Scholar 

  13. F. Herrmann, M. Margenstern, An interactive processing of cellular automata in the hyperbolic plane, invited talk at SCI 2002, Orlando, July, 14–18, (2002).

    Google Scholar 

  14. F. Herrmann, M. Margenstern, A universal cellular automaton in the hyperbolic plane, Theoretical Computer Science, 296-2, 38p., (2003).

    Google Scholar 

  15. F. Herrmann, M. Margenstern, K. Morita, Cellular automata in the hyperbolic plane: implementing a polynomial algorithm to solve SAT problem, Proceedings of CA 2000, International Workshop on Cellular Automata, Sixth IFIP WG1.5 Meeting, August 21–22, 2000, Osaka, Japan, 25–26.

    Google Scholar 

  16. M. Hollander, Greedy numeration systems and regularity, Theory of Comput. Systems, 31 (1998), 111–133.

    Article  MATH  MathSciNet  Google Scholar 

  17. K. Imai, H. Ogawa, A simulating tool for hyperbolic cellular automata and its application to construct hyperbolic cellular automata which can simulate logical circuits, Proceedings of CA 2000, International Workshop on Cellular Automata, Sixth IFIP WG1.5 Meeting, August 21–22, 2000, Osaka, Japan, 11–11.

    Google Scholar 

  18. Ch. Iwamoto, M. Margenstern, K. Morita, T. Worsch, P = NP in the Space of Cellular Automata of the Hyperbolic Plane, AUTOMATA 2001, september, 27–29, 2001, Giens, France.

    Google Scholar 

  19. Ch. Iwamoto, M. Margenstern, K. Morita, T. Worsch, Polynomial-Time Cellular Automata in the Hyperbolic Plane Accept Exactly the PSPACE Languages, Proceedings of SCI 2002, Orlando, July, 14–18, 2002, (2002).

    Google Scholar 

  20. C. Mann, On Heesch’s problem and other tiling problems, PhD Thesis, University of Arkansas, (2001).

    Google Scholar 

  21. M. Margenstern, Cellular automata in the hyperbolic plane, Technical report, Publications du GIFM, I.U.T. of Metz, No99–103, ISBN 2-9511539-3-7, 34p. 1999.

    Google Scholar 

  22. M. Margenstern, An introduction to cellular automata in the hyperbolic plane, Proceedings of CA 2000, International Workshop on Cellular Automata, Sixth IFIP WG1.5 Meeting, August 21–22, 2000, Osaka, Japan, 1–2.

    Google Scholar 

  23. M. Margenstern, New Tools for Cellular Automata of the Hyperbolic Plane, Journal of Universal Computer Science 6No12, 1226–1252, (2000)

    MATH  MathSciNet  Google Scholar 

  24. M. Margenstern, Tiling the hyperbolic plane with a single pentagonal tile, Ècole de Printemps, PAVAGES 2000, Branville, France, may 2000.

    Google Scholar 

  25. M. Margenstern, Tiling the hyperbolic plane with a single pentagonal tile, Journal of Universal Computer Science 8No2, 297–316, (2002).

    MathSciNet  Google Scholar 

  26. M. Margenstern, A contribution of computer science to the combinatorial approach to hyperbolic geometry, SCI 2002, July, 14–19, 2002, Orlando, USA, (2002).

    Google Scholar 

  27. M. Margenstern, A combinatorial approach to infinigons and to infinigrids of the hyperbolic plane, SCI 2002, Orlando, July, 14–18, 2002, (2002).

    Google Scholar 

  28. M. Margenstern. Cellular automata in the hyperbolic plane. A survey, Romanian Journal of Information Science and Technology, 5,1–2, 155–179, (2002), (invited paper).

    Google Scholar 

  29. M. Margenstern, Revisiting Poincaré’s theorem with the splitting method, talk at Bolyai 200, International Conference on Geometry and Topology, Cluj-Napoca, Romania, October, 1–3, 2002.

    Google Scholar 

  30. M. Margenstern, The splitting method and Poincaré’s theorem, (I) — The geometric part, Computer Science Journal of Moldova, 10–3, 297–319, (2002).

    Google Scholar 

  31. M. Margenstern, The splitting method and Poincaré’s theorem, (II) — The algebraic part, Computer Science Journal of Moldova, 11–3,(33), 24p., (2003).

    Google Scholar 

  32. M. Margenstern, The tiling of the hyperbolic 4D space by the 120-cell is combinatoric. Publications du LITA, Université de Metz, rapport technique No2003-101, (2003) and CDMTCS Research Report Series, CDMTCS-211, February 2003.

    Google Scholar 

  33. M. Margenstern, A Combinatorial Approach to Hyperbolic Geometry as a New Perspective for Computer Science and Technology, CATA 2003, Honolulu, March, 24–28, 2003, accepted.

    Google Scholar 

  34. M. Margenstern, Implementing Cellular Automata on the Triangular Grids of the Hyperbolic Plane for New Simulation Tools, ASTC 2003, Orlando, March, 29–April, 4, 2003, accepted.

    Google Scholar 

  35. M. Margenstern, K. Morita, NP problems are tractable in the space of cellular automata in the hyperbolic plane. Technical report, Publications of the I.U.T. of Metz, 38p. 1998.

    Google Scholar 

  36. M. Margenstern, K. Morita, A Polynomial Solution for 3-SAT in the Space of Cellular Automata in the Hyperbolic Plane, Journal of Universal Computations and Systems

    Google Scholar 

  37. M. Margenstern, K. Morita, NP problems are tractable in the space of cellular automata in the hyperbolic plane, Theoretical Computer Science, 259, 99–128, (2001)

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Margenstern, G. Skordev, Rectangular grids in the hyperbolic plane for cellular automata, CA 2000, 6th IFIP WG1.5 Meeting, August, 21–22, 2000, Osaka, Japan, (2000), 40–41.

    Google Scholar 

  39. M. Margenstern, G. Skordev, Locating cells in regular grids of the hyperbolic plane for cellular automata, Technical report, No 455, July 2000, Institut für Dynamische Systeme, Fachbereich Mathematik/Informatik/Technomathemtik, Universität Bremen, 2000, 38p.

    Google Scholar 

  40. M. Margenstern, G. Skordev, Tools for devising cellular automata in the 3D hyperbolic space, Publications du LITA, No2002-101, Université de Metz, 52pp., (2002). available at the following URL: http://lita.sciences.univ-metz.fr/~margens/

  41. M. Margenstern, G. Skordev, Tools for devising cellular automata in the 3D hyperbolic space, I-The geometric algorithm, Proceedings of SCI 2002, Orlando, July, 14–18, 2002, (2002).

    Google Scholar 

  42. M. Margenstern, G. Skordev, Tools for devising cellular automata in the 3D hyperbolic space, II-The numeric algorithms, Proceedings of SCI 2002, Orlando, July, 14–18, 2002, (2002).

    Google Scholar 

  43. M. Margenstern, G. Skordev, The tilings {p, q} of the hyperbolic plane are combinatoric. SCI 2003, Orlando, July, 27–30, 2003, accepted.

    Google Scholar 

  44. M. Margenstern, G. Skordev, S. Grigorieff, Two applications of the splitting method: the 3D tiling of the rectangular dodecahedra and cellular automata on infinigrids of IH 2, Bolyai 2002, János Bolyai Conference on Hyperbolic Geometry, Budapest, July, 8–12, (2002).

    Google Scholar 

  45. G.A. Margulis, S. Mozes, Aperiodic tilings of the hyperbolic plane by convex polygons, Israel Journal of Mathematics, 107, 319–325, (1998).

    Article  MATH  MathSciNet  Google Scholar 

  46. H. Meschkowski, Noneuclidean Geometry, translated by A. Shenitzer. Academic Press, New-York, 1964.

    MATH  Google Scholar 

  47. D. Morgenstein and V. Kreinovich, Which algorithms are feasible and which are not depends on the geometry of space-time, Geocombinatorics, 43 (1995) 80–97.

    MATH  Google Scholar 

  48. K. Morita, A simple construction method of a reversible finite automaton out of Fredkin gates, and its related model, Transaction of the IEICE, E, 978–984, 1990.

    Google Scholar 

  49. C. Papazian, Recognizers on hyperbolic graphs of finite automata, AUTOMATA 2001, september, 27–29, 2001, Giens, France.

    Google Scholar 

  50. H. Poincaré, Théorie des groupes fuchsiens. Acta Mathematica, 1, 1–62, (1882).

    Article  MathSciNet  Google Scholar 

  51. A. Ramsay, R.D. Richtmyer, Introduction to Hyperbolic Geometry, Springer-Verlag, 1995, 287p.

    Google Scholar 

  52. R.M. Robinson, Undecidable tiling problems in the hyperbolic plane. Inventiones Mathematicae, 44, 259–264, (1978).

    Article  MATH  MathSciNet  Google Scholar 

  53. B.A. Rozenfeld, Neevklidovy prostranstva, Izd. Nauka, Moscow, (1969), 548p. (Noneuclidean spaces, Russian).

    Google Scholar 

  54. Zs. Róka, One-way cellular automata on Cayley Graphs, Theoretical Computer Science, 132, 259–290, (1994).

    Article  MATH  MathSciNet  Google Scholar 

  55. D.M.Y. Sommerville, An Introduction to the Geometry of N Dimensions, Dover Publ. Inc., New-York, 1958.

    MATH  Google Scholar 

  56. E.B. Vinberg, Otsutstvie kristallograficheskikh grupp otrazhenij v prostranstvakh Lobacheskogo bol’shoj razmernosti, Trudy Moskovskogo Matematicheskogo Obshchestva, 47, 68–102, (1984). (Absence of crystallographic groups of reflections in Lobachevskij spaces of high dimension, Works of the Mathematical Society of Moscow).

    MathSciNet  Google Scholar 

  57. J. von Neuman. Theory of Self-Reproducing Automata. Ed. A. W. Burks, The University of Illinois Press, Urbana, (1966).

    Google Scholar 

  58. T. Worsch, On the computational complexity of hyperbolic CA, AUTOMATA 2001, september, 27–29, 2001, Giens, France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Margenstern, M. (2003). Cellular Automata and Combinatoric Tilings in Hyperbolic Spaces. A Survey. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds) Discrete Mathematics and Theoretical Computer Science. DMTCS 2003. Lecture Notes in Computer Science, vol 2731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45066-1_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45066-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40505-4

  • Online ISBN: 978-3-540-45066-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics