
J.M. Cueva Lovelle et al. (Eds.): ICWE 2003, LNCS 2722, pp. 230–240, 2003. 
© Springer-Verlag Berlin Heidelberg 2003 

Building Applications with Domain-Specific Markup 
Languages: A Systematic Approach to the Development 

of XML-Based Software1 

José L. Sierra, Alfredo Fernández-Valmayor, Baltasar Fernández-Manjón, and 
Antonio Navarro 

Dpto. Sistemas Informáticos y Programación. Fac. Informática. Universidad Complutense.                    
C/ Juan del Rosal nº 8. 28040. Madrid. Spain 

{jlsierra,alfredo,balta,anavarro}@sip.ucm.es 

Abstract. This paper presents ADDS, a systematic approach to sofware 
development using Domain-Specific Languages (DSLs) and markup 
technologies. XML is used as a common descriptive framework for DSLs 
formulation, obtaining Domain Specific Markup Languages (DSMLs). 
According to ADDS, the construction of applications in a domain starts with the 
provision of suitable DSMLs. Then, the applications in such a domain are 
described by means of sets of structured documents conforming these DSMLs. 
Finally, the application is produced by processing this documentation according 
to an operationalization model called OADDS. Hence ADDS provides a 
systematic approach to software development based on the processing of XML 
documentation that can be used in a great variety of domains. 

1 Introduction 

XML [26] has acquired a great relevance in the construction of web applications and 
in many other areas of software development. XML inherits from its predecessor 
SGML [13] a linguistic approach in the development of applications. Indeed, 
developing a SGML/XML application is equivalent to using SGML/XML in devising 
a special-purpose markup language. Previously, this linguistic approach was 
successfully applied to the electronic publishing domain but, with the advent of new 
SGML applications and, specially XML, this initial domain was quickly broadened. 
Now, XML is usually considered as a standard framework for information 
interchange between heterogeneous systems despite its origins as a document markup 
(meta)language. Neverthless, the new application domains should not change the 
initial linguistic conception: in order to develop an XML application the focus must 
be put on devising a markup language for describing the informational structure of the 
application domain. Once this language is available, one (or several) processor(s) 
must be provided, depending on the task to be solved using the marked up documents. 

                                                           
1 The Spanish Commitee of Science and Technology (TIC2000-0737-C03-01, TIC2001-1462 

and TIC2002-04067-C03-02) has supported this work.     



Building Applications with Domain-Specific Markup Languages         231 

 

This paper presents our approach to software development called ADDS 
(Approach to Document-based Development of Software). This approach is the 
outcome of our previous experience using markup technologies in the educational 
domain [6][7], in the prototyping of model-driven hypermedia applications [15], and 
in the development of component-based software [19]. ADDS put the stress on the 
linguistic potentiality of XML, instead on its data oriented features. ADDS can 
actually be considered as a specific case of the paradigm of software construction 
based on Domain-Specific Languages (DSLs) [22] that uses XML as a common 
descriptive framework for DSLs formulation. Because ADDS conceives DSLs as 
XML applications, our approach provides new insight into the systematic 
development of these kinds of applications.  

The structure of the paper is as follows. Section 2 gives a general overview of the 
ADDS approach. Section 3 describes the operationalization model of ADDS (i.e how 
executable applications are produced from documents describing them). Finally, 
section 4 describes related work and section 5 outlines the conclusions and future 
work. To illustrate the different aspects described in the paper, a case study 
application domain is used: the Subway Networks Route Search (SNRS) domain. 
Each SNRS application allows the search for paths from origin to destination stations 
in the subway network of a city. 

2 The ADDS Approach 

The ADDS approach is outlined in Fig.1. This approach comprises the following 
three activities: (i) the provision of DSMLs, oriented to provide the Domain-Specific 
Markup Languages (DSMLs), (ii) the authorship of documents, oriented to produce 
the documentation describing the application, and (iii) the operationalization activity, 
oriented to produce the application from the documentation. The following 
subsections detail these activities. 
 
 

Provision of 
DSMLs  

Documents DSMLs Executable  
Application 

Authorship of 
Documents 

Operationalization 

 

Fig. 1. Main activities and products involved in ADDS. 

2.1 Provision of DSMLs 

The goal of this activity is to produce DSMLs that will be used to markup the 
documents that describe the application and the data needed by the application in a 
given domain. In ADDS, each DSML comes with a set of software components which 
represent the primitive operations in the domain and that will be used for assembling 



232         J.L. Sierra et al. 

 

processors for documents conforming the DSML. There might be different 
components used to validate, or to edit documents, to perform domain-dependent 
tasks, etc.  

Fig. 2 gives a top-level categorization of DSML types. There are (i) problem 
DSMLs, languages for marking up the relevant data and information about the 
domain of the problem to be solved by the application, and (ii) application DSMLs, 
languages for marking up documents describing high-level aspects of the application. 
Documents conforming problem DSMLs are called problem domain documents, 
while those conforming application DSMLs are called application documents.  

Problem DSMLs can integrate two different sublanguages: (i) a use-independent 
problem DSML for the description of information independent of any particular use 
imposed by the application, and (ii) a use-enabling problem DSML for giving 
additional information not describable with the use-independent problem DSML. 
Moreover, to lower the cost of developing new DSMLs, more complex application 
DSMLs can be obtained by combining simpler ones. 

 

Application 
DSML 

is a Transformation 
DSML 

Problem 
DSML 

Use-independent 
problem DSML 

Use-enabling 
problem DSML 

Interpretation 
DSML 

interpreted 
by 

result of transformations 
specified by 

part of 

part of 

part of 
is a 

 

Fig. 2. An initial ADDS linguistic framework. 

Table 1. DSMLs used in the SNRS domain. 

Problem DSMLs 
Use-independent problem 
DSMLs 

− Subway Network Markup Language (SNML) 

Use enabling problem DSMLs − Subway Network Geometry and Styling Markup Language (SNGSML) 
Application DSMLs 

Transformation DSMLs −  XSLT 
Interpretation DSMLs − Weighted Directed Graph Markup Language (WDGML) 

− Simple Diagram Description Markup Language (SDDML) 
− Simple Terminological Mapping Language (STML) 

Other Application DSMLs − Subway Network Route Searching Markup Language (SNRSML) 

 
By maximizing the independence between problem and application DSMLs, we 

can improve the reusability of the DSMLs and of the documentation. Indeed, in some 
cases, application documents can be used with different problem domain documents, 
and problem domain documents can be used in different applications. To facilitate the 
relative independence between both types of languages, the application DSML must 
abstract the problem domain. The problem of coupling and decoupling these more 
specific and abstract languages used to describe the domain is solved in ADDS using 
transformation and interpretation DSMLs. Transformation DSMLs are used to 
specify document transformations, which, by taking problem documents as input, 
produce interpretation documents as output. Therefore, transformation DSMLs are 



Building Applications with Domain-Specific Markup Languages         233 

 

the link between application DSMLs and problem DSMLs. Furthermore, 
interpretation documents are compliant with interpretation DSMLs. These DSMLs 
are not directly used in the description of the application. Instead, they are used as the 
target languages for the transformation DSMLs  

Table. 1 enumerates the different DSMLs used in the SNRS domain. The problem 
DSMLs include a use-independent problem DSML, SNML, for describing the 
structure and the schedules of subway networks, and a use enabling language, 
SNGSML, for the description of the geometry (eg. coordinates of the stations) and 
other stylistic aspects (eg. line colors) of subway networks. The application DSMLs 
include standard XSLT [26] as transformation language, and SNRSML for describing 
the variabilities of the application. The following interpretation DSMLs are also 
included: (i) WDGML for representing the weighted graph used in the search, (ii) 
SDDML for giving a visual representation of the subway network, and (iii) STML, 
used to relate the names of the stations in the SDDML diagram with the names of the 
nodes in the WDGML graph. These languages will be the target languages for the 
transformations. 

2.2 Authorship of Documents 

Domain experts can provide descriptions of applications as collections of marked up 
documents using the appropriate DSMLs.  This is done during the authorship of 
documents activity. 

 
 

Application 
Documents 

Application 
Description 
Document 

Transformation 
Specification 
Documents 

Problem 
Domain 
Document 

 

Fig. 3. Documentation associated with a typical application description in ADDS. 

 
Application 
Documents 

SNRSML 
Document 

Subway2 
Graph 

Subway2 
Mapping 

Subway 
network 
description 

Subway2 
Diagram 

 
 

Fig. 4. Documentation associated with an SNRS application. 

Fig. 3 sketches the documentation associated with a typical application description 
in ADDS. There is only one problem domain document. There are also several 
application documents: (i) an application description document describing the 
variabilities of the application, some of which are given as transformations of the 
problem domain information, and (ii) a set of transformation specification documents 
describing how to carry out these transformations. 



234         J.L. Sierra et al. 

 

Fig. 4 sketches the documentation associated with an application in the SNRS 
domain. The problem domain document includes a SNML description of the subway 
network. This also includes a SNGSML description of the geometry and style of the 
network. The application description document conforms to SNRSML. Finally, there 
are three XSLT transformations: (i) a first one (Subway2Graph) for generating a 
WDGML graph from the subway network description document, (ii) a second 
(Subway2Diagram) for generating a SDDML diagram, and (iii) a third 
(Subway2Mapping) for generating a STML mapping.  

2.3 Operationalization  

The operationalization activity produces an application from the marked up 
documents that describe it. This activity is detailed in the next section. 

3 Operationalization in ADDS  

The operationalization activity follows an operationalization model called OADDS 
(Operationalization in ADDS). It is based on the well-known techniques of syntax-
directed translation [1] and attribute grammars [11][16] used in the construction of 
language processors. In addition, the model provides for semantic modularity [10]. 
Accordingly, processors can be built using reusable language-processor components. 
Semantic modularity is important in ADDS, because complex DSMLs can be 
obtained by combining simpler DSMLs. In this way, processors for the resulting 
markup document describing the whole application should arise as an appropriate 
combination of processors for the simpler subdocuments without changing them. The 
next sections provide the details.  

3.1 OADDS Applications 

The structure of an OADDS application is sketched in Fig. 5. According to this 
scketch, the application is made up by a document tree, a processing graph added to 
this document tree, and an interface. 

The document tree is a grove-like representation [17] of the top-level document of 
the application. It is made of a set of objects, called nodes. Each node has an assigned  
set of properties. This tree includes properties for representing the markup structure 
(primitive properties), but also properties for representing other information (semantic 
properties). Each property is represented as an object that has an associated  value, 
and an associated set of observers. The value of a property can be either a list of 
nodes or an object of another type (including a node from a different document tree). 
Each observer is a processing object which can be notified when the property value 
changes. 

The processing graph is a graph with properties and processing objects as nodes. 
The only arcs allowed are (i) from properties to processing objects, indicating that the 
process carried out by the processing object depends on the property value, and (ii) 



Building Applications with Domain-Specific Markup Languages         235 

 

from processing objects to properties, indicating that the source processing object 
updates the target property. Actually, the processing graph is added to the document 
tree registering processing objects as observers. In turn, each processing object can be 
asked for the properties that it updates. In terms of attribute grammars, this graph can 
be understood as a dynamic version of the dependency graph associated with an 
attributed parse tree, together with the semantic functions used to compute the values 
of the attributes. 
 
 

Interface 
Document 
Tree 

Processing 
Graphs  Application 

 

Fig. 5. Structure of an OADDS application. 

The interface mediates between the application and its environment. Usually, this 
environment will be populated by the users of the application (either people or other 
programs). In this way, the concept of interface in OADDS is a very abstract one. For 
instance, in the case of a batch application it could be a black-box, in the case of an 
interactive application (such as those used in the SNRS domain), it could be a 
graphical user interface. It could even be a SOAP [26] mediator for applications 
conceived as web services. In addition, the application description can also describe 
certain aspects of the interface. Such aspects will usually be eminently pragmatic (eg. 
in a GUI, label names, colors, etc.).  

This structure induces a natural execution model based on the propagation of the 
properties values. Hence, computation of attribute values in the attribute grammar 
context has a counterpart on the behaviour induced by the network of 
observables/observers. Indeed, the propagation of a property value means that its 
observers should be notified about the availability of this value. In this way, the 
execution starts with the propagation of the values of the primitive properties. Next, 
the interface takes control. This interface can update other semantic properties in the 
tree in order to finish the propagation process. Finally, execution is guided by user 
interaction. When the user interacts with the interface, the appropriate semantic 
properties are updated and re-propagated. As a consequence, other semantic 
properties are established and their values are used to update the state of the interface. 

3.2 The OADDS Model 

The activities and products involved in the OADDS model are shown in Fig.6. 
 OADDS uses two types of software componentes to produce applications from 

structured documents: (i) (tree) analyzers that validate and set up the document tree to 
ensure that it can be properly operationalized, and (ii) operationalizers that enlarge 
the document tree by adding the processing graph. These components are provided 
during the provision of software components activity. While analyzers abstract the 
productions of a context-free grammar, operationalizers provide an implementation of 
the semantic equations associated with each one of these productions.  



236         J.L. Sierra et al. 

 

 
 

Document 

 
Analizers 

Aplication 
     Interface 

Provision of software 
components 

Operationalization table 

 
Operationalizers 

Namespace 

 

Construction of 
the 

Operationalization 
table 

Tag 

 

Analyzer 

 

Operationalizer 

 

Construction of 
the Document 

Tree 

Analysis of the 
Document Tree 

Construction of 
the Processing 

Graph 

Construction of 
the Application 

Provision of the 
Interface 

Document tree 

Postanalysis 
document tree 

Processing 
graph added to 
the document 
tree 

 

Fig. 6. Products and activities in OADDS. 

The operationalization of a DSML is performed by assigning an analyzer and an 
operationalizer to each tag. The resulting structure is called an operationalization 
table, and it is provided during the construction of the operationalization table 
activity. Therefore, this table can be thought as an abstraction of an attribute 
grammar/syntax-directed translation schema. Because DSMLs can be produced by 
combining simpler DSMLs, the operationalization table uses XML namespaces [26] 
to avoid name conflicts. In addition, both the analyzer and the operationalizer 
associated with a given tag can be obtained by composing different 
analyzers/operationalizers. This is the main OADDS mechanism for achieving 
semantic modularity. 

The operationalization of a particular document begins with the construction of its 
document tree, during the construction of the document tree activity. This document 
is subsequently analyzed during the analysis of the document tree activity. This 
activity is carried out using the analyzers referred to in the operationalization table. 
The tags associated with element nodes in the document tree are used to index the 
appropriate analyzers in the table, which are applied to the corresponding nodes. To 
facilitate the actuation of subsequent components, analyzers can add new properties 
(postanalysis properties) to the document tree. The resulting tree is called a 
postanalysis document tree.  

The addition of the processing graph to the (postanalysis) document tree is carried 
out during the construction of the processing graph activity. Here element tags are 
used to index operationalizers in the operationalization table. Then, the recovered 
operationalizers are applied to the corresponding nodes. When applied to a node, an 
operationalizer adds part of the processing graph by registering processing objects as 
observers of node properties. Finally, the application is produced by putting together 



Building Applications with Domain-Specific Markup Languages         237 

 

the interface (obtained during the provision of the interface activity) with the 
document tree and the added processing graph. This is performed during the 
construction of the application activity.  

Currently, we have developed an experimental Java object-oriented framework for 
supporting OADDS. The framework provides facilities to connect either with DOM 
[26] or SAX [3] compliant software for the construction of the document tree.      

4 Related Work  

A pioneering work in the use of SGML/XML for the description of DSMLs is [8]. In 
[25], some relations between markup languages and the DSL approach are 
highlighted. Although these works recognize the value of markup metalanguages as a 
vehicle to define DSLs, they largerly use SGML/XML as abstract syntax 
representation formalisms rather than as descriptive markup (meta)languages.  

The key idea behind Jargons [14] is similar to ADDS. In Jargons, DSMLs are 
directly formulated, and even operationalized (using a script language), by domain 
experts. While we agree with this author centered conception of DSL development, 
we think that to assign language design and operationalization responsabilities to 
domain experts is not realistic. In ADDS, operationalization is separated from DSL 
provision. Therefore, operationalization can be carried out by software development 
experts while DSMLs can evolve according to the markup needs of domain experts. A 
third category of experts in ADDS can mediate between domain and software 
development experts, taking the responsability for maintaining the DSMLs. Semantic 
modularity (not comtemplated in Jargons) is essential in order to accomodate 
operationalization to this evolution of DSMLs.    

DSLX [13] is another example of a framework to operationalize DSLMs. Although 
this framework enables DSL composability, it does not provide any special 
mechanism to ensure semantic modularity. 

A well-known approach to semantic modularity in the development of DSLs is that 
based on monads and monad transformers [10] in the functional programming 
community. Because control in OADDS is imposed by the processing model itself, 
modularity is oriented to adaptation of the information flow between the document 
tree nodes, instead of control adaptations. This solution is weaker, but also more 
usable than monadic approaches. Another well-known approach, this time in the 
object-oriented arena, is based on the use of mix-ins [4]. Composition of 
analyzers/operationalizers in OADDS can be resorted into a single mix-in 
composition, where the execution of mix-ins do not interfere.  

There are several works describing the application of syntax directed translation 
techniques and attribute grammars to markup languages [5][12][18].Actually, OADDS 
can be considered an abstraction of these approaches, where the grammatical 
specification is reduced to the operationalization table. Because of this, all these 
approaches are feasible in OADDS. In particular, the facilities provided by higher-
order attribute grammars [24], where the value of an attribute can be another 
attributed tree, can be easily achieved. This enables OADDS to deal with 
interpretation documents. In addition, some usual techniques used to obtain semantic 
modularity in the context of attribute grammars can also be easily achieved [23].  



238         J.L. Sierra et al. 

 

Existing technologies for building XML-based software fit in well with our 
approach. Therefore, the construction of  the document tree OADDS activity can be 
built on top of basic document processor technologies, such as DOM or SAX. On the 
other hand, data-binding proposals [2] (i.e. compilation of document grammars into 
object oriented representations of documents conforming these grammars) can be 
understood as a particular case of OADDS. In addition, Knuth’s principle, which 
states that attribute grammars are as powerful as any other semantic specification 
formalism [11], can be applied here, because, at the limit, processing objects can be 
applied to entire document (sub)trees. This facilitates the integration of pre-existing 
processors (eg. standard XSLT transformers).  

The work described here relies on our previous work on the DTC (structured 
Documents, document Transformations and software Components) approach 
[19][21][20]. ADDS abstracts the key idea under DTC: the use of DSMLs. In addition, 
the treatment of document transformations exposed here (closer to the idea of 
overmarkup exposed in [15]), where the application of transformations is a part of the 
application description, is more flexible than in DTC. In DTC transformations were 
applied for the content (problem domain) documents to obtain a pre-established set of 
document entities integrated into the application documents. 

5 Conclusions and Future Work 

ADDS is a systematic approach to sofware development founded on DSLs and 
markup technologies. It is based on a comprehensive linguistic view of the application 
development that deals with the description of the applications and the problem 
domains by means of marked up documents, and also with the operationalization of 
these descriptions. Therefore, by using the markup documents (produced according to 
suitable DSMLs) and a related group of software components, the executable 
application is obtained.  

Recently we have realized that the use of descriptive markup, together with the 
modular nature of OADDS, enables the conception of ADDS as a pragmatic, 
authorship-driven, particular case of the DSL approach. Consequently, we are refining 
ADDS in that direction. In addition, we are working on the recursive application of 
ADDS to ADDS itself, either for the production of specialized editors for domain 
experts, and for the supporting of meta DSMLs to give higher-level descriptions of 
OADDS processors. Next step in the project is to give a precise characterization of 
the application domains where the ADDS particular use of the DSL approach could 
be competitive. 

References 

1. Aho, A. Sethi, R. Ullman, J. D. Compilers: Principles, Techniques and Tools. Adisson-
Wesley. 1986 

2. Birbeck,M et al. XML Data Binding. Professional XML 2nd Edition. WROX Press. 2001. 
3. Brownell, D. SAX2. O’Relly. 2002  

 



Building Applications with Domain-Specific Markup Languages         239 

 

 
4. Duggan, D. A Mixin-Based Semantic-Based Approach to Reusing Domain-Specific 

Programming Languages. 14th European Conference on Object-Oriented Programming 
ECOOP’2000. Cannes. France. June12–16  2000 

5. Feng, A.Wakayama, A. SIMON: A Grammar-based Transformation System for 
Structured Documents. Electronic Publishing. 6(4). 1993 

6. Fernández Manjón, B. Fernández-Valmayor, A. Improving World Wide Web educational 
uses promoting hypertext and standard general markup language content-based features. 
Education and Information Technologies, vol 2, no 3, pp. 193–206. 1997. 

7. Fernández-Valmayor, A.; López Alonso, C. Sèrè A. Fernández-Manjón,B. Integrating an 
Interactive Learning Paradigm for Foreign Language Text Comprehension into a Flexible 
Hypermedia system.  IFIP WG3.2-WG3.6 Conference Building University Electronic 
Educational Environments. University of California Irvine, California, USA August. 4–6  
1999 

8. Fuchs, M. Domain Specific Languages for ad hoc Distributed Applications. First 
Conference on Domain Specific Languages. USENIX. Sta. Barbara. CA. October 17–17. 
1997 

9. Goldfard, C. F. The SGML Handbook. Oxford University Press. 1990 
10. Hudak,P. Domain-Specific Languages. Handbook of Programming Languages V. III: 

Little Languages. And Tools. Macmillan Tech. Publishing. 1998  
11. Knuth;D.E. Semantics of Context-free Languages. Math. Systems Theory. 2:127–145. 

1968 
12. Kuikka, E.Pentonnen, M. Transformation of Structured Documents with the Use of 

Grammars.Electronic Publishing. 6(4). 1993 
13. Morrow,P. Alexander,M. Domain Specific Languages – Tools for Better Programming. 

PCAI Magazine. Vol 13. Issue 1. Jan/Feb 1999 
14. Nakatani,L.H. Ardis,M.A. Olsen,R.G. Pontrelli,P.M. Jargons for Domain Engineering. 

Second Conference for Domain Specific Languages. USENIX. Austin. Texas. October 
3–6. 1999 

15. Navarro, A., Fernández-Manjón, B., Fernández-Valmayor, A., Sierra, J.L. Formal-Driven 
Conceptualization and Prototyping of Hypermedia Applications. Fundamental 
Approaches to Software Engineering FASE 2002. ETAPS 2002. Grenoble. France. April 
8–12. 2002 

16. Paakki,J. Attribute Grammar Paradigms - A High-Level Methodology in Language 
Implementation. ACM Computing Surveys 27(2): 196–255. 1995 

17. Prescod,P. Addressing the Enterprise: Why the Web needs Groves. ISOGEN White 
Paper. 1999 

18. Psaila, G.Crespi-Reghizzi, S. Adding Semantics to XML. Second Workshop on Attribute 
Grammars and their Applications. WAGA'99. Amsterdam. The Netherlands. March 26. 
1999 

19. Sierra, J. L. Fernández-Manjón, B. Fernández-Valmayor, A. Navarro, A. Integration of 
Markup Languages, Document Transformations and Software Components in the 
Development of Applications: the DTC Approach. International Conference on Software 
ICS 2000. 16th IFIP World Computer Congress. Beijing - China. August 21–25. 2000 

20. Sierra, J. L. Fernández-Manjón, B. Fernández-Valmayor, A. Navarro, A. An Extensible 
and Modular Processing Model for Document Trees. Extreme Markup Languages 2002. 
Montreal. Canada. August 4–8. 2002.  

21. Sierra, J. L. Fernández-Valmayor, A. Fernández-Manjón, B. Navarro, A. 
Operationalizing Application Descriptions with DTC: Building Applications with 
Generalized Markup Technologies. 13th International Conference on Software 
Engineering & Knowledge Engineering SEKE'01. Buenos Aires. Argentina. June 13–15. 
2001. 



240         J.L. Sierra et al. 

 

 
22. Van Deursen, A. Klint, P.Visser, J. Domain-Specific Languages: An Annotated 

Bibliography. ACM SIGPLAN Notices. 35(6). 2000. 
23. Van Wyk,E. de Moor, O. Backhouse, K. Kwiatkowski,P. Forwarding in Attribute 

Grammars for Modular Language Design. Compiler Construction CC 2002. ETAPS 
2002. Grenoble France. April 8–12. 2002 

24. Vogt, H, H. Swierstra, S, D. Kuiper, M, F. Higher-Order Attribute Grammars. 
Proceedings of the ACM SIGPLAN'89 Conference on Programming Language Design 
and Implementation. 1989 

25. Wadler,P. The next 700 markup languages. Invited Talk of the Second USENIX 
Conference on Domain Specific Languages. USENIX. Austin. Texas. 1999   

26. www.w3.org/TR 
 


	Introduction
	The ADDS Approach
	Provision of DSMLs
	Authorship of Documents
	Operationalization

	Operationalization in ADDS
	OADDS Applications
	The OADDS Model

	Related Work
	Conclusions and Future Work
	References

