

J.M. Cueva Lovelle et al. (Eds.): ICWE 2003, LNCS 2722, pp. 547–550, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Publish-Subscribe for Mobile Environments

Mihail Ionescu and Ivan Marsic

Center for Advanced Information Processing (CAIP), Rutgers University
{mihaii, marsic}@caip.rutgers.edu

Abstract. The Publish-Subscribe paradigm has become an important architec-
tural style for designing distributed systems. In the recent years, we are witness-
ing an increasing demand for supporting publish-subscribe for mobile comput-
ing devices, where conditions used for filtering the data can depend on the
particular state of the subscriber (quality of the connection, space and time lo-
cality, device capabilities). In this paper we present a stateful model for publish-
subscribe systems, suitable for mobile environments. In our system, the server
maintains a state for each client, which contains variables that describe the
properties of the particular client, such as the quality of the connection or the
display size. The interest of each client can be expressed in terms of these vari-
ables. Based on the client interests, an associated agent is created on the server.
The agent filters the data that reach the client based on the current client state.
Experimental results show good performance and scalability of our approach.

1 Introduction

In a common scenario of a publish-subscribe system, publishers connect to a central-
ized server to publish events and subscribers connect to the server to establish connec-
tions (or subscriptions) in which they specify the set of messages they are interested
in receiving. The job of the server is to match published messages with the subscrib-
ers conditions and deliver only the relevant messages to each subscriber. For example,
a client can express interest about the companies DELL or IBM when the stock quote
dropped under $100 with a query as this:

 company ∈ {IBM,DELL} AND price≤100

A common characteristic of these systems is that the server does not maintain any
state about the clients. The server keeps only the address of the client (usually an IP
address) and the associated conditions. The condition is usually specified in a lan-
guage based on first-order predicates and decides whether or not the message is to be
sent to the particular client only based on the content of the message. The condition
cannot effect any changes on the actual data that is transmitted.

The development of the mobile devices made an increasing demand to support
publish-subscribe paradigm. However, the above publish-subscribe solution cannot be
directly applied in mobile environments. The client should be allowed to specify how
the conditions change depending on information like the quality of the connection or
the space locality. We believe that the main differences between a classic publish-

548 M. Ionescu and I. Marsic

subscribe system and a publish-subscribe system suitable for mobile clients are the
following:

• Stateful subscribers

The server must maintain a state associated with each subscriber. The state
of the subscriber can change due to the subscriber’s mobility and activities or
due to external reasons, e.g., changes in the quality of the connection.

• Rich language for expressing the conditions

The language in which the conditions are written should be able to allow the
interaction with the content of the message and with the state of the sub-
scriber and it should be able to modify the message content, according to the
conditions.

In this paper we present a novel architecture to support the publish-subscribe mecha-
nism for mobile devices that meets the above requirements. An important class of ap-
plications that might benefit from our approach is also described, and a motivational
example is considered.

The paper is organized as follows. We first review related work in this area. Next, we
describe our approach for supporting general publish-subscribe systems in mobile en-
vironments. We then present an example in detail, elaborating the process of creation
and deployment of the conditions and finally conclude the paper.

2 Related Work

Content-based publish-subscribe systems are intended for content distribution over a
communication network. The most important content-based publish-subscribe sys-
tems that we are aware of are GRYPHON [1], SIENA [2], ELVIN [4] and KERYX
[3].

The subscription languages of the existing systems are similar to each other and are
usually based on the first-order predicates. The filtering algorithm in these situations
can be made very efficient using techniques such as parallel search trees [1] or other
techniques. As a general observation, a trade-off between expressive subscription lan-
guages and highly efficient filtering engines is characteristic to these systems.

3 Stateful Publish-Subscribe Systems

In our system, the server maintains a state (profile) associated with each client. The
state is an abstract concept and can be composed of any number of variables, which
describe the properties of a particular client. The variables can be static (like the cli-
ent’s device capabilities, for example), or dynamic (the quality of the connection in a
wireless network). In the latter case, the server has to monitor the values for the vari-
ables in order to comply with the client’s conditions.

 Publish-Subscribe for Mobile Environments 549

The architecture of the proposed publish-subscribe system is presented in Figure 1.
The server publishes an interface, which indicates what variables from the subscriber
state are available to be used as parameters in the conditions.
A subscriber uses the interface to construct one or more conditions, in a high-level
language, and send these conditions (as a text file) to the server using a setCondi-
tion() command. Based on this information, the server generates an agent, which
will be associated with this subscriber. Each time a message arrives at the server from
a publisher, the associated agent for each of the subscribers is invoked to decide
whether or not the message should be sent to the respective subscriber. If the message
will be transmitted to the subscriber, the agent may also perform certain modifications
of the data according to the user conditions. The reason for this may be to meet the
network bandwidth constraints or the reduced display size. In our architecture, all of
the messages are contained in a particular data type, called UForm.

4 Case Study: A Collaborative Graphical Editor

Here we present an example application that can benefit from the concept of stateful
publish-subscribe systems. It is a multiuser graphical editor application, targeted for
use in collaboration on a situation map, running on diverse devices, such as laptops or
pocket PCs. In this case, each publisher is at the same time a subscriber.

We assume for simplicity that there are three types of objects that can be created:
rectangles, circles and images. The user-defined policy (i.e., conditions) for distribut-
ing the messages is as follows. First the connection is considered to be of good quality
if the available bandwidth is more than 100Kb/s, average quality if the bandwidth is
between 10Kb/s and 100Kb/s and of poor quality when the bandwidth drops under
10Kb/s. If the client has a good connection it is interested in receiving notifications
about all types of objects. If the connection quality is average, it is interested only in
rectangles and images. Lastly, if the connection is poor, it is interested in rectangles
only. In all cases, if the size of an object is greater than the size of the display avail-
able at the client site, the client is not interested in that particular object. The imple-
mentation of such a policy is shown in Table 1.

Server

Client
Subscriber

1: setCondition()

Client
State

Client’s Agent

2: message

Client
Publisher

Message
Dispatcher

4: message

3: check
message Server Interfaces

Fig. 1. The architecture of the proposed publish-subscribe system.

550 M. Ionescu and I. Marsic

Table 1. The implementation of the user policy

 public UForm testUForm(UForm uform)
{
if (getClientSize()<uform.getSize())

return null;
if (getAvailableBandwidth()>=100.0)
{
 return uform;
}
if (getAvailableBandwidth()>=10.0)
{
if (uform.getProperty(“type”)="rectangle")

 return uform;

if (uform.getProperty(“type”)="image")
 return uform;

}

if (uform.getProperty(“type”)="rectangle")

 return uform;

return null

}

We do not expect each user to be able to generate the conditions, as presented in

Table 1. Using a wizard with an appropriate graphical user interface, the application
can generate automatically the conditions, based on the input from the user.

Because of the space limitation, we cannot present the detailed performance
evaluation of our system. However, our tests show that the proposed architecture is
scalable and perform very well under medium and high traffic.

5 Conclusions

In this paper we introduce the notion of stateful publish-subscribe systems and argue
that the current publish-subscribe systems are not suitable for mobile environments.
Our approach allows the conditions to interact with the current state of each sub-
scriber and decide whether or not to send it to the subscriber and how to modify the
message if necessary. Moreover, our approach can be incorporated in the current pub-
lish-subscribe systems in an incremental manner, by allowing for some of the sub-
scribers to maintain a state at the server. Experimental results demonstrate good per-
formance and scalability of our approach.

References

1. M. K. Aguilera, R. E. Storm, D. C. Sturman, M. Astley, and T. Chandra. Matching events
in a content-based subscription system. In 18th ACM Symposium on Principles of Distribut-
ing Computing (PODC), 1999.

2. A. Carzaniga, D. S. Rosemblum and A. L. Wolf. Achieving scalability and expressiveness
in an internet-scale event notification service. In 19th PODC, 2000.

3. Keryx homepage, http://keryxsoft.hpl.hp.com
4. B. Segall and D. Arnold. Elvin has left the building: A publish-subscribe notification ser-

vice with quenching. In Proceedings of the Australian UNIX and Open Systems User
Group Conference, 1997.

	Introduction
	Related Work
	Stateful Publish-Subscribe Systems
	Case Study: A Collaborative Graphical Editor
	Conclusions
	References

